DiffServ QoS and Browsers

David L. Black, EMC

Browsers and Web Applications

- Browser = Web Application Framework
 - Web Applications run in Browser
 - Example: JavaScript
 - Multiple web applications at same time
 - Separated (or should be) by web origin
 - Web origin example: http://www.example.com:8080
- Web Application networking
 - Want DiffServ QoS [DSCP/PHB] per application flow
 - It's not that simple: Web RTC is a good example

Interruption - Brought to you by the Acronym Police (DiffServ Branch)

- DSCP = Differentiated Services Code Point
 - Set in IP header to request network QoS
- PHB = Per Hop Behavior
 - What the network does when it sees a DSCP
 - DSCP:PHB mapping is network-specific
- CS = Class Selector (specific DSCP)
 - CS0-CS7 align with former IP Precedence concept
 - CS1 intended for Lower (than Best) Effort service
 - More on this in a few slides

DiffServ and Web RTC (I)

- Web RTC = Web Real Time Conferencing
 - Audio, video, data between browsers
- NAT Traversal: Has to work
 - Every home "router" contains a NAT.
 - Goal: Minimize pinhole punching and maintenance
- Pinhole needed for each local port used
 - So, run different types of traffic on same port
 - UDP encapsulation preferred
- But what about QoS per traffic type?

DiffServ and Web RTC (II)

- Q: When is it ok to vary QoS within a 5-tuple?
 - 5-tuple = 2 IP addresses, protocol (e.g., UDP), 2 ports
 - For Web RTC and other real-time applications
- A: Only when transport protocol is UDP, but ...
 - ... even then, only with care (easy to get wrong)
 - Network may ignore or remove QoS differentiation
- Don't vary QoS (DSCP/PHB) for TCP, SCTP, DCCP
 - Packet Reordering: Misinterpreted as drops
 - Multiple Drop Precedence (PHBs from an AF class)
 - TCP: No useful effects
 - SCTP & DCCP: Interaction not well-understood

Varying QoS within a 5-tuple: What can go wrong?

- Network may manage QoS by 5-tuple, not DSCP
 - Entire Web RTC session lands in one router queue
- Core networks may limit QoS differentiation
 - 3-4 classes are common, e.g., when MPLS is used
 - OTOH, most QoS problems are in edge/access
- Network may remove QoS differentiation
 - E.g., remark (bleach) to best effort at boundary
- TURN may have chosen TCP when you didn't ask for it
 - That's it, no Differentiated QoS for you today!
- Lower (than Best) Effort service is a crap-shoot
 - CS1 DSCP may result in Best Effort, or even better than BE

QoS and Web Applications: What to do?

- Insulate web app from network via browser API.
 - Web RTC does this, but ...
 - No interface to ask what services (PHBs) are available
 - Result: Browser use of DSCPs = Set & Pray
- How many QoS service levels? (Good Question)
 - Varies, e.g., between core and enterprise networks
 - Current Web RTC QoS draft uses a lot of levels
 - Goal: Obtain useful differentiation at least at sending edge
- Less (than Best) Effort via DiffServ
 - Only reasonable when best effort is acceptable

To Explore Further

- DART draft (done)
 - draft-ietf-dart-dscp-rtp (at RFC Editor)
 - Source of transport guidance in this talk
- Web RTC QoS draft (work in progress)
 - draft-ietf-tsvwg-rtcweb-qos
 - Browser DSCP/PHB support and web application recommendations
- Diffserv Intercon draft (work in progress)
 - draft-ietf-tsvwg-diffserv-intercon
 - Doing better than "Bleach to Best Effort" at network interconnection points