Honenet Wbrki ng G oup M Stenberg
I nternet-Draft
I ntended status: Standards Track S. Barth
Expi res: January 4, 2016

July 3, 2015

Di stri buted Node Consensus Protoco
draft-ietf-honmenet-dncp-07

Abst ract

Thi s docunent describes the Distributed Node Consensus Protoco
(DNCP), a generic state synchronization protocol which uses Trickle
and Merkle trees. DNCP | eaves sone details unspecified or provides
alternative options. Therefore, only profiles which specify those
m ssing parts define actual inplenentable DNCP-based protocols.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on January 4, 2016
Copyright Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of

Stenberg & Barth Expi res January 4, 2016 [Page 1]

Internet-Draft

the Trust Legal

described in the Sinplified BSD License.

Tabl e of Contents

1.
2.

3.

Stenberg & Barth

PArAAMBDL

*WN@@@@@FQQOQ%@NE

I ntroduction
Ter mi nol ogy .

.1. Requirenents Language

Overvi ew

Qperation . . .
Mer kl e Tree .
Data Transport . . .
Trickle-Driven Status Updat es .
Processi ng of Received TLVs .
Addi ng and Renovi ng Peers .
Data Liveliness Validation

ta Model .

ti onal Extensi ons .
Keep-Alives . .

Dat a Mbdel Add| t| ons

Per - Peer Periodic Keep-Alives .

el
agrONE

Nei ghbor Renpval . . .
Support For Dense Broadcast L| nks .
Node Data Fragmentation . .
ype Lengt h- Val ue Obj ects .

Request TLVs .
1.1. Request Netvvork St ate TLV
1.2. Request Node State TLV

Data TLVs
1. Node Endpoi nt TLV
2. Network State TLV .
3. Node State TLV . .
Data TLVs within Node State TLV
1. Fragnment Count TLV
.2. Neighbor TLV
3. Keep-Alive Interval TLV .
urity and Trust Managenent .
Pre- Shared Key Based Trust Met hod .
PKI Based Trust Method

NN

O Wwww

e

.1. Trust Verdicts

.2. Trust Cache .

. 3. Announcenent of Verd| cts
.4. Bootstrap Cerenpbnies . . .
DNCP Profile-Specific Definitions .
Security Considerations . .

POPPWNEEONNNWNNNNDNNE

wWwww

Expi res January 4, 2016

Di stri buted Node Consensus Prot ocol

Per - Endpoi nt Peri odic Keep AI i ves

Recei ved TLV Processi ng Additions

Certificate Based Trust Consensus Met hod

July 2015

Provi sions and are provided wi thout warranty as

OCONNNOOOP~W

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

11. I ANA Considerations 29
12. References . . R 10
12.1. Normative references 10
12.2. Informative references . . . e 30
Appendi x A. Alternative Mdes of Cperatlon . e e 30
A.1l. Read-only Operation 30
A. 2. Forwarding Operation . . I X
Appendi x B. Some Questions and Ansmers [RFC Edltor please
renove] . <)
Appendi x C. Changel og [RFC Edltor pIease renove] <)
Appendix D. Draft Source [RFC Editor: please renove] 33
Appendi x E. Acknow edgenents . . . e X
Authors’ Addresses 33
1. Introduction

DNCP i s designed to provide a way for each participating node to
publish a set of TLV (Type-Length-Value) tuples, and to provide a
shared and common vi ew about the data published by every currently or
recently bidirectionally reachable DNCP node in a network.

For state synchronization a Merkle tree is used. It is fornmed by
first calculating a hash for the dataset, called node data, published
by each node, and then cal cul ati ng anot her hash over those node data
hashes. The single resulting hash, called network state hash, is
transmtted using the Trickle algorithm|[RFC6206] to ensure that al
nodes share the same view of the current state of the published data
within the network. The use of Trickle with only short network state
hashes sent infrequently (in steady state) nakes DNCP very thrifty
when updat es happen rarely.

For maintaining liveliness of the topology and the data within it, a
combi nation of Trickled network state, keep-alives, and "ot her" neans
of ensuring reachability are used. The core idea is that if every
node ensures its neighbors are present, transitively, the whole
network state al so stays up-to-date.

DNCP i s nost suitable for data that changes only infrequently to gain
the maxi num benefit fromusing Trickle. As the network of nodes, or
the rate of data changes grows over a given tine interval, Trickle is
eventual ly used less and | ess and the benefit of using DNCP
diminishes. |n these cases Trickle just provides extra conplexity
within the specification and little added value. |f constant rapid
state changes are needed, the preferable choice is to use an
addi ti onal point-to-point channel whose address or locator is
publ i shed usi ng DNCP

Stenberg & Barth Expi res January 4, 2016 [Page 3]

Internet-Draft

2. Term nol ogy

DNCP profile

DNCP- based
pr ot ocol

DNCP node
Li nk

DNCP net wor k

Node identifier

Interface

Addr ess

Endpoi nt

Stenberg & Barth

Di stri buted Node Consensus Prot ocol July 2015

a definition of the set of rules and val ues
defining the behavior of a fully specified,

i mpl enment abl e protocol which uses DNCP. The DNCP
profile specifies transport method to be used,

whi ch optional parts of the DNCP specification are
required by that particular protocol, and various
paraneters and optional behaviors. In this
docunent any paraneter that a DNCP profile
specifies is prefixed with DNCP_. Contents of a
DNCP profile are specified in Section 9.

a protocol which provides a DNCP profile, and
potentially nuch nore, e.g., protocol-specific TLVs
and gui dance on how they shoul d be used.

a single node which runs a DNCP-based protocol

a link-layer nmedia over which directly connected
nodes can conmuni cat e.

a set of DNCP nodes running the same DNCP-based
protocol. The set consists of nodes that have

di scovered each ot her using the transport nethod
defined in the DNCP profile, via multicast on | oca
i nks, and/or by using unicast conmunication

an opaque fixed-length identifier consisting of
DNCP_NCDE_| DENTI FI ER_LENGTH byt es whi ch uni quel y
identifies a DNCP node within a DNCP networKk.

a node’s attachment to a particular link

As DNCP itself is relatively transport agnostic, an
address in this specification denotes just
sonething that identifies an endpoint used by the
transport protocol enployed by a DNCP-based
protocol. In case of an | Pv6 UDP transport, an
address in this specification refers to a tuple
(I Pv6 address, UDP port).

a locally configured conmuni cati on endpoint of a
DNCP node, such as a network socket. It is either
bound to an Interface for multicast and unicast
communi cation, or configured for explicit unicast
communi cation with a predefined set of renote
addresses. Endpoints are usually in one of the
transport nodes specified in Section 4. 2.

Expi res January 4, 2016 [Page 4]

Internet-Draft

Endpoi nt
identifier

Peer

Node dat a

Node state

Net wor k state
hash

Trust verdict
Ef f ecti ve trust

verdi ct

Topol ogy graph

Stenberg & Barth

Di stri buted Node Consensus Prot ocol July 2015

a 32-bit opaque value, which identifies a
particul ar endpoint of a particular DNCP node. The
value 0 is reserved for DNCP and DNCP-based

prot ocol purposes and not used to identify an
actual endpoint. This definitionis in sync with
the interface index definition in [RFC3493], as the
non-zero snmall positive integers should confortably
fit within 32 bits.

anot her DNCP node with which a DNCP node
communi cates using a particular local and renote
endpoi nt pair.

a set of TLVs published and owned by a node in the
DNCP network. Other nodes pass it along as-is, even
if they cannot fully interpret it.

a set of metadata attributes for node data. It

i ncl udes a sequence nunber for versioning, a hash
val ue for conparing equality of stored node data,
and a tinmestanp indicating the tine passed since
its last publication. The hash function and the

| ength of the hash value are defined in the DNCP
profile.

a hash val ue which represents the current state of
the network. The hash function and the | ength of
the hash value are defined in the DNCP profile.
Whenever a node is added, renoved or updates its
publ i shed node data this hash val ue changes as
well. For calcul ation, please see Section 4.1

a statement about the trustworthi ness of a
certificate announced by a node participating in
the certificate based trust consensus nechani sm

the trust verdict with the highest priority within
the set of trust verdicts announced for the
certificate in the DNCP network

the undirected graph of DNCP nodes produced by

retaining only bidirectional peer relationships
bet ween nodes.

Expi res January 4, 2016 [Page 5]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

2.1. Requirements Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in RFC
2119 [RFC2119].

3. Overview

DNCP operates prinarily using uni cast exchanges between nodes, and
may use nulticast for Trickle-based shared state dissenination and
topol ogy di scovery. |If used in pure unicast node with unreliable
transport, Trickle is also used between peers.

DNCP di scovers the topol ogy of its nodes and maintains the liveliness
of published node data by ensuring that the publishing node was - at

| east recently - bidirectionally reachable. This is deternined,

e.g., by a recent and consistent nulticast or unicast TLV exchange
with its peers. New potential peers can be discovered autononously
on multicast-enabled links, their addresses may be nanually
configured or they may be found by sonme other neans defined in a

| ater specification.

A Merkle tree is maintained by each node to represent the state of
all currently reachable nodes and the Trickle algorithmis used to
trigger synchronization. The need to check nei ghboring nodes for
state changes is thereby determ ned by comparing the current root of
their respective trees, i.e., their individually cal cul ated network
state hashes.

Before joining a DNCP network, a node starts with a Merkle tree (and
therefore a cal cul ated network state hash) only consisting of the
node itself. It then announces said hash by nmeans of the Trickle
algorithmon all its configured endpoints.

When an update is detected by a node (e.g., by receiving a different
network state hash froma peer) the originator of the event is
requested to provide a list of the state of all nodes, i.e., all the
information it uses to calculate its own Merkle tree. The node uses
the list to determ ne whether its own information is outdated and -

i f necessary - requests the actual node data that has changed.

Whenever a node’s local copy of any node data and its Merkle tree are
updated (e.g., due to its own or another node s node state changi ng
or due to a peer being added or renoved) its Trickle instances are
reset which eventually causes any update to be propagated to all of
its peers.

Stenberg & Barth Expi res January 4, 2016 [Page 6]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

4. Qperation
4.1. Merkle Tree

Each DNCP node nmaintains a Merkle tree of height 1 to nanage state
updat es of individual DNCP nodes, the |eaves of the tree, and the
network as a whole, the root of the tree.

Each | eaf represents one recently bidirectionally reachabl e DNCP node
(see Section 4.6), and is represented by a tuple consisting of the
node’ s sequence nunber in network byte order concatenated with the
hash-val ue of the node’s ordered node data published in the Node
State TLV (Section 7.2.3). These |eaves are ordered in ascendi ng
order of the respective node identifiers. The root of the tree - the
network state hash - is represented by the hash-val ue cal cul ated over
all such l|eaf tuples concatenated in order. It is used to determ ne
whet her the view of the network of two or nore nodes is consistent
and shar ed.

The | eaves and the root network state hash are updated on-demand and
whenever any locally stored per-node state changes. This includes

| ocal unidirectional reachability encoded in the published Nei ghbor
TLVs (Section 7.3.2) and - when conbined with renpote data - results
in awareness of bidirectional reachability changes.

4.2. Data Transport

DNCP has relatively few requirenents for the underlying transport; it
requires sone way of transmtting either unicast datagramor stream
data to a peer and, if used in nmulticast node, a way of sending
mul ti cast datagrams. As nulticast is used only to identify potential
new DNCP nodes and to send status nmessages which nerely notify that a
uni cast exchange should be triggered, the multicast transport does
not have to be secured. |If unicast security is desired and one of
the built-in security nmethods is to be used, support for sone TLS-
derived transport schene - such as TLS [RFC5246] on top of TCP or
DTLS [RFC6347] on top of UDP - is also required. A specific
definition of the transport(s) in use and their parameters MJST be
provi ded by the DNCP profile.

TLVs are sent across the transport as is, and they SHOULD be sent
toget her where, e.g., MIU considerations do not recomend sendi ng
themin multiple batches. TLVs in general are handl ed individually
and statelessly, with one exception: To form bidirectional peer

rel ati onshi ps DNCP requires identification of the endpoints used for
communi cation. As bidirectional peer relationships are required for
validating liveliness of published node data as described in
Section 4.6, a DNCP node MJST send an Endpoint TLV (Section 7.2.1).

Stenberg & Barth Expi res January 4, 2016 [Page 7]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

When it is sent varies, depending on the underlying transport, but
conceptually it should be avail abl e whenever processing a Network
State TLV:

o |If using a streamtransport, the TLV MJUST be sent at |east once,
and it SHOULD be sent only once.

o |If using a datagramtransport, it MJST be included in every
datagramthat also contains a Network State TLV (Section 7.2.2)
and MUST be | ocated before any such TLV. It SHOULD al so be
included in any other datagram to speeds up initial peer
det ecti on.

G ven the assorted transport options as well as potential endpoint
configuration, a DNCP endpoint may be used in various transport
nodes:

Uni cast :

* |f only reliable unicast transport is enployed, Trickle is not
used at all. \Where Trickle reset has been specified, a single
Network State TLV (Section 7.2.2) is sent instead to every
uni cast peer. Additionally, recently changed Node State TLVs
(Section 7.2.3) MAY be incl uded.

* |f only unreliable unicast transport is enployed, Trickle state
is kept per each peer and it is used to send Network State TLVs
every now and then, as specified in Section 4.3.

Mul ticast+Unicast: |If multicast datagramtransport is avail able on
an endpoint, Trickle state is only nmaintained for the endpoint as
a whole. It is used to send Network State TLVs every now and

then, as specified in Section 4.3. Additionally, per-endpoint
keep-alives MAY be defined in the DNCP profile, as specified in
Section 6.1.2.

Mul ticastListen+Unicast: Just |ike Unicast, except nulticast
transm ssions are listened to in order to detect changes of the
hi ghest node identifier. This node is used only if the DNCP
profil e supports dense broadcast |ink optimzation (Section 6.2).

4.3. Trickle-Driven Status Updates
The Trickle algorithmhas 3 paraneters: Inmin, Ilmax and k. Imin and
I max represent the m ni num and maxi mum val ues for |, which is the

time interval during which at | east k Trickl e updates nust be seen on
an endpoint to prevent |local state transm ssion. The actua

Stenberg & Barth Expi res January 4, 2016 [Page 8]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

suggested Trickle algorithmparaneters are DNCP profile specific, as
described in Section 9.

The Trickle state for all Trickle instances is considered

i nconsistent and reset if and only if the locally cal cul ated network
state hash changes. This occurs either due to a change in the |oca
node’ s own node data, or due to receipt of nore recent data from

anot her node. A node MJUST NOT reset its Trickle state nerely based
on receiving a Network State TLV (Section 7.2.2) with a network state
hash which is different fromits locally cal cul ated one.

Every tine a particular Trickle instance indicates that an update
shoul d be sent, the node MJUST send a Network State TLV
(Section 7.2.2) if and only if:

o the endpoint is in Milticast+Unicast transport node, in which case
the TLV MJUST be sent over multicast.

0 the endpoint is NOT in Milticast+Unicast transport node, and the
uni cast transport is unreliable, in which case the TLV MJST be
sent over unicast.

A (sub)set of all Node State TLVs (Section 7.2.3) MAY al so be
included, unless it is defined as undesirable for some reason by the
DNCP profile, or to avoid exposure of the node state TLVs by
transmitting themw thin insecure nulticast when using al so secure
uni cast.

4.4. Processing of Received TLVs

This section describes how received TLVs are processed. The DNCP
profile may specify when to ignore particular TLVs, e.g., to nodify
security properties - see Section 9 for what may be safely defined to
be ignored in a profile. Any 'reply’ nentioned in the steps bel ow
denot es sending of the specified TLV(s) over unicast to the
originator of the TLV being processed. |f the TLV being replied to
was received via nulticast and it was sent to a link with shared
bandwi dth, the reply SHOULD be del ayed by a randomtimespan in [0,
Imn/2], to avoid potential sinultaneous replies that may cause

probl ens on sonme links. Sending of replies MAY also be rate-linited
or onitted for a short period of tine by an inplenentation. However,
an inplenmentati on MJST eventually reply to simlar repeated requests,
as ot herwi se state synchronization breaks.

A DNCP node MJST process TLVs received fromany valid address, as
specified by the DNCP profile and the configuration of a particular
endpoi nt, whether this address is known to be the address of a

nei ghbor or not. This provision satisfies the needs of nonitoring or

Stenberg & Barth Expi res January 4, 2016 [Page 9]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

other host software that needs to discover the DNCP topol ogy wi thout
adding to the state in the network.

Upon recei pt of:

(0]

(0]

Request Network State TLV (Section 7.1.1): The receiver MIST reply
with a Network State TLV (Section 7.2.2) and a Node State TLV
(Section 7.2.3) for each node data used to cal cul ate the network
state hash. The Node State TLVs MJST NOT contain the optiona

node data part unless explicitly specified in the DNCP profile.

Request Node State TLV (Section 7.1.2): If the receiver has node
data for the corresponding node, it MJST reply with a Node State
TLV (Section 7.2.3) for the correspondi ng node. The optional node
data part MJST be included in the TLVW.

Network State TLV (Section 7.2.2): |If the network state hash
differs fromthe locally cal cul ated network state hash, and the
receiver is unaware of any particular node state differences with
the sender, the receiver MIJST reply with a Request Network State
TLV (Section 7.1.1). These replies MIST be rate limted to only
at nost one reply per link per unique network state hash within
Imn. The sinplest way to ensure this rate linit is a tinestanp
i ndi cating requests, and sending at nobst one Request Network State
TLV (Section 7.1.1) per Imn. To facilitate faster state
synchroni zation, if a Request Network State TLV is sent in a
reply, a local, current Network State TLV MAY al so be sent.

Node State TLV (Section 7.2.3):

* |f the node identifier matches the | ocal node identifier and
the TLV has a greater sequence number than its current |oca
val ue, or the sane sequence nunber and a different hash, the
node SHOULD re-publish its own node data with an sequence
nunber significantly (e.g., 1000) greater than the received
one, to reclaimthe node identifier. This may occur normally
once due to the local node restarting and not storing the nost
recently used sequence nunber. |If this occurs nore than once
or for nodes not re-publishing their own node data, the DNCP
profile MJST provi de guidance on how to handl e these situations
as it indicates the existence of another active node with the
sane node identifier.

* |f the node identifier does not match the | ocal node
identifier, and one or nore of the follow ng conditions are
true:

Stenberg & Barth Expi res January 4, 2016 [Page 10]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

+ The local information is outdated for the correspondi ng node
(local sequence nunber is less than that within the TLV).

+ The local information is potentially incorrect (loca
sequence nunber matches but the node data hash differs).

+ There is no data for that node altogether
Then:

+ If the TLV contains the Node Data field, it SHOULD al so be
verified by ensuring that the locally cal cul ated H(Node
Data) mat ches the content of the H(Node Data) field within
the TLV. If they differ, the TLV SHOULD be ignored and not
processed further.

+ If the TLV does not contain the Node Data field, and the
H(Node Data) field within the TLV differs fromthe |oca
node data hash for that node (or there is none), the
receiver MIST reply with a Request Node State TLV
(Section 7.1.2) for the correspondi ng node.

+ Oherwise the receiver MJST update its locally stored state
for that node (node data based on Node Data field if
present, sequence nunber and relative time) to match the
recei ved TLV.

For conpari son purposes of the sequence nunber, a | ooping

conpari son function MJST be used to avoid problens in case of
overflow. The conparison function a < b <=> (a - b) %2732 & 2731
=0 is RECOMWENDED unl ess the DNCP profile defines another

0 Any other TLV: TLVs not recognized by the receiver MJST be
silently ignored.

I f secure unicast transport is configured for an endpoi nt, any Node
State TLVs received over insecure nmulticast MJUST be silently ignored.

4.5. Adding and Renovi ng Peers

When recei ving a Node Endpoint TLV (Section 7.2.1) on an endpoint
from an unknown peer:

o |If received over unicast, the renote node MJST be added as a peer

on the endpoint and a Nei ghbor TLV (Section 7.3.2) MJST be created
for it.

Stenberg & Barth Expi res January 4, 2016 [Page 11]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

o |If received over nmulticast, the node MAY be sent a (possibly rate-
limted) unicast Request Network State TLV (Section 7.1.1).

If keep-alives specified in Section 6.1 are NOT sent by the peer
(either the DNCP profile does not specify the use of keep-alives or
the particul ar peer chooses not to send keep-alives), sone other
exi sting local transport-specific neans (such as Ethernet carrier-
detection or TCP keep-alive) MIST be enployed to ensure its presence.
When the peer is no |longer present, the Neighbor TLV and the |oca
DNCP peer state MJST be renoved.
If the local endpoint is in the Milticast-Listen+Unicast transport
nmode, a Nei ghbor TLV (Section 7.3.2) MJST NOT be published for the
peers not having the highest node identifier.

4.6. Data Liveliness Validation
The topol ogy graph MJUST be traversed either immediately or with a
smal | delay shorter than the DNCP profile-defined Trickle Inin,
whenever:
0 A Neighbor TLV or a whole node is added or renobved, or

o the origination time (in nilliseconds) of some node’s node data is
| ess than current time - 2732 + 2715.

The topol ogy graph traversal starts with the |ocal node marked as
reachable. Oher nodes are then iteratively nmarked as reachabl e
using the followi ng algorithm A candi date not-yet-reachabl e node N
with an endpoint NE is nmarked as reachable if there is a reachable
node R with an endpoint RE that neet all of the following criteria:

o The origination tinme (in mlliseconds) of Rs node data is greater
than current tinme in - 27232 + 2715.

0 R publishes a Neighbor TLV with:
* Nei ghbor Node ldentifier = N s node identifier
* Nei ghbor Endpoint Identifier = NE's endpoint identifier
* Endpoint Identifier = RE's endpoint identifier
0 N publishes a Neighbor TLV with:
* Nei ghbor Node ldentifier = R's node identifier

* Nei ghbor Endpoint Identifier = RE's endpoint identifier

Stenberg & Barth Expi res January 4, 2016 [Page 12]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

* Endpoint ldentifier = NE's endpoint identifier

The al gorithmterm nates, when no nore candi date nodes fulfilling
these criteria can be found.

DNCP nodes that have not been reachable in the nbst recent topol ogy
graph traversal MJST NOT be used for calculation of the network state
hash, be provided to any applications that need to use the whole TLV
graph, or be provided to renote nodes. They MAY be renoved

i medi ately after the topol ogy graph traversal, however it is
RECOMVENDED to keep them at |east briefly to i nprove the speed of
DNCP network state convergence and to reduce the nunber of redundant
state transni ssions between nodes.

5. Dat a Model

This section describes the |ocal data structures a mini mal

i mpl ementation mght use. This section is provided only as a
conveni ence for the inplenmentor. Sonme of the optional extensions
(Section 6) describe additional data requirenents, and sone optiona
parts of the core protocol may also require nore

A DNCP node has:

0 A data structure containing data about the nost recently sent
Request Network State TLVs (Section 7.1.1). The sinplest option
is keeping a tinestanp of the nost recent request (required to
fulfill reply rate limting specified in Section 4.4).

A DNCP node has for every DNCP node in the DNCP network

0 Node identifier: the unique identifier of the node. The |ength,
how it is produced, and how collisions are handled, is up to the
DNCP profile.

0 Node data: the set of TLV tuples published by that particular
node. As they are transnitted ordered (see Node State TLV
(Section 7.2.3) for details), maintaining the order within the
data structure here may be reasonabl e.

0 Latest sequence nunber: the 32-bit sequence nunber that is
incremented any tinme the TLV set is published. The conparison
function used to conpare themis described in Section 4.4.

o Oigination tine: the (estimated) time when the current TLV set

with the current sequence nunber was published. It is used to
popul ate the MI1liseconds Since Origination field in a Node State
TLV (Section 7.2.3). ldeally it also has nmillisecond accuracy.

Stenberg & Barth Expi res January 4, 2016 [Page 13]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015
Additionally, a DNCP node has a set of endpoints for which DNCP is
configured to be used. For each such endpoint, a node has:

0 Endpoint identifier: the 32-bit opaque val ue uniquely identifying
it within the |ocal node.

0 Trickle instance: the endpoint’s Trickle instance with paraneters
I, T, and ¢ (only on an endpoint in Milticast+Unicast transport
node) .

and one (or nore) of the foll ow ng:

o Interface: the assigned |ocal network interface.

0 Unicast address: the DNCP node it should connect wth.

0 Range of addresses: the DNCP nodes that are allowed to connect.

For each renpte (peer, endpoint) pair detected on a |ocal endpoint, a
DNCP node has:

0 Node identifier: the unique identifier of the peer

0o Endpoint identifier: the unique endpoint identifier used by the
peer.

0 Peer address: the nost recently used address of the peer
(aut henticated and authorized, if security is enabled).

0 Trickle instance: the particular peer’s Trickle instance with
paraneters |, T, and ¢ (only on an endpoint in Unicast node, when
usi ng an unreliable unicast transport)

6. Optional Extensions

This section specifies extensions to the core protocol that a DNCP
profile may specify to be used.

6.1. Keep-Alives

Trickle-driven status updates (Section 4.3) provide a nechanismfor
handl i ng of new peer detection on an endpoint, as well as state
change notifications. Another mechani smmay be needed to get rid of
old, no longer valid peers if the transport or |ower |ayers do not
provi de one.

I f keep-alives are not specified in the DNCP profile, the rest of
this subsecti on MJUST be ignored.

Stenberg & Barth Expi res January 4, 2016 [Page 14]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

6

6

1.

1.

A DNCP profile MAY specify either per-endpoint or per-peer keep-alive
support.

For every endpoint that a keep-alive is specified for in the DNCP
profile, the endpoint-specific keep-alive interval MJST be

mai ntai ned. By default, it is DNCP_KEEPALIVE | NTERVAL. |If there is
a local value that is preferred for that for any reason
(configuration, energy conservation, nedia type, ..), it can be
substituted instead. If a non-default keep-alive interval is used on
any endpoi nt, a DNCP node MJST publish appropriate Keep-Alive
Interval TLV(s) (Section 7.3.3) within its node data.

1. Data Mbdel Additions

The followi ng additions to the Data Mddel (Section 5) are needed to
support keep-alives:

For each configured endpoint that has per-endpoint keep-alives
enabl ed:

0 Last sent: If a tinmestanp which indicates the last tine a Network
State TLV (Section 7.2.2) was sent over that interface.

For each renpte (peer, endpoint) pair detected on a |ocal endpoint, a
DNCP node has:

0 Last contact timestanp: a timestanp which indicates the last tine
a consistent Network State TLV (Section 7.2.2) was received from
the peer over nulticast, or anything was received over unicast.
When adding a new peer, it is initialized to the current tine.

0 Last sent: If per-peer keep-alives are enabled, a timestanp which
indicates the last time a Network State TLV (Section 7.2.2) was
sent to to that point-to-point peer. Wen adding a new peer, it
isinitialized to the current tine.

2. Per-Endpoint Periodic Keep-Alives

I f per-endpoint keep-alives are enabled on an endpoint in

Mul ti cast +Uni cast transport node, and if no traffic containing a
Network State TLV (Section 7.2.2) has been sent to a particular
endpoint within the endpoint-specific keep-alive interval, a Network
State TLV (Section 7.2.2) MJST be sent on that endpoint, and a new
Trickle transmission tinme "t’ in [I/2, I] MJST be randomy chosen
The actual sending tinme SHOULD be further delayed by a random
tinmespan in [0, Imn/2].

Stenberg & Barth Expi res January 4, 2016 [Page 15]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

6.1.3. Per-Peer Periodic Keep-Alives

I f per-peer keep-alives are enabled on a unicast-only endpoint, and
if notraffic containing a Network State TLV (Section 7.2.2) has been
sent to a particular peer within the endpoint-specific keep-alive
interval, a Network State TLV (Section 7.2.2) MJST be sent to the
peer and a new Trickle transmssion tine "t’ in [1/2, |I] MJST be
randonm y chosen.

6.1.4. Received TLV Processing Additions

If a TLV is received over unicast fromthe peer, the Last contact
timestanp for the peer MJST be updat ed.

On receipt of a Network State TLV (Section 7.2.2) which is consistent
with the locally cal cul ated network state hash, the Last contact
tinmestanp for the peer MJUST be updat ed.

6.1.5. Neighbor Renoval

For every peer on every endpoint, the endpoint-specific keep-alive
interval nust be cal cul ated by | ooking for Keep-Alive Interval TLVs
(Section 7.3.3) published by the node, and if none exist, using the
default value of DNCP_KEEPALIVE | NTERVAL. |f the peer’s |ast contact
ti mestanp has not been updated for at |east locally chosen
potentially endpoint-specific keep-alive nultiplier (defaults to
DNCP_KEEPALI VE_MULTI PLI ER) times the peer’s endpoint-specific keep-
alive interval, the Neighbor TLV for that peer and the | ocal DNCP
peer state MJST be renoved.

6.2. Support For Dense Broadcast Links

This optim zation is needed to avoid a state space explosion. G ven
a |l arge set of DNCP nodes publishing data on an endpoi nt that
actually uses nulticast on a link, every node will add a Nei ghbor TLV
(Section 7.3.2) for each peer. Wiile Trickle limts the anmount of
traffic on the link in stable state to sone extent, the total anount
of data that is added to and maintained in the DNCP network given N
nodes on a nmulticast-enabled link is QON'2). Additionally if per-
peer keep-alives are enployed, there will be Q N'2) keep-alives
running on the link if liveliness of peers is not ensured using sone
other way (e.g., TCP connection lifetime, layer 2 notification, per-
endpoi nt keep-alive).

An upper bound for the nunmber of neighbors that are allowed for a
particular type of link that an endpoint in Milticast+Uni cast
transport node is used on SHOULD be provided by a DNCP profile, but
MAY al so be chosen at runtime. Miin consideration when selecting a

Stenberg & Barth Expi res January 4, 2016 [Page 16]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

bound (if any) for a particular type of link should be whether it
supports broadcast traffic, and whether a too |arge number of

nei ghbors case is likely to happen during the use of that DNCP
profile on that particular type of link. |If neither is likely, there
is little point specifying support for this for that particular |ink

t ype.

If a DNCP profile does not support this extension at all, the rest of
this subsection MIUST be ignored. This is because when this extension
is enployed, the state within the DNCP network only contains a subset
of the full topology of the network. Therefore every node nust be

aware of the potential of it being used in a particular DNCP profile.

If the specified upper bound is exceeded for sone endpoint in

Mul ti cast +Uni cast transport node and if the node does not have the

hi ghest node identifier on the link, it SHOULD treat the endpoint as
a uni cast endpoint connected to the node that has the hi ghest node
identifier detected on the link, therefore transitioning to

Mul ticast-1listen+Uni cast transport node. The nodes in Milticast-

i sten+Uni cast transport node MJUST keep listening to multicast
traffic to both receive nessages fromthe node(s) still in

Mul ti cast +Uni cast nbde, and as well to react to nodes with a greater
node identifier appearing. |If the highest node identifier present on
the link changes, the renote unicast address of the endpoints in

Mul ti cast - Li sten+Uni cast transport node MJST be changed. |f the node
identifier of the local node is the highest one, the node MJST switch
back to, or stay in Milticast+Unicast node, and normally form peer
relationships with all peers.

6.3. Node Data Fragnentation

A DNCP-based protocol may be required to support node data which
woul d not fit the maxi mum size of a single Node State TLV

(Section 7.2.3) (roughly 64KB of payload), or use a datagramonly
transport with a linmted MU and no reliable support for
fragmentation. To handle such cases, a DNCP profile MAY specify a
fixed number of trailing bytes in the node identifier to represent a
fragment nunber indicating a part of a node’s node data. The profile
MAY al so specify an upper bound for the size of a single fragment to
accommodate limtations of links in the network. Note that the
maxi mum si ze of fragnent al so constrains the nmaxi num size of a single
TLV published by a node.

The data within Node State TLVs of all fragments MJST be valid, as
specified in Section 7.2.3. The locally used node data for a
particul ar node MJUST be produced by concatenating node data in each
fragment, in ascending fragnment nunber order. The locally used

Stenberg & Barth Expi res January 4, 2016 [Page 17]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

concat enat ed node data MJUST still follow the ordering described in
Section 7.2.3.

Any transmtted node identifiers used to identify the own or any

ot her node MJUST have the fragment nunber 0. For al gorithm purposes,

the relative tinme since the nost recent fragment change MJST be used,
regardl ess of fragment nunber. Therefore, even if just sone of the

node data fragments change, they all are considered refreshed if one
of themis.

If using fragnentation, the data liveliness validation defined in
Section 4.6 is extended so that if a Fragment Count TLV

(Section 7.3.1) is present within the fragment nunber 0, al

fragments up to fragment nunber specified in the Count field are al so
consi dered reachable if the fragnent nunber O itself is reachable
based on graph traversal

7. Type-Length-Val ue Objects

Each TLV is encoded as a 2 byte type field, followed by a 2 byte
length field (of the val ue excluding header, in bytes, 0 neaning no
value) followed by the value itself, if any. Both type and |length
fields in the header as well as all integer fields inside the value -
unl ess explicitly stated otherwise - are represented in network byte
order. Padding bytes with value zero MJST be added up to the next 4
byte boundary if the length is not divisible by 4. These paddi ng
bytes MUST NOT be included in the nunber stored in the length field.

+ ON
+ Ow

1
9012345
R s e o

+

+ N

+ o
+ a
+ o
+ o

789 3456789
- - et - B . N N

7 8 4
- - 4= - +-
Type ength
B T i S S I el s S P S S S S S S N e S

Val ue [
(variable # of bytes) |
i T T S e ot s S R S e e Tk S TR S e e S S 2

-+ O

2 1
-+ -4+
L I

+__+_-I|-OO

For exanple, type=123 (0x7b) TLV with value 'x’ (120 = 0x78) is
encoded as: 007B 0001 7800 0000.

In this section, the followi ng special notation is used:
= octet string concatenation operation

H(x) = non-cryptographic hash function specified by DNCP profile.

Stenberg & Barth Expi res January 4, 2016 [Page 18]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

7.1. Request TLVs

7.1.1. Request Network State TLV

0 1 2 3
01234567890123456789012345678901
i T e o o s T e e et e ok o Sl e
| Type: REQNETWPK—STATE(l) | Length: O |
B o o ks s S S e i el T R e S S e o o o o o =

This TLV is used to request response with a Network State TLV
(Section 7.2.2) and all Node State TLVs (Section 7.2.3) (wthout node
dat a) .

7.1.2. Request Node State TLV

1 2 3
1234567890123456789012345678901
T T S S i S i T S S i SN S

Type: REQ NODE- STATE (2) | Length: >0
e S S T Tk e ST

Node ldentifier
(length fixed in DNCP profile)
B i s T T S T et S S T S I T s sl s ol ST S S S

This TLV is used to request a Node State TLV (Section 7.2.3)
(including node data) for the node with the nmatching node identifier.

7.2. Data TLVs

7.2.1. Node Endpoint TLV

1 2 3
1234567890123456789012345678901
T Tt e e o i e e S o S S R

Type: NODE- ENDPO NT (3) | Length: > 4
e I e e e i s it S i o e e t sl I TR NI e

Node ldentifier
(length fixed in DNCP profile)

i T e o o s T e e et e ok o Sl e
| Endpoi nt ldentifier |
B i S S T s i S T st i S S S S S S S S i

This TLV identifies both the | ocal node’s node identifier, as well as
the particul ar endpoint’s endpoint identifier.

Stenberg & Barth Expi res January 4, 2016 [Page 19]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

7.2. 2. Network State TLV

I
-Il—OI\J
I

-Il-OOO

1
4567890123456789012 5678901
i i e e e ol o S
e: NETWORK- STATE (4) | Lengt >0
e S e e e S e e o
H(sequence number of node 1 .. H(node data of node 1)
sequence nunber of node N .. H(node data of node N))

(length fixed in DNCP profile)

3+-J>

3
+
g

T —+—+00
1
1
—_ i

T I T S S T i T S S M T s

This TLV contains the current locally cal cul ated network state hash,
see Section 4.1 for how it is calculated.

7.2.3. Node State TLV

1 2 3
1234567890123456789012345678901
T i S T i T S S S AT Sui N S S S

Type: NODE- STATE (5) [Length: > 8
B e S S S s st S DRp N SRR SRS

Node | dentifier
(length fixed in DNCP profile)

B i S S T s i S T st i S S S S S S S S i
[Sequence Nunber [
B i i S S i I e i S S R L e e e e
[MIliseconds Since Oigination [
R R e R e s s e o S S e R e o o
| H(Node Dat a) |
| (length fixed in DNCP profile) |

:l-.— :l-— B S S b i o S S S LR e R h ok T
| (optionally) Node Data (a set of nested TLVs) |

B T S o T ST S e S i < S S S S SIS S S S S S

This TLV represents the |ocal node’s know edge about the published
state of a node in the DNCP network identified by the Node Identifier
field in the TLV.

Every node, including the originating one, MJST update the

M1 Iliseconds Since Oigination whenever it sends a Node State TLV
based on when the node estimates the data was originally published.
This is, e.g., to ensure that any relative tinestanps contai ned
within the published node data can be correctly offset and

Stenberg & Barth Expi res January 4, 2016 [Page 20]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

interpreted. Utimtely, what is provided is just an approximation,
as transm ssion delays are not accounted for.

Absent any changes, if the originating node notices that the 32-bit
m | 1iseconds since origination value would be close to overfl ow
(greater than 2732-2716), the node MJIST re-publish its TLVs even if
there is no change. In other words, absent any other changes, the
TLV set MUST be re-published roughly every 48 days.

The actual node data of the node nmay be included within the TLV as
well in the optional Node Data field. In a DNCP profile which
supports fragnentation, described in Section 6.3, the TLV data may be
only partial but it MJST contain full individual TLVs. The set of
TLVs MJST be strictly ordered based on ascendi ng binary content
(including TLV type and length). This enables, e.g., efficient state
del ta processing and no-copy indexing by TLV type by the recipient.
The Node Data content MJST be passed al ong exactly as it was
received. It SHOULD be also verified on receipt that the locally
cal cul ated H(Node Data) matches the content of the field within the
TLV, and if the hash differs, the TLV SHOULD be i gnored.

7.3. Data TLVs within Node State TLV
These TLVs are published by the DNCP nodes, and therefore only
encoded within the Node State TLVs. |f encountered outside Node
State TLV, they MJIST be silently ignored.

7.3.1. Fragnent Count TLV

1 2 3
1234567890123456789012345678901
B T T S e T S ity S Sl SUE S S S S S

Type: FRAGVENT- COUNT (7) | Length: > 0
B s s S S T I S S e S

Count
(length fixed in DNCP profile)

B T S o T ST S e S i < S S S S SIS S S S S S

If the DNCP profile supports node data fragnentation as specified in
Section 6.3, this TLV indicates that the node data is encoded as a
sequence of Node State TLVs. Followi ng Node State TLVs with Node
Identifiers up to Count greater than the current one MJST be

consi dered reachabl e and part of the sanme |ogical set of node data
that this TLV is within. The fragnent portion of the Node ldentifier
of the Node State TLV this TLV appears in MJST be zero.

Stenberg & Barth Expi res January 4, 2016 [Page 21]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

7.3.2. Neighbor TLV

Nei ghbor Node Il dentifier
(length fixed in DNCP profile)

0 1 2 3
01234567890123456789012345678901
S T o e i L A S S
| Type: NEI GHBOR (8) | Length: > 8
T S S i it S S S S S I S Uit SN S SR S

I

|

T o i I S i S S S I h i e s
[Nei ghbor Endpoi nt Identifier |
T S T i T S T S i i N s
| Local Endpoint ldentifier |
B S T S T S i i S s S S S S

This TLV indicates that the node in question vouches that the

speci fied neighbor is reachable by it on the specified | oca

endpoint. The presence of this TLV at |east guarantees that the node
publishing it has received traffic fromthe nei ghbor recently. For
guar ant eed up-to-date bidirectional reachability, the existence of
bot h nodes’ matchi ng Nei ghbor TLVs needs to be checked.

7.3.3. Keep-Alive Interval TLV

1
234567890
B i

ype: KEEP- ALI VE- | NT
B S S i N

1
-II-OOO

123 5 567829 1
Rl R R +- - - -+ +- +
ERVAL (9) |
B i o Ik SR N S TR e b e e b et
Endpoi nt Identifier [
B s T T ST S o i ST L o S i T ot ST S S S S
I nterval |

T T S s i S T S S i o I S S

+t—+—+—t+oo
+ —1+ =
—+A+4>
_"'_Tm

This TLV indicates a non-default interval being used to send keep-
alives specified in Section 6.1

Endpoint identifier is used to identify the particul ar endpoint for
which the interval applies. If 0, it applies for ALL endpoints for
whi ch no specific TLV exists.

Interval specifies the interval in milliseconds at which the node
sends keep-alives. A value of zero means no keep-alives are sent at
all; in that case, sonme |lower |ayer mechani smthat ensures presence
of nodes MUST be avail abl e and used.

Stenberg & Barth Expi res January 4, 2016 [Page 22]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

8. Security and Trust Managenent

If specified in the DNCP profile, either DILS [RFC6347] or TLS

[RFC5246] may be used to authenticate and encrypt either sone (if
specified optional in the profile), or all unicast traffic. The

foll owi ng nmethods for establishing trust are defined, but it is up to
the DNCP profile to specify which ones may, should or nust be

support ed.

8.1. Pre-Shared Key Based Trust Mt hod

A PSK-based trust nodel is a sinple security nanagenent mechani sm
that allows an administrator to depl oy devices to an existing network
by configuring themw th a pre-defined key, simlar to the
configuration of an adm nistrator password or WPA-key. Al though
limted in nature it is useful to provide a user-friendly security
mechani sm for smaller networks.

8.2. PKlI Based Trust Method

A PKI - based trust-nodel enables nore advanced nmanagenent capabilities
at the cost of increased conplexity and bootstrapping effort. It
however allows trust to be managed in a centralized manner and is
therefore useful for larger networks with a need for an authoritative
trust managenent.

8.3. Certificate Based Trust Consensus Mt hod

The certificate-based consensus nodel is designed to be a conpromni se
bet ween trust managenent effort and flexibility. It is based on
X.509-certificates and all ows each DNCP node to provide a trust
verdict on any other certificate and a consensus is found to
determ ne whether a node using this certificate or any certificate
signed by it is to be trusted.

A DNCP node not using this security nmethod MJST ignore all announced
trust verdicts and MUST NOT announce any such verdicts by itself,
i.e., any other normative | anguage in this subsection does not apply
toit.

The current effective trust verdict for any certificate is defined as

the one with the highest priority fromall trust verdicts announced
for said certificate at the tine.

Stenberg & Barth Expi res January 4, 2016 [Page 23]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

8.3.1. Trust Verdicts

Trust verdicts are statenments of DNCP nodes about the trustworthiness
of X 509-certificates. There are 5 possible trust verdicts in order
of ascending priority:

0 (Neutral): no trust verdict exists but the DNCP network shoul d
determ ne one.

1 (Cached Trust): the last known effective trust verdict was
Configured or Cached Trust.

2 (Cached Distrust): the last known effective trust verdict was
Configured or Cached Distrust.

3 (Configured Trust): trustworthy based upon an external cerenony
or configuration.

4 (Configured Distrust): not trustworthy based upon an externa
cerenony or configuration.

Trust verdicts are differentiated in 3 groups:

0 Configured verdicts are used to announce explicit trust verdicts a
node has based on any external trust bootstrap or predefined
relation a node has fornmed with a given certificate.

0 Cached verdicts are used to retain the |last known trust state in
case all nodes with configured verdicts about a given certificate
have been di sconnected or turned off.

o0 The Neutral verdict is used to announce a new node intending to
join the network so a final verdict for it can be found.

The current effective trust verdict for any certificate is defined as
the one with the highest priority within the set of trust verdicts
announced for the certificate in the DNCP network. A node MJST be
trusted for participating in the DNCP network if and only if the
current effective trust verdict for its own certificate or any one in
its certificate hierarchy is (Cached or Configured) Trust and none of
the certificates in its hierarchy have an effective trust verdict of
(Cached or Configured) Distrust. |In case a node has a configured
verdict, which is different fromthe current effective trust verdict
for a certificate, the current effective trust verdict takes
precedence in deciding trustworthiness. Despite that, the node stil
retains and announces its configured verdict.

Stenberg & Barth Expi res January 4, 2016 [Page 24]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

8.3.2. Trust Cache

Each node SHOULD nmintain a trust cache containing the current
effective trust verdicts for all certificates currently announced in
the DNCP network. This cache is used as a backup of the last known
state in case there is no node announcing a configured verdict for a
known certificate. It SHOULD be saved to a non-volatile nenory at
reasonable time intervals to survive a reboot or power outage.

Every tine a node (re)joins the network or detects the change of an
effective trust verdict for any certificate, it will synchronize its
cache, i.e., store new effective trust verdicts overwiting any
previously cached verdicts. Configured verdicts are stored in the
cache as their respective cached counterparts. Neutral verdicts are
never stored and do not override existing cached verdicts.

8.3.3. Announcenent of Verdicts

A node SHOULD al ways announce any configured trust verdicts it has
established by itself, and it MJUST do so if announcing the configured
trust verdict leads to a change in the current effective trust
verdict for the respective certificate. |n absence of configured
verdicts, it MJST announce cached trust verdicts it has stored inits
trust cache, if one of the followi ng conditions applies:

0 The stored trust verdict is Cached Trust and the current effective
trust verdict for the certificate is Neutral or does not exist.

o The stored trust verdict is Cached Distrust and the current
effective trust verdict for the certificate is Cached Trust.

A node rechecks these conditions whenever it detects changes of
announced trust verdicts anywhere in the network.

Upon encountering a node with a hierarchy of certificates for which
there is no effective trust verdict, a node adds a Neutral Trust-
Verdict-TLV to its node data for all certificates found in the

hi erarchy, and publishes it until an effective trust verdict

different from Neutral can be found for any of the certificates, or a
reasonabl e anount of tine (10 minutes is suggested) with no reaction
and no further authentication attenpts has passed. Such trust
verdicts SHOULD al so be linmited in rate and nunber to prevent denial -
of -servi ce attacks

Trust verdicts are announced using Trust-Verdict TLVs:

Stenberg & Barth Expi res January 4, 2016 [Page 25]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

0 1 2 3
01234567890123456789012345678901
B I S i e S i S S i S S I i i S o
[Type: Trust-Verdict (10) [Length: 37-100

B e i i i S e S i i T i S S S e e e
[Ver di ct [(reserved)

+

I
I
| SHA- 256 Fi ngerprint
I
I
I
|

1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1

—_——————— t— +— +

B T i S S i S T h T i S S S S e
| Conmon Nare |

Verdict represents the nunerical index of the trust verdict.

(reserved) is reserved for future additions and MJST be set to O
when creating TLVs and ignored when parsing them

SHA- 256 Fi ngerprint contains the SHA-256 [RFC6234] hash val ue of
the certificate in DER-format.

Conmon Nanme contains the variable-length (1-64 bytes) comobn name
of the certificate. Final byte MJST have val ue of 0.

8.3.4. Bootstrap Cerenonies

The foll owi ng non-exhaustive |list of nethods describes possible ways
to establish trust rel ationshi ps between DNCP nodes and node
certificates. Trust establishnent is a two-way process in which the
exi sting network nust trust the newy added node and the new y added
node nust trust at |east one of its neighboring nodes. It is

t heref ore necessary that both the new y added node and an al ready
trusted node perform such a cerenony to successfully introduce a node
into the DNCP network. In all cases an admi nistrator MJST be
provided with external neans to identify the node belonging to a
certificate based on its fingerprint and a neani ngful common nane.

8.3.4.1. Trust by ldentification
A node inplementing certificate-based trust MJST provide an interface
to retrieve the current set of effective trust verdicts, fingerprints

and nanes of all certificates currently known and set configured
trust verdicts to be announced. Alternatively it MAY provide a

Stenberg & Barth Expi res January 4, 2016 [Page 26]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

compani on DNCP node or application with these capabilities w th which
it has a pre-established trust rel ationship.

8.3.4.2. Preconfigured Trust

A node MAY be preconfigured to trust a certain set of node or CA
certificates. However such trust relationships MIUST NOT result in
unwanted or unrelated trust for nodes not intended to be run inside
the sane network (e.g., all other devices by the same manufacturer).

8.3.4.3. Trust on Button Press

A node MAY provide a physical or virtual interface to put one or nore
of its internal network interfaces tenporarily into a node in which
it trusts the certificate of the first DNCP node it can successfully
establish a connection with.

8.3.4.4. Trust on First Use
A node which is not associated with any other DNCP node MAY trust the
certificate of the first DNCP node it can successfully establish a
connection with. This method MIUST NOT be used when the node has
al ready associated with any ot her DNCP node.

9. DNCP Profile-Specific Definitions
Each DNCP profile MJST specify the follow ng aspects:
0 Unicast and optionally nulticast transport protocol (s) to be used.

If multicast-based node and status discovery is desired, a
dat agram based transport supporting multicast has to be avail abl e.

0 How the chosen transport(s) are secured: Not at all, optionally or
al ways with the TLS schene defined here using one or nore of the
met hods, or with sonething else. |If the |inks with DNCP nodes can

be sufficiently secured or isolated, it is possible to run DNCP in
a secure manner w thout using any form of authentication or
encryption.

o0 Transport protocols’ parameters such as port nunbers to be used,
or multicast address to be used. Unicast, nulticast, and secure
uni cast may each require different paranmeters, if applicable.

0 \When receiving TLVs, what sort of TLVs are ignored in addition -
as specified in Section 4.4 - e.g., for security reasons. A DNCP
profile may safely define the following DNCP TLVs to be safely
i gnor ed:

Stenberg & Barth Expi res January 4, 2016 [Page 27]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

* Anyt hing received over nulticast, except Node Endpoint TLV
(Section 7.2.1) and Network State TLV (Section 7.2.2).

* Any TLVs received over unreliable unicast or nmulticast at too
high rate; Trickle will ensure eventual convergence given the
rate sl ows down at sone point.

0 Howto deal with node identifier collision as described in
Section 4.4. Main options are either for one or both nodes to
assign new node identifiers to thenselves, or to notify soneone
about a fatal error condition in the DNCP networKk.

o Inmn, Imax and k ranges to be suggested for inplenmentations to be
used in the Trickle algorithm The Trickle algorithm does not
require these to be the same across all inplenentations for it to
work, but simlar orders of nagnitude hel ps inplenentations of a
DNCP profile to behave nore consistently and to facilitate
estimation of |ower and upper bounds for convergence behavi or of
t he network.

0 Hash function H(x) to be used, and how many bits of the output are
actually used. The chosen hash function is used to handl e both
hashi ng of node specific data, and network state hash, which is a
hash of node specific data hashes. SHA-256 defined in [RFC6234]
is the reconmended default choice, but a non-cryptographic hash
function could be used as well.

0 DNCP_NODE | DENTI FI ER LENGTH. The fixed length of a node identifier
(in bytes).

o Whether to send keep-alives, and if so, whether per-endpoint
(requires nulticast transport), or per-peer. Keep-alive has also
associ at ed paraneters:

* DNCP_KEEPALI VE | NTERVAL: How often keep-alives are to be sent
by default (if enabled).

* DNCP_KEEPALI VE_MULTI PLI ER: How many tinmes the
DNCP_KEEPALI VE_| NTERVAL (or peer-supplied keep-alive interva
val ue) a node may not be heard fromto be considered stil
valid. This is just a default used in absence of any other
configuration information, or particular per-endpoint
configuration.

0 \Whether to support fragnentation, and if so, the nunmber of bytes
reserved for fragnent count in the node identifier

Stenberg & Barth Expi res January 4, 2016 [Page 28]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

10.

11.

Security Considerations
DNCP- based protocols may use nulticast to indicate DNCP state changes
and for keep-alive purposes. However, no actual published data TLVs
will be sent across that channel. Therefore an attacker may only
| earn hash values of the state within DNCP and nmay be able to trigger
uni cast synchroni zation attenpts between nodes on a local link this
way. A DNCP node should therefore rate-limt its reactions to
mul ti cast packets.
When using DNCP to bootstrap a network, PKI based sol utions may have
i ssues when validating certificates due to potentially unavail able
accurate tinme, or due to inability to use the network to either check
Certifcate Revocation Lists or performon-line validation
The Certificate-based trust consensus mechanismdefined in this
docunent allows for a consenting revocation, however in case of a
conprom sed device the trust cache nmay be poi soned before the actua
revocation happens allowing the distrusted device to rejoin the
network using a different identity. Stopping such an attack m ght
require physical intervention and flushing of the trust caches.

| ANA Consi derations

| ANA should set up a registry for DNCP TLV types, with the foll ow ng
initial contents:

0: Reserved

1. Request network state
2: Request node state

3: Node endpoi nt

4: Network state

5: Node state

6: Reserved (was: Custon
7. Fragnent count

8: Nei ghbor

9: Keep-alive interva

10: Trust-Verdict

Stenberg & Barth Expi res January 4, 2016 [Page 29]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

32-191: Reserved for per-DNCP profile use

192- 255: Reserved for per-inplenentation experinentation. How
collision is avoided is out of scope of this docunent.

For the rest of the values (11-31, 256-65535), policy of ’'standards
action’ should be used.

12. Ref er ences
12.1. Normative references

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

[RFC6206] Levis, P., Causen, T., Hui, J., Grawali, O, and J. Ko
"The Trickle Al gorithn, RFC 6206, March 2011

[RFC6347] Rescorla, E. and N. Mddadugu, "Datagram Transport Layer
Security Version 1.2", RFC 6347, January 2012.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

12.2. Infornmtive references

[RFC3493] Glligan, R, Thonson, S., Bound, J., MCann, J., and W
St evens, "Basic Socket Interface Extensions for |Pv6", RFC
3493, February 2003.

[RFC6234] Eastlake, D. and T. Hansen, "US Secure Hash Al gorithns
(SHA and SHA-based HVAC and HKDF)", RFC 6234, My 2011.

Appendi x A, Alternative Mddes of Operation

Beyond what is described in the main text, the protocol allows for
ot her uses. These are provided as exanpl es.

A.1. Read-only Operation

If a node uses just a single endpoint and does not need to publish
any TLVs, full DNCP node functionality is not required. Such linited
node can acquire and maintain view of the TLV space by inpl enenting
the processing logic as specified in Section 4.4. Such node woul d
not need Trickle, peer-maintenance or even keep-alives at all, as the
DNCP nodes’ use of it would guarantee eventual receipt of network
state hashes, and synchroni zation of node data, even in presence of
unreliable transport.

Stenberg & Barth Expi res January 4, 2016 [Page 30]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

A. 2. Forwardi ng Qperation
If a node with a pair of endpoints does not need to publish any TLVs,
it can detect (for exanple) nodes with the highest node identifier on
each of the endpoints (if any). Any TLVs received fromone of them
woul d be forwarded verbatimas unicast to the other node with highest
node identifier
Any tinkering with the TLVs woul d renove guarantees of this scheme
wor ki ng; however passive nonitoring would obviously be fine. This
type of sinple forwardi ng cannot be chained, as it does not send
anyt hi ng proactively.

Appendi x B. Some Questions and Answers [RFC Editor: please renove]
Q 32-bit endpoint id?
A. Here, it would save 32 bits per neighbor if it was 16 bits (and
less is not realistic). However, TLVs defined el sewhere woul d not
seemto even gain that much on average. 32 bits is also used for
i findex in various operating systenms, naking for sinpler
i mpl enent ati on.
Q Wiy have topology information at all?
A It is an alternative to the nore traditional seqg#/ TTL-based
fl oodi ng schenes. In steady state, there is no need to, e.g., re-
publ i sh every now and then

Appendi x C. Changel og [RFC Editor: please renove]
draft-ietf-honmenet-dncp- 06:
0 Renoved custom TLV.

0 Made keep-alive nmultipliers local inplenentation choice, profiles
just provide guidance on sane default val ue.

0 Renoved the DNCP_GRACE I NTERVAL as it is really inplenentation
choi ce.

o Sinplified the suggested structures in data nodel.
0 Reorgani zed the document and provi ded an overvi ew section.

draft-ietf-honenet-dncp- 04:

Stenberg & Barth Expi res January 4, 2016 [Page 31]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015

(o]

Added nandatory rate limting for network state requests, and
optional slightly faster convergence mechani sm by incl udi ng
current local network state in the renote network state requests.

draft-ietf-honenet-dncp-03:

(0]

(0]

Renaned connection -> endpoint.

11l Backwards inconpatibl e change: Renunbered TLVs, and got rid of
node data TLV, instead, node data TLV' s contents are optionally
within node state TLV.

draft-ietf-homenet-dncp-02:

(0]

Changed DNCP "nessages” into series of TLV streans, allow ng
optimzed round-trip saving synchroni zation

Added fragnentation support for bigger node data and for chunking
in absence of reliable L2 and L3 fragnmentati on.

draft-ietf-honmenet-dncp-01:

(0]

Fi xed keep-alive semantics to consider unicast requests al so
updat es of nost recently consistent, and added proactive unicast
request to ensure even inconsistent keep-alive nessages eventually
triggering consistency timestanp update.

Facilitated (sinple) read-only clients by nmaki ng Node Connection
TLV optional if just using DNCP for read-only purposes.

Added text describing howto deal with "dense" networks, but left
actual nunbers and nechanics up to DNCP profiles and (Il ocal)
configurations.

draft-ietf-honenet-dncp-00: Split frompre-version of draft-ietf-
honenet - hncp-03 generic parts. Changes that affect inplenentations:

0

(0]

TLVs were renunber ed.

TLV | ength does not include header (=-4). This facilitates, e.g.
use of DHCPv6 option parsing libraries (sane encoding), and
reduces conplexity (no need to handle error values of length |ess
than 4).

Trickle is reset only when locally cal cul ated network state hash
i s changes, not as renote different network state hash is seen
This prevents, e.g., attacks by nulticast with one nulticast

Stenberg & Barth Expi res January 4, 2016 [Page 32]

Internet-Draft Di stri buted Node Consensus Prot ocol July 2015
packet to force Trickle reset on every interface of every node on
a link.

0 Instead of 'ping’, use 'keep-alive' (optional) for dead peer
detection. Different nessage used!

Appendi x D. Draft Source [RFC Editor: please renove]
As usual, this draft is available at https://github.conm fingon/ietf-
drafts/ in source format (with nice Makefile too). Feel free to send
comrents and/or pull requests if and when you have changes to it!
Appendi x E. Acknow edgenent s
Thanks to O e Troan, Pierre Pfister, Mark Baugher, Mark Townsl ey,
Juliusz Chroboczek, Jiazi Yi, Mkael Abrahansson, Brian Carpenter,
Thomas Cl ausen and DENG Hui for their contributions to the draft.
Aut hors’ Addresses
Mar kus St enberg
Hel si nki 00930
Fi nl and

Emai | : mar kus. stenberg@Ki . fi

St even Barth

Halle 06114
Ger many
Emai |l : cyrus@penwt.org

Stenberg & Barth Expi res January 4, 2016 [Page 33]

