
draft-nayak-tcp-sha2-02

Brian Weis

A. Sujeet Nayak

SHA-2 Algorithm for the TCP

Authentication Option (TCP-AO)

TCP-AO Background

• RFC 2385 (“Protection of BGP Sessions via the TCP

MD5 Signature Option”) was published in 1998

– Used by SPs to integrity-protect BGP sessions when they

don’t trust the network in between the BGP speakers

• Ten years later it was recognized that MD5 was no

longer considered strong enough and there was

interest in finding a stronger integrity algorithm.

• This led to to the publishing of RFC 5925 “The TCP

Authentication Option”), which included several

improvements in security in addition to allowing the

use of higher quality integrity-protection algorithms.

2 TCPM WG IETF 92

Algorithm Agility
• Algorithm agility is the property of specifying the use of new

cryptographic algorithms without changing the base protocol

– All cryptographic algorithms weaken over time, as attackers have

access to more CPU power and better cryptanalytic techniques

– This is exactly what happened to the “keyed MD5” method used in

RFC 2385

• For TCP-AO:

– RFC 5925 specifies the semantics for the integrity protection, and

should not need to be re-published when new algorithms are

specified.

– RFC 5926 (“Cryptographic Algorithms for the TCP Authentication

Option (TCP-AO)”) defines algorithm requirements for TCP-AO.

3 TCPM WG IETF 92

RFC 5926 Algorithms

• RFC 5926 defines two strong integrity methods

(known as Message Authentication Codes (MACs))

to integrity-protect TCP segments:
– HMAC-SHA-1-96

– AES-128-CMAC-96

• RFC 5926 also defines two strong Key Derivation

Functions (KDFs), which derive traffic keys from a

master key configured on the communicating devices
– KDF_HMAC_SHA1

– KDF_AES_128_CMAC

• These are all mandatory to implement (“MUST”), but other MAC

and KDF algorithms can be specified as needed

4 TCPM WG IETF 92

Adding SHA-256

• Our draft describes the use of SHA-256 for TCP-AO

– MAC algorithm: HMAC-SHA256-128

– KDF algorithm: KDF_HMAC_SHA256

• Is there anything wrong with either of the algorithms

in RFC 5926?

– No!

• Then why bother?

– Because certain user communities have requirements to use

SHA-256, as it is considerably stronger than SHA-1

– Specifying how TCP-AO supports SHA-256 will enable those

use communities to adapt TCP-AO

TCPM WG IETF 92 5

KDF_HMAC_SHA256

• The KDF specifies HMAC-SHA256 and

takes inputs specified in RFC 5925
 traffic_key = HMAC-SHA256(master_key, context)

where the context is the TCP socket pair

(addresses, ports) and the ISNs (source, dest)

• The resulting traffic_key is a 256-bit value,

used as the input to HMAC-SHA256-128

TCPM WG IETF 92 6

HMAC-SHA256-128

• The MAC specifies HMAC-SHA256 and

takes inputs specified in RFC 5925
MAC = HMAC-SHA256-128(traffic_key, message)

Where the message is the TCP segment

prepended by the IP pseudoheader and TCP

header options

• It produces a 256-bit value, which is

truncated to 128-bits before placing into

the TCP-AO option
TCPM WG IETF 92 7

Discussion Points

• We appreciate the comments made on

the list on earlier drafts

– We believe we resolved all comments that

was possible to resolve

– The following slides invite further

discussion on a few points

TCPM WG IETF 92 8

Increased TCP-AO option size (1)
HMAC-SHA-1-96 AES-128-CMAC-96 HMAC-SHA256-128

MAC (octets) 12 12 16

Header (octets) 4 4 4

Total (octets) 16 16 20

TCPM WG IETF 92 9

• Section 7.6 of RFC 5925 notes that 40 options octets are available

• SYN Segments

– Section 7.6 states that current implementations expect SACK

Permitted, Timestamps, and Window Scale options (15 octets)

– That would seem to leave TCP-AO a budget of 25 octets

– TCP-AO with HMAC-SHA256-128 consumes 20 octets, leaving 5

octets free

– But implementation dependent alignment padding may consume

another 2 octets, which leaves 3 octets free

Increased TCP-AO option size (2)

• Non-SYN segments

– Section 7.6 states that current implementations

expect to use either {SACK, Timetamps} (20

octets) or {D-SACK, Timestamps} (28 octets)

– When SACK is used, there is a budget of 20

octets, which would be just the amount needed for

HMAC-SHA256-128

– Use of D-SACK would not be possible, however. What is the

impact of not being able to use D-SACK?

TCPM WG IETF 92 10

Increased TCP-AO option size (3)

• Other related discussion points

– Brandon Williams was concerned that the guidance in RFC

5925 did not include the 4-octet MSS option. This would be a

problem at least for non-SYN segments

– There was some discussion on the list regarding whether

option packing can be disabled, which at least would free up

room for MSS on SYN segments but non-SYN segments

seem to be a problem

– TCP-AO is likely to be used with BGP routers rather than on

hosts, so perhaps the set of expected options is different and

can accommodate HMAC-SHA256-128. (Investigation is

ongoing.)

TCPM WG IETF 92 11

Updating RFC 5926

• Our Internet-Draft RECOMMENDS using SHA-256

– There’s no need to replace either current of the MACs

specified in RFC 5926

– Since we’re not changing the requirements in RFC 5926 we

didn’t initially see a need to update it.

• But both Joe Touch and Gregory Lebovitz suggested

that RFC 5926 should be updated so that all

algorithm guidance is together

• We’re open to whichever approach the WG prefers.

TCPM WG IETF 92 12

Next Steps

• Additional comments and suggestions

are requested

• Security Area reviews are needed to

confirm that the use of SHA-256 is

correctly specified.

• We would also like to get some sense

as to whether this should be a WG draft

or not.
TCPM WG IETF 92 13

