
# Revision of the Appointed Forwarder RFC draft-eastlake-trill-rfc6439-00.txt

Donald E. Eastlake, 3<sup>rd</sup> d3e3e3@gmail.com +1-508-333-2270

## **Background**

- TRILL base protocol supports multiple TRILL switches (RBridges) on a link providing end station service where traffic is allocated among the RBridges by VLAN.
- The RBridge handling native end station traffic to/from the link in VLAN-x is called the Appointed Forwarder for VLAN-x
- The current details are in RFC 6439 which was updated by RFC 7180.

### **Background**



#### **Current rfc6439bis Draft**

- Add mandatory E-L1CS FS-LSP support. The current rfc6439bis draft requires support of Extended Level 1 Circuit Scoped (E-L1CS) Flooding Scope LSPs as specified in RFC 7356.
  - Expands space for link local state and configuration advertisements from the very limited space in the IS-IS Hello up to 2\*\*16 link local LSP fragments.
  - This eliminates the current restrictions on appointing forwarders on a link due to lack of space in a Hello for appointment information.

#### Current rfc6439bis Draft (cont.)

- Specifies APPsub-TLVs for sending efficiently encoded forwarder appointments in E-L1CS in cases other than contiguous blocks of VLANs.
  - Blocks of contiguous VLANs efficiently encoded by Appointed Forwarders sub-TLV [RFC7176].
  - Scattered VLANs over a narrow range efficiently encoded by Appointment Bitmap APPsub-TLV in rfc6439bis.
  - Scattered VLANs over a large range efficiently encoded by Appointment List APPsub-TLV in rfc6439bis.
- Incorporates Appointed Forwarder material from RFC 7180 that optionally reduced the number of VLANs in which Hellos must be sent.
- Adds optional FGL mapping consistency check on a link.

#### **Further Possible Improvements**

- Two further optional improvements that could be incorporated into this draft:
  - 1. Port failure/shutdown notification
  - 2. Root bridge change optimizations

• There is IPR on these improvements that will be disclosed.

#### 1. Port failure/shutdown notification

- An RBridge may have a planned shut down of a port on a link or might detect port failure at the physical or other level.
- Port failure is not currently noticed by other RBridges until multiple Hellos from that port are missed, which can take many seconds.

#### 1. Port failure/shutdown notification

- The proposal is to send an RBridge Channel message indicating port failure/shutdown.
  - Message is serially unicast through the TRILL campus to other RBridges on the link and/or (in the case of shutdown) broadcast on the link.
  - The port can be unambiguously identified by the RBridge's IS-IS System ID and the port's Port ID.
  - This message can be secured using the RBridge Channel Tunnel protocol.

#### 1. Port failure/shutdown notification

- Other RBridges on the link, on receipt of this message, drop adjacency to the port that failed or is being shutdown.
  - If that RBridge/port had been elected Designated RBridge (DRB) on the link, a new DRB is elected.
  - If that RBridge/port was Appointed Forwarder, a new forwarder can be appointed immediately.
- [Similar steps can be taken if an RBridge on the link crashes but no new message is needed in that case as this is visible via LSPs.]

- Many links are point-to-point but, in the case of multiple RBridges and end stations on a link, are likely to be bridge LANs.
- Bridges and links can go down or come up. As a result a bridged LAN could partition or bridged LANs could merge.
- While bridging protocols are settling for the new bridge LAN topology, there could be multiple VLAN-x Appointed Forwarders, TRILL Hellos can be blocked, etc..

- As a result, when a CIST root bridge change is detected by an RBridge port, current TRILL protocol requires that the port be "inhibited" for a configurable fixed length of time.
  - Note: "Inhibition" has no effect on TRILL Data or IS-IS packets. It only stops ingress and egress of native frames from/to end stations.
- There are at least three cases where this is not necessary.

- 2. Three cases where the CIST root Bridge Identifier changes but inhibition is unnecessary or can be terminated early:
  - a) If the Bridge Identifier changes to a lower priority value.
  - b) If the the root Bridge Address stays the same.
  - c) If, since the Identifier change, Hellos have been received from all known RBridges on the bridged LAN.

- a) If the Bridge Identifier changes to a lower priority value.
  - This implies that a bridge or link crashed, possibly partitioning the bridge LAN. In this case, no inhibition is required.
  - A change is unsafe only for an RBridge port that sees a new higher priority CIST root Bridge Identifier.

- b) If, when the CIST Bridge Identifier changes, the Bridge Address part stays the same.
  - This implies that the only thing that happened was that the other bits in the Bridge Identifier have been configured to a different value but he bridge that was CIST root is unchanged.
  - In this case, no inhibition is required.

- c) If, since the Identifier change, Hellos have been received from all known RBridges on the bridged LAN.
  - RBridges are required to report the CIST root Bridge Address that they see in their LSPs. All RBridges attached to the same bridged LAN will see the same root.
  - Either there is connectivity outside the bridge LAN to another RBridges on the bridge LAN or not.
    - In the first case, you will know about the other RBridge and can wait for a new Hello or the inhibition timeout.
    - The second case, where connectivity is only through the bridged LAN, is loop safe.
  - So, inhibition can be terminated as soon as new Hellos have been received from all other RBridges on the bridged LAN as known through LSP root Bridge Address reports.

# **END**

Donald E. Eastlake, 3<sup>rd</sup> d3e3e3@gmail.com +1-508-333-2270