DTLS as a Subtransport

Christian Huitema
Eric Rescorla

Jana lyengar



Why DTLS?

Key negotiation,
authentication

Streams

Per stream transmission,
retransmission, congestion

Error detection, FEC, congestion
control

Encrypt/decrypt

Header

Checksum

Encrypted Data

IP, UDP

o Encryption essential
part of transports

o Implementing own

encryption stack is
hard

« Design special purpose
stack is risky
e DTLS reuses TLS,

provides common
encryption layer



Gaps: DTLS as efficient sub-transport

e Zero RTT setup
« Zero RTT setup will be supported in TLS/1.3

e Low overhead
« 13 bytes of header, out of 1500 bytes UDP packet, maybe too much
e Could use compression per draft-modadugu-dtls-short-00

e DOS resilience — without TCP 3 ways handshake
e Resource at server: use DTLS cookies mechanism
« DOS amplification: require padding of initial packet

e Context-ID
« Additional 8 byte identifier would allow MP-TCP like functionality
e Discuss —do we need to multiplex many connections per 5-tuple?



Gaps: DTLS and being middle-box friendly

e Protocol detection
« Have middle box understand what protocol is being used
e Some minimal support in DTLS — pattern matching clear text headers
e But generally goes against the whole point of encryption

o Start-Stop indication
e Suggested to help resource control at middle box
 Start is obvious — first packet does it
e Plausible Stop heuristic, monitor “Alert” content type in clear text header

« Accepting indications from the network
e For example, “congestion detected” or “PMTU supported”
e Goes against the grain of DTLS — not encrypted, not secure
e Heuristics are possible, but not obvious
e End-to-end evaluation of MTU, congestion seems more plausible



To do

 Build actual prototype
e Feedback from SPUD BOF



