Network Working Group F. Templin, Ed.

Internet-Draft Boeing Research & Technology
Obsoletes: rfc5320, rfc5558, rfc5720, June 17, 2015
rfc6179, rfc6706 (if
approved)

Intended status: Standards Track
Expires: December 19, 2015

Asymmetric Extended Route Optimization (AERO)
draft-templin-aerolink-58.txt

Abstract

This document specifies the operation of IP over tunnel virtual links
using Asymmetric Extended Route Optimization (AERO). Nodes attached
to AERO links can exchange packets via trusted intermediate routers
that provide forwarding services to reach off-link destinations and
redirection services for route optimization. AERO provides an IPv6
link-local address format known as the AERO address that supports
operation of the IPv6 Neighbor Discovery (ND) protocol and links IPv6
ND to IP forwarding. Admission control, provisioning and mobility

are supported by the Dynamic Host Configuration Protocol for IPv6
(DHCPV6), and route optimization is naturally supported through
dynamic neighbor cache updates. Although DHCPv6 and IPv6 ND
messaging are used in the control plane, both IPv4 and IPv6 are
supported in the data plane. AERO is a widely-applicable tunneling
solution using standard control messaging exchanges as described in
this document.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. Itis inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 19, 2015.

Templin Expires December 19, 2015 [Page 1]



Internet-Draft AERO June 2015

Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction .............. ... ....... 3
2. Terminology .. ........ ... ... 4
3. Asymmetric Extended Route Optimization (AERO) . ....... 6
3.1. AERO Link Reference Model . ............... 6
3.2. AERO Link Node Types .................. 8
3.3. AEROAddresses .............couuunn. 9
3.4. AERO Interface Characteristics ............. 10
3.5. AERO Link Registration ................. 11
3.6. AERO Interface Initialization . ............. 12
3.6.1. AERO Relay Behavior................. 12
3.6.2. AERO Server Behavior ................ 12
3.6.3. AERO Client Behavior ................ 13
3.6.4. AERO Forwarding Agent Behavior ........... 13
3.7. AERO Link Routing System . ............... 13
3.8. AERO Interface Neighbor Cache Maintenace ........ 15
3.9. AERO Interface Sending Algorithm . ........... 16
3.10. AERO Interface Encapsulation and Re-encapsulation . ... 18
3.11. AERO Interface Decapsulation .............. 20
3.12. AERO Interface Data Origin Authentication . ... .... 21
3.13. AERO Interface MTU and Fragmentation .......... 21
3.13.1. Accommodating Large Control Messages . .. .. ... 24
3.13.2. Integrity . ......... .. 25
3.14. AERO Interface Error Handling . . . ........... 26
3.15. AERO Router Discovery, Prefix Delegation and Address
Configuration .. .................... 30
3.15.1. AERO DHCPv6 Service Model ............. 30
3.15.2. AERO ClientBehavior . ............... 31
3.15.3. AERO Server Behavior................ 34
3.15.4. Deleting Link Registrations ............ 37
3.16. AERO Forwarding Agent Behavior ............. 37
3.17. AERO Intradomain Route Optimization........... 38

Templin Expires December 19, 2015 [Page 2]



Internet-Draft AERO June 2015

3.17.1. Reference Operational Scenario........... 38
3.17.2. Concept of Operations ............... 40
3.17.3. MessageFormat................... 40
3.17.4. Sending Predirects . ................ 41
3.17.5. Re-encapsulating and Relaying Predirects . . . . .. 42
3.17.6. Processing Predirects and Sending Redirects . ... 43
3.17.7. Re-encapsulating and Relaying Redirects . . . ... 45
3.17.8. Processing Redirects . . .............. 46
3.17.9. Server-Oriented Redirection ............ 46
3.18. Neighbor Unreachability Detection (NUD) . ........ 46
3.19. Mobility Management . . . ................ 48
3.19.1. Announcing Link-Layer Address Changes ....... 48
3.19.2. Bringing New Links Into Service .......... 49
3.19.3. Removing Existing Links from Service .. ... ... 49
3.19.4. Movingtoa New Server............... 50
3.20. Proxy AERO .......... ... .. ... .... 50
3.21. Extending AERO Links Through Security Gateways . . ...
3.22. Extending IPv6 AERO Links to the Internet . .. ... .. 55
3.23. Encapsulation Protocol Version Considerations . . . . . . 58
3.24. Multicast Considerations .. .............. 58
3.25. Operation on AERO Links Without DHCPvV6 Services . . . . .
3.26. Operation on Server-less AERO Links . .......... 59
3.27. Manually-Configured AERO Tunnels ............ 59
3.28. Intradomain Routing . .. ................ 59
4. Implementation Status . . .................. 59
5. NextSteps ............. ... ... ... ... 60
6. IANA Considerations . . . .................. 60
7. Security Considerations . . ................. 60
8. Acknowledgements ...................... 61
9. References ......................... 62
9.1. Normative References .................. 62
9.2. Informative References ................. 63
Author's Address . ......... ... . .. 68

1. Introduction

This document specifies the operation of IP over tunnel virtual links

using Asymmetric Extended Route Optimization (AERO). The AERO link

can be used for tunneling to neighboring nodes over either IPv6 or
IPv4 networks, i.e., AERO views the IPv6 and IPv4 networks as
equivalent links for tunneling. Nodes attached to AERO links can
exchange packets via trusted intermediate routers that provide
forwarding services to reach off-link destinations and redirection
services for route optimization that addresses the requirements
outlined in [RFC5522].

AERO provides an IPv6 link-local address format known as the AERO
address that supports operation of the IPv6 Neighbor Discovery (ND)

Templin

Expires December 19, 2015 [Page 3]



Internet-Draft AERO June 2015

[RFC4861] protocol and links IPv6 ND to IP forwarding. Admission
control, provisioning and mobility are supported by the Dynamic Host
Configuration Protocol for IPv6 (DHCPv6) [RFC3315], and route
optimization is naturally supported through dynamic neighbor cache
updates. Although DHCPv6 and IPv6 ND messaging are used in the
control plane, both IPv4 and IPv6 can be used in the data plane.

AERO is a widely-applicable tunneling solution using standard control
messaging exchanges as described in this document. The remainder of
this document presents the AERO specification.

2. Terminology

The terminology in the normative references applies; the following
terms are defined within the scope of this document:

AERO link
a Non-Broadcast, Multiple Access (NBMA) tunnel virtual overlay
configured over a node’s attached IPv6 and/or IPv4 networks. All
nodes on the AERO link appear as single-hop neighbors from the
perspective of the virtual overlay.

AERO interface
a node’s attachment to an AERO link. Nodes typically have a
single AERO interface; support for multiple AERO interfaces is
also possible but out of scope for this document.

AERO address
an IPv6 link-local address constructed as specified in Section 3.3
and assigned to a Client’s AERO interface.

AERO node
a node that is connected to an AERO link and that participates in
IPv6 ND and DHCPv6 messaging over the link.

AERO Client ("Client")
a node that issues DHCPv6 messages using the special IPv6 link-
local address 'fe80::ffff:ffff:ffff.ffff’ to receive IP Prefix
Delegations (PD) from one or more AERO Servers. Following PD, the
Client assigns an AERO address to the AERO interface which it uses
in IPv6 ND messaging to coordinate with other AERO nodes.

AERO Server ("Server")
a node that configures an AERO interface to provide default
forwarding and DHCPvV6 services for AERO Clients. The Server
assigns an administratively provisioned IPv6 link-local unicast
address to support the operation of DHCPv6 and the IPv6 ND
protocol. An AERO Server can also act as an AERO Relay.

Templin Expires December 19, 2015 [Page 4]



Internet-Draft AERO June 2015

AERO Relay ("Relay")
a node that configures an AERO interface to relay IP packets
between nodes on the same AERO link and/or forward IP packets
between the AERO link and the native Internetwork. The Relay
assigns an administratively provisioned IPv6 link-local unicast
address to the AERO interface the same as for a Server. An AERO
Relay can also act as an AERO Server.

AERO Forwarding Agent ("Forwarding Agent")
a node that performs data plane forwarding services as a companion
to an AERO Server.

ingress tunnel endpoint (ITE)
an AERO interface endpoint that injects tunneled packets into an
AERO link.

egress tunnel endpoint (ETE)
an AERO interface endpoint that receives tunneled packets from an
AERO link.

underlying network
a connected IPv6 or IPv4 network routing region over which the
tunnel virtual overlay is configured. A typical example is an
enterprise network.

underlying interface
an AERO node’s interface point of attachment to an underlying
network.

link-layer address
an IP address assigned to an AERO node’s underlying interface.
When UDP encapsulation is used, the UDP port number is also
considered as part of the link-layer address. Link-layer
addresses are used as the encapsulation header source and
destination addresses.

network layer address
the source or destination address of the encapsulated IP packet.

end user network (EUN)
an internal virtual or external edge IP network that an AERO
Client connects to the rest of the network via the AERO interface.

AERO Service Prefix (ASP)
an IP prefix associated with the AERO link and from which AERO
Client Prefixes (ACPs) are derived (for example, the IPv6 ACP
2001:db8:1:2::/64 is derived from the IPv6 ASP 2001:db8::/32).

Templin Expires December 19, 2015 [Page 5]



Internet-Draft AERO June 2015

AERO Client Prefix (ACP)
a more-specific IP prefix taken from an ASP and delegated to a
Client.

Throughout the document, the simple terms "Client", "Server" and
"Relay" refer to "AERO Client", "AERO Server" and "AERO Relay",
respectively. Capitalization is used to distinguish these terms from
DHCPv6 client/server/relay [RFC3315].

The terminology of [RFC4861] (including the names of node variables
and protocol constants) applies to this document. Also throughout
the document, the term "IP" is used to generically refer to either
Internet Protocol version (i.e., IPv4 or IPv6).

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119]. Lower case
uses of these words are not to be interpreted as carrying RFC2119
significance.

3. Asymmetric Extended Route Optimization (AERO)

The following sections specify the operation of IP over Asymmetric
Extended Route Optimization (AERO) links:

3.1. AERO Link Reference Model

Templin Expires December 19, 2015 [Page 6]



Internet-Draft AERO June 2015

.-(.:::: IP:)-.
(:: Internetwork :3)

)-

+ + + + + + +

|[AERO Server S1| | AERO Relay R1 | |AERO Server S2|
| Nbr: C1;R1| | Nbr:S1;S2 | | Nbr: C2; R1 |

| default->R1 | |(H1->S1; H2->S2)| | default->R1 |

| H1I->C1 | +-------- +omoeee- + | H2->C2 |

+ommmee +ommeee + | +ommeee e +
| | |
Xemateaat + +oemt---X
| AERO Link |
R — E + E B — +
|[AERO Client C1| |[AERO Client C2|
| Nbr:S1 | | Nbr:S2 |
| default->S1 | | default->S2 |
B S —— + B S +
:'( _)_' !'( _)"
~C 1P )-. ~C 1P )-
(_ EUN ) (_ EUN )
£_( I )_l |t_( )_1
R + E +
| Host H1| | Host H2|
S + S +

Figure 1: AERO Link Reference Model
Figure 1 presents the AERO link reference model. In this model:

0 Relay R1 acts as a default router for its associated Servers S1
and S2, and connects the AERO link to the rest of the IP
Internetwork

o Servers S1 and S2 associate with Relay R1 and also act as default
routers for their associated Clients C1 and C2.

o Clients C1 and C2 associate with Servers S1 and S2, respectively
and also act as default routers for their associated EUNs

0 Hosts H1 and H2 attach to the EUNs served by Clients C1 and C2,
respectively

Templin Expires December 19, 2015 [Page 7]



Internet-Draft AERO June 2015

Each node maintains a neighbor cache and IP forwarding table. (For
example, AERO Relay R1 in the diagram has neighbor cache entries for
Servers S1 and S2 and IP forwarding table entries for ACPs H1 and
H2.) In common operational practice, there may be many additional
Relays, Servers and Clients. (Although not shown in the figure, AERO
Forwarding Agents may also be provided for data plane forwarding
offload services.)

3.2. AERO Link Node Types

AERO Relays provide default forwarding services to AERO Servers.
Relays forward packets between Servers connected to the same AERO
link and also forward packets between the AERO link and the native IP
Internetwork. Relays present the AERO link to the native

Internetwork as a set of one or more AERO Service Prefixes (ASPs) and
serve as a gateway between the AERO link and the Internetwork. AERO
Relays maintain an AERO interface neighbor cache entry for each AERO
Server, and maintain an IP forwarding table entry for each AERO

Client Prefix (ACP). AERO Relays can also be configured to act as
AERO Servers.

AERO Servers provide default forwarding services to AERO Clients.
Each Server also peers with each Relay in a dynamic routing protocol
instance to advertise its list of associated ACPs. Servers configure

a DHCPv6 server function to facilitate Prefix Delegation (PD)
exchanges with Clients. Each delegated prefix becomes an ACP taken
from an ASP. Servers forward packets between AERO interface
neighbors only, i.e., and not between the AERO link and the native IP
Internetwork. AERO Servers maintain an AERO interface neighbor cache
entry for each AERO Relay. They also maintain both a neighbor cache
entry and an IP forwarding table entry for each of their associated
Clients. AERO Servers can also be configured to act as AERO Relays.

AERO Clients act as requesting routers to receive ACPs through DHCPVv6
PD exchanges with AERO Servers over the AERO link and sub-delegate
portions of their ACPs to EUN interfaces. (Each Client MAY associate
with a single Server or with multiple Servers, e.g., for fault

tolerance, load balancing, etc.) Each IPv6 Client receives at least

a /64 IPv6 ACP, and may receive even shorter prefixes. Similarly,

each IPv4 Client receives at least a /32 IPv4 ACP (i.e., a singleton

IPv4 address), and may receive even shorter prefixes. AERO Clients
maintain an AERO interface neighbor cache entry for each of their
associated Servers as well as for each of their correspondent

Clients.

AERO Clients typically configure a TUN/TAP interface [TUNTAP] as a

point-to-point linkage between the IP layer and the AERO interface.
The IP layer therefore sees only the TUN/TAP interface, while the

Templin Expires December 19, 2015 [Page 8]



Internet-Draft AERO June 2015

AERQO interface provides an intermediate conduit between the TUN/TAP
interface and the underlying interfaces. AERO Clients that act as

hosts assign one or more IP addresses from their ACPs to the TUN/TAP
interface, i.e., and not to the AERO interface.

AERO Forwarding Agents provide data plane forwarding services as
companions to AERO Servers. Note that while Servers are required to
perform both control and data plane operations on their own behalf,
they may optionally enlist the services of special-purpose Forwarding
Agents to offload data plane traffic.

3.3. AERO Addresses

An AERO address is an IPv6 link-local address with an embedded ACP
and assigned to a Client's AERO interface. The AERO address is
formed as follows:

fe80::[ACP]
For IPv6, the AERO address begins with the prefix fe80::/64 and
includes in its interface identifier the base prefix taken from the
Client’'s IPv6 ACP. The base prefix is determined by masking the ACP
with the prefix length. For example, if the AERO Client receives the
IPv6 ACP:

2001:db8:1000:2000::/56
it constructs its AERO address as:

fe80::2001:db8:1000:2000
For IPv4, the AERO address is formed from the lower 64 bits of an
IPv4-mapped IPv6 address [RFC4291] that includes the base prefix
taken from the Client’'s IPv4 ACP. For example, if the AERO Client
receives the IPv4 ACP:

192.0.2.32/28
it constructs its AERO address as:

fe80::FFFF:192.0.2.32

The AERO address remains stable as the Client moves between
topological locations, i.e., even if its link-layer addresses change.

NOTE: In some cases, prospective neighbors may not have advanced

knowledge of the Client's ACP length and may therefore send initial
IPv6 ND messages with an AERO destination address that matches the

Templin Expires December 19, 2015 [Page 9]



Internet-Draft AERO June 2015

ACP but does not correspond to the base prefix. In that case, the

Client MUST accept the address as equivalent to the base address, but
then use the base address as the source address of any IPv6 ND

message replies. For example, if the Client receives the IPv6 ACP
2001:db8:1000:2000::/56 then subsequently receives an IPv6 ND message
with destination address fe80::2001:db8:1000:2001, it accepts the
message but uses fe80::2001:db8:1000:2000 as the source address of
any IPv6 ND replies.

3.4. AERO Interface Characteristics

AERQO interfaces use encapsulation (see Section 3.10) to exchange
packets with neighbors attached to the AERO link. AERO interfaces
maintain a neighbor cache, and AERO Clients and Servers use unicast
IPv6 ND messaging. AERO interfaces use unicast Neighbor Solicitation
(NS), Neighbor Advertisement (NA), Router Solicitation (RS) and
Router Advertisement (RA) messages the same as for any IPv6 link.
AERQO interfaces use two redirection message types -- the first known
as a Predirect message and the second being the standard Redirect
message (see Section 3.17). AERO links further use link-local-only
addressing; hence, AERO nodes ignore any Prefix Information Options
(PIOs) they may receive in RA messages over an AERO interface.

AERO interface ND messages include one or more Source/Target Link-
Layer Address Options (S/TLLAOSs) formatted as shown in Figure 2:

0 1 2 3
01234567890123456789012345678901

BT T I T U T O T T T I T T e
| Type=2 | Length=3 | Reserved |
e I I o o i SO S S S e S e
| LinkID | NDSCPs | DSCP #1 |Prf| DSCP #2 |Prf|
S I e St S
| DSCP #3 |Prf| DSCP #4 |Prf] ....

BT T I T U T O T T T I T T e
| UDP Port Number |

s e e e o e o S S +
I I

+ +

| IP Address |

+ +

I I

+ s e o e o o S S
I I
+ot-t-t-t-tt-t-t-t-t-tot-t-t-+-+

Figure 2: AERO Source/Target Link-Layer Address Option (S/TLLAQO)
Format

Templin Expires December 19, 2015 [Page 10]



Internet-Draft AERO June 2015

In this format, Link ID is an integer value between 0 and 255
corresponding to an underlying interface of the target node, NDSCPs
encodes an integer value between 1 and 64 indicating the number of
Differentiated Services Code Point (DSCP) octets that follow. Each
DSCP octet is a 6-bit integer DSCP value followed by a 2-bit

Preference ("Prf") value. Each DSCP value encodes an integer between
0 and 63 associated with this Link ID, where the value 0 means
"default" and other values are interpreted as specified in [RFC2474].
The "Prf’ qualifier for each DSCP value is set to the value 0
("deprecated’), 1 ("low"), 2 ("medium"), or 3 ("high") to indicate a
preference level for packet forwarding purposes. UDP Port Number and
IP Address are set to the addresses used by the target node when it
sends encapsulated packets over the underlying interface. When the
encapsulation IP address family is IPv4, IP Address is formed as an
IPv4-mapped IPv6 address [RFC4291].

AERO interfaces may be configured over multiple underlying
interfaces. For example, common mobile handheld devices have both
wireless local area network ("WLAN") and cellular wireless links.
These links are typically used "one at a time" with low-cost WLAN
preferred and highly-available cellular wireless as a standby. In a
more complex example, aircraft frequently have many wireless data
link types (e.g. satellite-based, terrestrial, air-to-air

directional, etc.) with diverse performance and cost properties.

If a Client’s multiple underlying interfaces are used "one at a time"
(i.e., all other interfaces are in standby mode while one interface
is active), then Redirect, Predirect and unsolicited NA messages
include only a single TLLAO with Link ID set to a constant value.

If the Client has multiple active underlying interfaces, then from

the perspective of IPv6 ND it would appear to have a single link-

local address with multiple link-layer addresses. In that case,

Redirect, Predirect and unsolicited NA messages MAY include multiple
TLLAOSs -- each with a different Link ID that corresponds to a

specific underlying interface of the Client.

3.5. AERO Link Registration

When an administrative authority first deploys a set of AERO Relays

and Servers that comprise an AERO link, they also assign a unique

domain name for the link, e.g., "linkupnetworks.example.com”. Next,

if administrative policy permits Clients within the domain to serve

as correspondent nodes for Internet mobile nodes, the administrative

authority adds a Fully Qualified Domain Name (FQDN) for each of the

AERQO link’s ASPs to the Domain Name System (DNS) [RFC1035]. The FQDN
is based on the suffix "aero.linkupnetworks.net" with a prefix formed

from the wildcard-terminated reverse mapping of the ASP

Templin Expires December 19, 2015 [Page 11]



Internet-Draft AERO June 2015

[RFC3596][RFC4592], and resolves to a DNS PTR resource record. For
example, for the ASP '2001:db8:1::/48’ within the domain name
"linkupnetworks.example.com”, the DNS database contains:

'*.1.0.0.0.8.b.d.0.1.0.0.2.aero.linkupnetworks.net. PTR
linkupnetworks.example.com’

This DNS registration advertises the AERO link’'s ASPs to prospective
correspondent nodes.

3.6. AERO Interface Initialization
3.6.1. AERO Relay Behavior

When a Relay enables an AERO interface, it first assigns an
administratively provisioned link-local address fe80::ID to the

interface. Each fe80::ID address MUST be unique among all AERO nodes
on the link, and MUST NOT collide with any potential AERO addresses
nor the special addresses fe80:: and fe80::ffff:ffff:ffff:ffff. (The

fe80::1D addresses are typically taken from the available range

fe80::/96, e.g., as fe80::1, fe80::2, fe80::3, etc.) The Relay then

engages in a dynamic routing protocol session with all Servers on the

link (see: Section 3.7), and advertises its assigned ASP prefixes

into the native IP Internetwork.

Each Relay subsequently maintains an IP forwarding table entry for
each Client-Server association, and maintains a neighbor cache entry
for each Server on the link. Relays exchange NS/NA messages with
AERQO link neighbors the same as for any AERO node, however they
typically do not perform explicit Neighbor Unreachability Detection
(NUD) (see: Section 3.18) since the dynamic routing protocol already
provides reachability confirmation.

3.6.2. AERO Server Behavior

When a Server enables an AERO interface, it assigns an

administratively provisioned link-local address fe80::ID the same as

for Relays. The Server further configures a DHCPV6 server function

to facilitate DHCPv6 PD exchanges with AERO Clients. The Server
maintains a neighbor cache entry for each Relay on the link, and
manages per-Client neighbor cache entries and IP forwarding table
entries based on control message exchanges. Each Server also engages
in a dynamic routing protocol with each Relay on the link (see:

Section 3.7).

When the Server receives an NS/RS message from a Client on the AERO

interface it returns an NA/RA message but does not update the
neighbor cache. The Server further provides a simple conduit between

Templin Expires December 19, 2015 [Page 12]



Internet-Draft AERO June 2015

AERO interface neighbors. Therefore, packets enter the Server's AERO
interface from the link layer and are forwarded back out the link

layer without ever leaving the AERO interface and therefore without
ever disturbing the network layer.

3.6.3. AERO Client Behavior

When a Client enables an AERO interface, it uses the special address
fe80::ffff:ffff:ffff:ffff to obtain an ACP from an AERO Server via

DHCPv6 PD. Next, it assigns the corresponding AERO address to the
AERQO interface and creates a neighbor cache entry for the Server,

i.e., the PD exchange bootstraps autoconfiguration of a unique link-
local address. The Client maintains a neighbor cache entry for each

of its Servers and each of its active correspondent Clients. When

the Client receives Redirect/Predirect messages on the AERO interface
it updates or creates neighbor cache entries, including link-layer
address information. Unsolicited NA messages update the cached link-
layer addresses for correspondent Clients (e.g., following a link-

layer address change due to node mobility) but do not create new
neighbor cache entries. NS/NA messages used for NUD update timers in
existing neighbor cache entires but do not update link-layer

addresses nor create new neighbor cache entries.

Finally, the Client need not maintain any IP forwarding table entries
for its Servers or correspondent Clients. Instead, it can set a

single "route-to-interface" default route in the IP forwarding table,
and all forwarding decisions can be made within the AERO interface
based on neighbor cache entries. (On systems in which adding a
default route would violate security policy, the default route could
instead be installed via a "synthesized RA", e.g., as discussed in
Section 3.15.2.)

3.6.4. AERO Forwarding Agent Behavior

When a Forwarding Agent enables an AERO interface, it assigns the
same link-local address(es) as the companion AERO Server. The
Forwarding Agent thereafter provides data plane forwarding services
based solely on the forwarding information assigned to it by the
companion AERO Server.

3.7. AERO Link Routing System

Relays require full topology knowledge of all ACP/Server associations

for the ASPs they service, while individual Servers at a minimum only
need to know the ACPs for their current set of associated Clients.

This is accomplished through the use of an internal instance of the
Border Gateway Protocol (BGP) [RFC4271] coordinated between Servers
and Relays. This internal BGP instance does not interact with the

Templin Expires December 19, 2015 [Page 13]



Internet-Draft AERO June 2015

public Internet BGP instance; therefore, the AERO link is presented
to the IP Internetwork as a small set of ASPs as opposed to the full
set of individual ACPs.

In a reference BGP arrangement, each AERO Server is configured as an
Autonomous System Border Router (ASBR) for a stub Autonomous System
(AS) using an AS Number (ASN) that is unique within the BGP instance,
and each Server further peers with each Relay but does not peer with

other Servers. Similarly, Relays do not peer with each other, since

they will reliably receive all updates from all Servers and will

therefore have a consistent view of the AERO link ACP delegations.

Each Server maintains a working set of associated ACPs, and

dynamically announces new ACPs and withdraws departed ACPs in its BGP
updates to Relays. Clients are expected to remain associated with

their current Servers for extended timeframes, however Servers SHOULD
selectively suppress BGP updates for impatient Clients that

repeatedly associate and disassociate with them in order to dampen

routing churn.

Each Relay configures a black-hole route for each ASP associated with
the AERO link. By black-holing the ASPs, the Relay will maintain
active forwarding table entries only for the ACPs that are currently
active, and all other ACPs will correctly result in destination
unreachable failures due to the black hole route.

Scaling properties of the AERO routing system are limited by the
number of BGP routes that can be carried by Relays. Assuming O(10"6)
as a reasonable maximum number of BGP routes, this means that O(10"6)
Clients can be serviced by a single set of Relays. A means of

increasing scaling would be to assign a different set of Relays for

each set of ASPs. In that case, each Server still peers with each

Relay, but the Server institutes route filters so that each set of

Relays only receives BGP updates for the ACPs they aggregate. For
example, if the ASP for the AERO link is 2001:db8::/32, a first set

of Relays could service the ASP segment 2001:db8::/40, a second set

of Relays could service 2001:db8:0100::/40, a third set could service
2001:db8:0200::/40, etc.

Assuming up to O(10"3) sets of Relays, the system can then
accommodate O(1079) Clients with no additional overhead for Servers
and Relays. In this way, each set of Relays services a specific set

of ASPs that they advertise to the native routing system outside of

the AERO link, and each Server configures ASP-specific routes that
list the correct set of Relays as next hops. This arrangement also
allows for natural incremental deployment, and can support small
scale initial deployments followed by dynamic deployment of

Templin Expires December 19, 2015 [Page 14]



Internet-Draft AERO June 2015

additional Clients, Servers and Relays without disturbing the
already-deployed base.

3.8. AERO Interface Neighbor Cache Maintenace

Each AERO interface maintains a conceptual neighbor cache that
includes an entry for each neighbor it communicates with on the AERO
link, the same as for any IPv6 interface [RFC4861]. AERO interface
neighbor cache entires are said to be one of "permanent", "static" or

"dynamic".

Permanent neighbor cache entries are created through explicit
administrative action; they have no timeout values and remain in

place until explicitly deleted. AERO Relays maintain a permanent
neighbor cache entry for each Server on the link, and AERO Servers
maintain a permanent neighbor cache entry for each Relay. Each entry
maintains the mapping between the neighbor’s fe80::ID network-layer
address and corresponding link-layer address.

Static neighbor cache entries are created though DHCPv6 PD exchanges
and remain in place for durations bounded by prefix lifetimes. AERO
Servers maintain static neighbor cache entries for the ACPs of each

of their associated Clients, and AERO Clients maintain a static
neighbor cache entry for each of their associated Servers. When an
AERO Server sends a DHCPv6 Reply message response to a Client's
DHCPv6 Request, Rebind or Renew message, it creates or updates a
static neighbor cache entry based on the AERO address corresponding
to the Client’'s ACP as the network-layer address, the prefix lifetime

as the neighbor cache entry lifetime, the Client’s encapsulation IP
address and UDP port number as the link-layer address and the prefix
length as the length to apply to the AERO address. When an AERO
Client receives a DHCPv6 Reply message from a Server, it creates or
updates a static neighbor cache entry based on the Reply message
link-local source address as the network-layer address, the prefix
lifetime as the neighbor cache entry lifetime, and the encapsulation

IP source address and UDP source port number as the link-layer
address.

Dynamic neighbor cache entries are created or updated based on

receipt of an IPv6 ND message, and are garbage-collected if not used
within a bounded timescale. AERO Clients maintain dynamic neighbor
cache entries for each of their active correspondent Client ACPs with
lifetimes based on IPv6 ND messaging constants. When an AERO Client
receives a valid Predirect message it creates or updates a dynamic
neighbor cache entry for the Predirect target network-layer and link-

layer addresses plus prefix length. The node then sets an

"AcceptTime" variable in the neighbor cache entry to ACCEPT_TIME
seconds and uses this value to determine whether packets received

Templin Expires December 19, 2015 [Page 15]



Internet-Draft AERO June 2015

from the correspondent can be accepted. When an AERO Client receives

a valid Redirect message it creates or updates a dynamic neighbor

cache entry for the Redirect target network-layer and link-layer

addresses plus prefix length. The Client then sets a "ForwardTime"
variable in the neighbor cache entry to FORWARD_TIME seconds and uses
this value to determine whether packets can be sent directly to the
correspondent. The Client also sets a "MaxRetry" variable to

MAX_RETRY to limit the number of keepalives sent when a correspondent
may have gone unreachable.

For dynamic neighbor cache entries, when an AERO Client receives a

valid NS message it (re)sets AcceptTime for the neighbor to
ACCEPT_TIME. When an AERO Client receives a valid solicited NA
message, it (re)sets ForwardTime for the neighbor to FORWARD_TIME and
sets MaxRetry to MAX_RETRY. When an AERO Client receives a valid
unsolicited NA message, it updates the correspondent’s link-layer
addresses but DOES NOT reset AcceptTime, ForwardTime or MaxRetry.

Itis RECOMMENDED that FORWARD_TIME be set to the default constant
value 30 seconds to match the default REACHABLE_TIME value specified
for IPv6 ND [RFC4861].

Itis RECOMMENDED that ACCEPT_TIME be set to the default constant
value 40 seconds to allow a 10 second window so that the AERO
redirection procedure can converge before AcceptTime decrements below
FORWARD_TIME.

Itis RECOMMENDED that MAX_RETRY be set to 3 the same as described
for IPv6 ND address resolution in Section 7.3.3 of [RFC4861].

Different values for FORWARD_TIME, ACCEPT_TIME, and MAX_RETRY MAY be
administratively set, if necessary, to better match the AERO link’s

performance characteristics; however, if different values are chosen,

all nodes on the link MUST consistently configure the same values.

Most importantly, ACCEPT_TIME SHOULD be set to a value that is

sufficiently longer than FORWARD_TIME to allow the AERO redirection

procedure to converge.

3.9. AERO Interface Sending Algorithm

IP packets enter a node’s AERO interface either from the network

layer (i.e., from a local application or the IP forwarding system),

or from the link layer (i.e., from the AERO tunnel virtual link).

Packets that enter the AERO interface from the network layer are
encapsulated and admitted into the AERO link, i.e., they are

tunnelled to an AERO interface neighbor. Packets that enter the AERO
interface from the link layer are either re-admitted into the AERO

link or delivered to the network layer where they are subject to

Templin Expires December 19, 2015 [Page 16]



Internet-Draft AERO June 2015

either local delivery or IP forwarding. Since each AERO node may
have only partial information about neighbors on the link, AERO
interfaces may forward packets with link-local destination addresses
at a layer below the network layer. This means that AERO nodes act
as both IP routers and sub-IP layer forwarding agents. AERO
interface sending considerations for Clients, Servers and Relays are
given below.

When an IP packet enters a Client’'s AERO interface from the network
layer, if the destination is covered by an ASP the Client searches

for a dynamic neighbor cache entry with a non-zero ForwardTime and an
AERO address that matches the packet’s destination address. (The
destination address may be either an address covered by the
neighbor’'s ACP or the (link-local) AERO address itself.) If there is

a match, the Client uses a link-layer address in the entry as the
link-layer address for encapsulation then admits the packet into the
AERO link. If there is no match, the Client instead uses the link-
layer address of a neighboring Server as the link-layer address for
encapsulation.

When an IP packet enters a Server's AERO interface from the link
layer, if the destination is covered by an ASP the Server searches

for a neighbor cache entry with an AERO address that matches the
packet’'s destination address. (The destination address may be either
an address covered by the neighbor's ACP or the AERO address itself.)
If there is a match, the Server uses a link-layer address in the

entry as the link-layer address for encapsulation and re-admits the
packet into the AERO link. If there is no match, the Server instead
uses the link-layer address in a permanent neighbor cache entry for a
Relay as the link-layer address for encapsulation.

When an IP packet enters a Relay’s AERO interface from the network
layer, the Relay searches its IP forwarding table for an entry that

is covered by an ASP and also matches the destination. If there is a
match, the Relay uses the link-layer address in a permanent neighbor
cache entry for a Server as the link-layer address for encapsulation
and admits the packet into the AERO link. When an IP packet enters a
Relay’s AERO interface from the link-layer, if the destination is not

a link-local address and does not match an ASP the Relay removes the
packet from the AERO interface and uses IP forwarding to forward the
packet to the Internetwork. If the destination address is a link-

local address or a non-link-local address that matches an ASP, and
there is a more-specific ACP entry in the IP forwarding table, the

Relay uses the link-layer address in the corresponding neighbor cache
entry as the link-layer address for encapsulation and re-admits the
packet into the AERO link. When an IP packet enters a Relay’s AERO
interface from either the network layer or link-layer, and the

packet’'s destination address matches an ASP but there is no more-

Templin Expires December 19, 2015 [Page 17]



Internet-Draft AERO June 2015

specific ACP entry, the Relay drops the packet and returns an ICMP
Destination Unreachable message (see: Section 3.14).

When an AERO Server receives a packet from a Relay via the AERO
interface, the Server MUST NOT forward the packet back to the same or
a different Relay.

When an AERO Relay receives a packet from a Server via the AERO
interface, the Relay MUST NOT forward the packet back to the same
Server.

When an AERO node re-admits a packet into the AERO link without
involving the network layer, the node MUST NOT decrement the network
layer TTL/Hop-count.

When an AERO node forwards a data packet to the primary link-layer
address of a Server, it may receive Redirect messages with an SLLAO
that include the link-layer address of an AERO Forwarding Agent. The
AERO node SHOULD record the link-layer address in the neighbor cache
entry for the neighbor and send subsequent data packets via this
address instead of the Server’s primary address (see: Section 3.16).

3.10. AERO Interface Encapsulation and Re-encapsulation

AERQO interfaces encapsulate IP packets according to whether they are
entering the AERO interface from the network layer or if they are

being re-admitted into the same AERO link they arrived on. This

latter form of encapsulation is known as "re-encapsulation”.

The AERO interface encapsulates packets per the base tunneling
specifications (e.g., [RFC2003], [RFC2473], [RFC2784], [RFC4213],
[RFC4301], [RFC5246], etc.) except that it inserts a UDP header
immediately following the IP encapsulation header. If there are no
additional encapsulation headers (and no fragmentation,
identification, checksum or signature is needed), the AERO interface
next encapsulates the IPv4 or IPv6 packet immediately following the
UDP header. In that case, the most significant four bits of the
encapsulated packet encode the value '4’ for IPv4 or '6’ for IPv6.

For all other encapsulations, the AERO interface MUST insert an AERO

Header between the UDP header and the next encapsulation header as
shown in Figure 3:

Templin Expires December 19, 2015 [Page 18]



Internet-Draft AERO June 2015

0 1 2 3
01234567890123456789012345678901
S I e St S
|[Version|N|F|C|S| Next Header |[Fragment Offset (13 bits)|Res|M|
S e S L S N ST
| Identification (32 bits) |
S R e e e S e s e
|  Checksum (16 bits) | Signature (variable length) :
S I e St S

Figure 3: AERO Header

Version a 4-bit "Version" field. MUST be 0 for the purpose of this
specification.

N a 1-bit "Next Header" flag. MUST be 1 for the purpose of this
specification to indicate that "Next Header" field is present.
"Next Header" encodes the IP protocol number corresponding to the
next header in the encapsulation immediately following the AERO
header. For example, "Next Header" encodes the value '4’ for
IPv4, '17 for UDP, '41’ for IPv6, '47’ for GRE, '50’ for ESP,
'51’ for AH, etc.

F a 1-bit "Fragment Header" flag. Set to '1’ if the "Fragment
Offset”, "Res", "M", and "ldentification" fields are present and
collectively referred to as the "AERO Fragment Header"; otherwise,
setto’'0’.

C al-bit "Checksum" flag. Setto '1’ if the "Checksum" field is
present; otherwise, set to '0’. When present, the Checksum field
contains a checksum of the IP/JUDP/AERO encapsulation headers prior
to the Checksum field.

S a 1-bit "Signature" flag. Set to '1’ if the "Signature" field is
present; otherwise, set to '0’. When present, the Signature field
contains a cryptographic signature of the encapsulated packet
following the Signature field. The signature is applied prior to
any fragmentation; hence’ the Signature field only appears in the
first fragment of a fragmented packet.

(Note: [RFC6706] defines an experimental use in which the bits
corresponding to (Version, N, F, C, S) are all zero, which can be
unambiguously distinguished from the values permitted by this
specification.)

During encapsulation, the AERO interface copies the "TTL/Hop Limit",
"Type of Service/Traffic Class" [RFC2983] and "Congestion

Templin Expires December 19, 2015 [Page 19]



Internet-Draft AERO June 2015

Experienced" [RFC3168] values in the packet’s IP header into the
corresponding fields in the encapsulation IP header. (When IPv6 is
used as the encapsulation protocol, the interface also sets the Flow
Label value in the encapsulation header per [RFC6438].) For packets
undergoing re-encapsulation, the AERO interface instead copies the
"TTL/Hop Limit", "Type of Service/Traffic Class", "Flow Label" and
"Congestion Experienced" values in the original encapsulation IP
header into the corresponding fields in the new encapsulation IP
header, i.e., the values are transferred between encapsulation
headers and *not* copied from the encapsulated packet’'s network-layer
header.

The AERO interface next sets the UDP source port to a constant value
that it will use in each successive packet it sends, and sets the UDP
length field to the length of the encapsulated packet plus 8 bytes

for the UDP header itself, plus the length of the AERO header. For
packets sent via a Server, the AERO interface sets the UDP
destination port to 8060, i.e., the IANA-registered port number for
AERO. For packets sent to a correspondent Client, the AERO interface
sets the UDP destination port to the port value stored in the

neighbor cache entry for this correspondent. The AERO interface also
sets the UDP checksum field to zero (see: [RFC6935][RFC6936]) unless
an integrity check is required (see: Section 3.13.2).

The AERO interface next sets the IP protocol number in the
encapsulation header to 17 (i.e., the IP protocol number for UDP).
When IPv4 is used as the encapsulation protocol, the AERO interface
sets the DF bit as discussed in Section 3.13. The AERO interface
finally sets the AERO header fields as described in Figure 3.

3.11. AERO Interface Decapsulation

AERO interfaces decapsulate packets destined either to the node

itself or to a destination reached via an interface other than the

AERQO interface the packet was received on. When the AERO interface
receives a UDP packet, it examines the first octet of the

encapsulated packet.

If the most significant four bits of the first octet encode the value

'4’ (i.e., the IP version number value for IPv4) or the value '6’

(i.e., the IP version number value for IPv6), the AERO interface
discards the encapsulation headers and accepts the encapsulated
packet as an ordinary IPv6 or IPv4 data packet, respectively. If the
most significant four bits encode the value '0’, however, the AERO
interface processes the packet according to the appropriate AERO
Header fields as specified in Figure 3.

Templin Expires December 19, 2015 [Page 20]



Internet-Draft AERO June 2015

3.12. AERO Interface Data Origin Authentication

AERO nodes employ simple data origin authentication procedures for
encapsulated packets they receive from other nodes on the AERO link.
In particular:

0 AERO Relays and Servers accept encapsulated packets with a link-
layer source address that matches a permanent neighbor cache
entry.

0 AERO Servers accept authentic encapsulated DHCPv6 messages from
Clients, and create or update a static neighbor cache entry for
the source based on the specific message type.

0 AERO Servers accept encapsulated packets if there is a neighbor
cache entry with an AERO address that matches the packet's
network-layer source address and with a link-layer address that
matches the packet'’s link-layer source address.

0 AERO Clients accept encapsulated packets if there is a static
neighbor cache entry with a link-layer source address that matches
the packet’s link-layer source address.

0 AERO Clients and Servers accept encapsulated packets if there is a
dynamic neighbor cache entry with an AERO address that matches the
packet’s network-layer source address, with a link-layer address
that matches the packet’s link-layer source address, and with a
non-zero AcceptTime.

Note that this simple data origin authentication is effective in
environments in which link-layer addresses cannot be spoofed. In
other environments, each AERO message must include a signature that
the recipient can use to authenticate the message origin.

3.13. AERO Interface MTU and Fragmentation

The AERO interface is the node’s point of attachment to the AERO

link. AERO links over IP networks have a maximum link MTU of 64KB
minus the encapsulation overhead (termed here "ENCAPS"), since the
maximum packet size in the base IP specifications is 64KB
[RFCO791][RFC2460] (while IPv6 jumbograms can be up to 4GB, they are
considered optional for IPv6 nodes [RFC2675][RFC6434]).

IPv6 specifies a minimum link MTU of 1280 bytes [RFC2460]. This is
the minimum packet size the AERO interface MUST admit without
returning an ICMP Packet Too Big (PTB) message. Although IPv4
specifies a smaller minimum link MTU of 68 bytes [RFC0791], AERO
interfaces also observe a 1280 byte minimum for IPv4. Additionally,

Templin Expires December 19, 2015 [Page 21]



Internet-Draft AERO June 2015

the vast majority of links in the Internet configure an MTU of at

least 1500 bytes. Original source hosts have therefore become
conditioned to expect that IP packets up to 1500 bytes in length will
either be delivered to the final destination or a suitable PTB

message returned. However, PTB messages may be lost in the network
[RFC2923] resulting in failure of the IP Path MTU Discovery (PMTUD)
mechanisms [RFC1191][RFC1981].

For these reasons, the source AERO interface (i.e., the tunnel
ingress)admit packets into the tunnel subject to their reasonable
expectation that PMTUD will convey the correct information to the
original source in the event that the packet is too large. In
particular, if the original source is within the same well-managed
administrative domain as the tunnel ingress, the ingress drops the
packet and sends a PTB message back to the original source if the
packet is too large to traverse the tunnel in one piece. Similarly,

if the tunnel ingress is within the same well-managed administrative
domain as the to the destination AERO interface (i.e., the tunnel
egress), the ingress can cache MTU values reported in PTB messages
received from a router on the path to the egress.

In all other cases, AERO interfaces admit all packets up to 1500
bytes in length even if some fragmentation is necessary, and admit
larger packets without fragmentation in case they are able to
traverse the tunnel in one piece. AERO interfaces are therefore
considered to have an indefinite MTU, i.e., instead of clamping the
MTU to a finite size.

For AERO links over IPv4, the IP ID field is only 16 bits in length,
meaning that fragmentation at high data rates could result in data
corruption due to reassembly misassociations [RFC6864][RFC4963] (see:
Section 3.13.2). For AERO links over both IPv4 and IPv6, studies

have also shown that IP fragments are dropped unconditionally over
some network paths [I-D.taylor-v6ops-fragdrop]. For these reasons,
when fragmentation is needed it is performed through insertion of an
AERO fragment header (see: Section 3.10) and application of tunnel
fragmentation as described in Section 3.1.7 of [RFC2764]. Since the
AERO fragment header reduces the room available for packet data, but
the original source has no way to control its insertion, the header

length MUST be included in the ENCAPS length even for packets in
which the header does not appear.

The tunnel ingress therefore sends encapsulated packets to the tunnel
egress according to the following algorithm:

o For IP packets that are no larger than (1280-ENCAPS) bytes, the

tunnel ingress encapsulates the packet and admits it into the
tunnel without fragmentation. For IPv4 AERO links, the tunnel

Templin Expires December 19, 2015 [Page 22]



Internet-Draft AERO June 2015

ingress sets the Don’t Fragment (DF) bit to 0 so that these
packets will be delivered to the tunnel egress even if there is a
restricting link in the path, i.e., unless lost due to congestion
or routing errors.

o For IP packets that are larger than (1280-ENCAPS) bytes but no
larger than 1500 bytes, the tunnel ingress encapsulates the packet
and inserts an AERO fragment header. Next, the tunnel ingress
uses the fragmentation algorithm in [RFC2460] to break the packet
into two non-overlapping fragments where the first fragment
(including ENCAPS) is no larger than 1024 bytes and the second is
no larger than the first. Each fragment consists of identical
UDP/IP encapsulation headers, followed by the AERO header followed
by the fragment of the encapsulated packet itself. The tunnel
ingress then admits both fragments into the tunnel, and for IPv4
sets the DF bit to 0 in the IP encapsulation header. These
fragmented encapsulated packets will be delivered to the tunnel
egress. When the tunnel egress receives the fragments, it
reassembles them into a whole packet per the reassembly algorithm
in [RFC2460]. The tunnel egress therefore MUST be capable of
reassembling packets up to 1500+ENCAPS bytes in length; hence, it
is RECOMMENDED that the tunnel egress be capable of reassembling
at least 2KB.

o For IPv4 packets that are larger than 1500 bytes and with the DF
bit set to 0, the tunnel ingress uses ordinary IPv4 fragmentation
to break the unencapsulated packet into a minimum number of non-
overlapping fragments where the first fragment is no larger than
1024-ENCAPS and all other fragments are no larger than the first
fragment. The tunnel ingress then encapsulates each fragment (and
for IPv4 sets the DF bit to 0) then admits them into the tunnel.
These fragments will be delivered to the final destination via the
tunnel egress.

o For all other IP packets, if the packet is too large to enter the
underlying interface following encapsulation, the tunnel ingress
drops the packet and returns a network-layer (L3) PTB message to
the original source with MTU set to the larger of 1500 bytes or
the underlying interface MTU minus ENCAPS. Otherwise, the tunnel
ingress encapsulates the packet and admits it into the tunnel
without fragmentation (and for IPv4 sets the DF bit to 1) and
translates any link-layer (L2) PTB messages it may receive from
the network into corresponding L3 PTB messages to send to the
original source as specified in Section 3.14. Since both L2 and
L3 PTB messages may be either lost or contain insufficient
information, however, it is RECOMMENDED that original sources that
send unfragmentable IP packets larger than 1500 bytes use
Packetization Layer Path MTU Discovery (PLPMTUD) [RFC4821].

Templin Expires December 19, 2015 [Page 23]



Internet-Draft AERO June 2015

While sending packets according to the above algorithm, the tunnel
ingress MAY also send 1500 byte or larger probe packets to determine
whether they can reach the tunnel egress without fragmentation. If
the probes succeed, the tunnel ingress can discontinue fragmentation
and (for IPv4) set DF to 1. Since the path MTU within the tunnel may
fluctuate due to routing changes, the tunnel ingress SHOULD continue
to send additional probes subject to rate limiting and SHOULD process
any L2 PTB messages as an indication that the path MTU may have
decreased. If the path MTU within the tunnel becomes insufficient,

the source MUST resume fragmentation.

To construct a probe, the tunnel ingress prepares an NS message with
a Nonce option plus trailing NULL padding octets added to the probe
length without including the length of the padding in the IPv6

Payload Length field, but with the length included in the

encapsulating IP header. The tunnel ingress then encapsulates the
padded NS message in the encapsulation headers (and for IPv4 sets DF
to 1) then sends the message to the tunnel egress. If the tunnel

egress returns a solicited NA message with a matching Nonce option,
the tunnel ingress deems the probe successful. Note that in this
process it is essential that probes follow equivalent paths to those

used to convey actual data packets. This means that Equal Cost
MultiPath (ECMP) and Link Aggregation Gateway (LAG) equipment in the
path would need to ensure that probes and data packets follow the
same path, which is outside the scope of this specification.

3.13.1. Accommodating Large Control Messages

Control messages (i.e., IPv6 ND, DHCPV6, etc.) MUST be accommodated
even if some fragmentation is necessary. These packets are therefore
accommodated through a modification of the second rule in the above
algorithm as follows:

o For control messages that are larger than (1280-ENCAPS) bytes, the
tunnel ingress encapsulates the packet and inserts an AERO
fragment header. Next, the tunnel ingress uses the fragmentation
algorithm in [RFC2460] to break the packet into a minimum number
of non-overlapping fragments where the first fragment (including
ENCAPS) is no larger than 1024 bytes and the remaining fragments
are no larger than the first. The tunnel ingress then
encapsulates each fragment (and for IPv4 sets the DF bit to 0)
then admits them into the tunnel.

Control messages that exceed the 2KB minimum reassembly size rarely

occur in the modern era, however the tunnel egress SHOULD be able to

reassemble them if they do. This means that the tunnel egress SHOULD
include a configuration knob allowing the operator to set a larger

Templin Expires December 19, 2015 [Page 24]



Internet-Draft AERO June 2015

reassembly buffer size if large control messages become more common
in the future.

The tunnel ingress can send large control messages without
fragmentation if there is assurance that large packets can traverse
the tunnel without fragmentation. The tunnel ingress MAY send 1500
byte or larger probe packets as specified above to determine a size
for which fragmentation can be avoided.

3.13.2. Integrity

When fragmentation is needed, there must be assurance that reassembly
can be safely conducted without incurring data corruption. Sources

of corruption can include implementation errors, memory errors and
misassociations of fragments from a first datagram with fragments of
another datagram. The first two conditions (implementation and

memory errors) are mitigated by modern systems and implementations
that have demonstrated integrity through decades of operational

practice. The third condition (reassembly misassociations) must be
accounted for by AERO.

The AERO fragmentation procedure described in the above algorithms
reuses standard IPv6 fragmentation and reassembly code. Since the
AERO fragment header includes a 32-bit ID field, there would need to
be 2732 packets alive in the network before a second packet with a
duplicate ID enters the system with the (remote) possibility for a
reassembly misassociation. For 1280 byte packets, and for a maximum
network lifetime value of 60 seconds[RFC2460], this means that the
tunnel ingress would need to produce “(7 *10712) bits/sec in order

for a duplication event to be possible. This exceeds the bandwidth

of data link technologies of the modern era, but not necessarily so
going forward into the future. Although wireless data links commonly
used by AERO Clients support vastly lower data rates, the aggregate
data rates between AERO Servers and Relays may be substantial.
However, high speed data links in the network core are expected to
configure larger MTUs, e.g., 4KB, 8KB or even larger such that
unfragmented packets can be used. Hence, no integrity check is
included to cover the AERO fragmentation and reassembly procedures.

When the tunnel ingress sends an IPv4-encapsulated packet with the DF
bit set to 0 in the above algorithms, there is a chance that the

packet may be fragmented by an IPv4 router somewhere within the
tunnel. Since the largest such packet is only 1280 bytes, however,

it is very likely that the packet will traverse the tunnel without

incurring a restricting link. Even when a link within the tunnel

configures an MTU smaller than 1280 bytes, it is very likely that it

does so due to limited performance characteristics [RFC3819]. This
means that the tunnel would not be able to convey fragmented

Templin Expires December 19, 2015 [Page 25]



Internet-Draft AERO June 2015

IPv4-encapsulated packets fast enough to produce reassembly
misassociations, as discussed above. However, AERO must also account
for the possibility of tunnel paths that include "poorly managed"

IPv4 link MTUs due to misconfigurations.

Since the IPv4 header includes only a 16-bit ID field, there would
only need to be 2716 packets alive in the network before a second
packet with a duplicate ID enters the system. For 1280 byte packets,
and for a maximum network lifetime value of 120 seconds[RFC0791],
this means that the tunnel ingress would only need to produce “(5
*10”6) bits/sec in order for a duplication event to be possible - a
value that is well within range for many modern wired and wireless
data link technologies.

Therefore, if there is strong operational assurance that no IPv4

links capable of supporting data rates of 5Mbps or more configure an
MTU smaller than 1280 the tunnel ingress MAY omit an integrity check
for the IPv4 fragmentation and reassembly procedures; otherwise, the
tunnel ingress SHOULD include an integrity check. When an upper
layer encapsulation (e.g., IPsec) already includes an integrity

check, the tunnel ingress need not include an additional check.
Otherwise, the tunnel ingress calculates the UDP checksum over the
encapsulated packet and writes the value into the UDP encapsulation
header, i.e., instead of writing the value 0. The tunnel egress will

then verify the UDP checksum and discard the packet if the checksum
is incorrect.

3.14. AERO Interface Error Handling

When an AERO node admits encapsulated packets into the AERO
interface, it may receive link-layer (L2) or network-layer (L3) error
indications.

An L2 error indication is an ICMP error message generated by a router
on the path to the neighbor or by the neighbor itself. The message
includes an IP header with the address of the node that generated the
error as the source address and with the link-layer address of the
AERO node as the destination address.

The IP header is followed by an ICMP header that includes an error
Type, Code and Checksum. For ICMPv6 [RFC4443], the error Types
include "Destination Unreachable”, "Packet Too Big (PTB)", "Time
Exceeded" and "Parameter Problem". For ICMPv4 [RFC0792], the error
Types include "Destination Unreachable", "Fragmentation Needed" (a
Destination Unreachable Code that is analogous to the ICMPv6 PTB),
"Time Exceeded" and "Parameter Problem".

Templin Expires December 19, 2015 [Page 26]



Internet-Draft AERO June 2015

The ICMP header is followed by the leading portion of the packet that
generated the error, also known as the "packet-in-error". For

ICMPV6, [RFC4443] specifies that the packet-in-error includes: "As
much of invoking packet as possible without the ICMPv6 packet
exceeding the minimum IPv6 MTU" (i.e., no more than 1280 bytes). For
ICMPv4, [RFC0792] specifies that the packet-in-error includes:
"Internet Header + 64 bits of Original Data Datagram"”, however
[RFC1812] Section 4.3.2.3 updates this specification by stating: "the
ICMP datagram SHOULD contain as much of the original datagram as
possible without the length of the ICMP datagram exceeding 576
bytes".

The L2 error message format is shown in Figure 4:

+otot ottt bbbttt
| L2 IP Header of |
| error message |

T N R O O i NN S S

| L2 ICMP Header |

B S e e e
- P

| IP and other encapsulation | a

| headers of original L3 packet| c

- "k

S e s S
- Tt

| IP header of |
| original L3 packet | i
- “on
T N R O O i NN S S
T e
Upper layer headersand | r

|

| leading portion of body | r
| of the original L3 packet | o

~ “or
+ot-tt-totot-tottotot -ttt -

Figure 4: AERO Interface L2 Error Message Format

The AERO node rules for processing these L2 error messages is as
follows:

o When an AERO node receives an L2 Parameter Problem message, it

processes the message the same as described as for ordinary ICMP
errors in the normative references [RFC0792][RFC4443].

Templin Expires December 19, 2015 [Page 27]



Internet-Draft AERO June 2015

o When an AERO node receives persistent L2 IPv4 Time Exceeded
messages, the IP ID field may be wrapping before earlier fragments
have been processed. In that case, the node SHOULD begin
including IPv4 integrity checks (see: Section 3.13.2).

o When an AERO Client receives persistent L2 Destination Unreachable
messages in response to tunneled packets that it sends to one of
its dynamic neighbor correspondents, the Client SHOULD test the
path to the correspondent using Neighbor Unreachability Detection
(NUD) (see Section 3.18). If NUD fails, the Client SHOULD set
ForwardTime for the corresponding dynamic neighbor cache entry to
0 and allow future packets destined to the correspondent to flow
through a Server.

o When an AERO Client receives persistent L2 Destination Unreachable
messages in response to tunneled packets that it sends to one of
its static neighbor Servers, the Client SHOULD test the path to
the Server using NUD. If NUD fails, the Client SHOULD delete the
neighbor cache entry and attempt to associate with a new Server.

o When an AERO Server receives persistent L2 Destination Unreachable
messages in response to tunneled packets that it sends to one of
its static neighbor Clients, the Server SHOULD test the path to
the Client using NUD. If NUD fails, the Server SHOULD cancel the
DHCPv6 PD for the Client's ACP, withdraw its route for the ACP
from the AERO routing system and delete the neighbor cache entry
(see Section 3.18 and Section 3.19).

o When an AERO Relay or Server receives an L2 Destination
Unreachable message in response to a tunneled packet that it sends
to one of its permanent neighbors, it discards the message since
the routing system is likely in a temporary transitional state
that will soon re-converge.

o When an AERO node receives an L2 PTB message, it translates the
message into an L3 PTB message if possible (*) and forwards the
message toward the original source as described below.

To translate an L2 PTB message to an L3 PTB message, the AERO node
first caches the MTU field value of the L2 ICMP header. The node

next discards the L2 IP and ICMP headers, and also discards the
encapsulation headers of the original L3 packet. Next the node
encapsulates the included segment of the original L3 packet in an L3

IP and ICMP header, and sets the ICMP header Type and Code values to
appropriate values for the L3 IP protocol. In the process, the node

writes the maximum of 1500 bytes and (L2 MTU - ENCAPS) into the MTU
field of the L3 ICMP header.

Templin Expires December 19, 2015 [Page 28]



Internet-Draft AERO June 2015

The node next writes the IP source address of the original L3 packet
as the destination address of the L3 PTB message and determines the
next hop to the destination. If the next hop is reached via the AERO
interface, the node uses the IPv6 address "::" or the IPv4 address
"0.0.0.0" as the IP source address of the L3 PTB message. Otherwise,
the node uses one of its non link-local addresses as the source
address of the L3 PTB message. The node finally calculates the ICMP
checksum over the L3 PTB message and writes the Checksum in the
corresponding field of the L3 ICMP header. The L3 PTB message
therefore is formatted as follows:

Fot-tot ottt ottt ottt b+t
| L3 IP Header of |
| error message |

s e e ST NS R
| L3 ICMP Header |
e s S L e
A TP

| IP header of | k

| original L3 packet | t

e s s S S S S
~ n

| Upper layer headers and |

| leading portion of body | e
| of the original L3 packet | r
- Tor

Fot-tot ottt ottt bbbttt -

Figure 5: AERO Interface L3 Error Message Format

After the node has prepared the L3 PTB message, it either forwards
the message via a link outside of the AERO interface without
encapsulation, or encapsulates and forwards the message to the next
hop via the AERO interface.

When an AERO Relay receives an L3 packet for which the destination
address is covered by an ASP, if there is no more-specific routing
information for the destination the Relay drops the packet and

returns an L3 Destination Unreachable message. The Relay first

writes the IP source address of the original L3 packet as the

destination address of the L3 Destination Unreachable message and
determines the next hop to the destination. If the next hop is

reached via the AERO interface, the Relay uses the IPv6 address "::"

or the IPv4 address "0.0.0.0" as the IP source address of the L3
Destination Unreachable message and forwards the message to the next

Templin Expires December 19, 2015 [Page 29]



Internet-Draft AERO June 2015

hop within the AERO interface. Otherwise, the Relay uses one of its
non link-local addresses as the source address of the L3 Destination
Unreachable message and forwards the message via a link outside the
AERO interface.

When an AERO node receives any L3 error message via the AERO
interface, it examines the destination address in the L3 IP header of
the message. If the next hop toward the destination address of the
error message is via the AERO interface, the node re-encapsulates and
forwards the message to the next hop within the AERO interface.
Otherwise, if the source address in the L3 IP header of the message

is the IPv6 address "::" or the IPv4 address "0.0.0.0", the node

writes one of its non link-local addresses as the source address of

the L3 message and recalculates the IP and/or ICMP checksums. The
node finally forwards the message via a link outside of the AERO
interface.

(*) Note that in some instances the packet-in-error field of an L2

PTB message may not include enough information for translation to an
L3 PTB message. In that case, the AERO interface simply discards the
L2 PTB message. It can therefore be said that translation of L2 PTB
messages to L3 PTB messages can provide a useful optimization when
possible, but is not critical for sources that correctly use PLPMTUD.

3.15. AERO Router Discovery, Prefix Delegation and Address
Configuration

3.15.1. AERO DHCPv6 Service Model

Each AERO Server configures a DHCPV6 server function to facilitate PD
requests from Clients. Each Server is provisioned with a database of
ACP-to-Client ID mappings for all Clients enrolled in the AERO

system, as well as any information necessary to authenticate each
Client. The Client database is maintained by a central

administrative authority for the AERO link and securely distributed

to all Servers, e.g., via the Lightweight Directory Access Protocol
(LDAP) [RFC4511] or a similar distributed database service.

Therefore, no Server-to-Server DHCPv6 PD delegation state
synchronization is necessary, and Clients can optionally hold

separate delegations for the same ACP from multiple Servers. In this
way, Clients can associate with multiple Servers, and can receive new
delegations from new Servers before deprecating delegations received
from existing Servers.

AERO Clients and Servers exchange Client link-layer address

information using an option format similar to the Client Link Layer
Address Option (CLLAO) defined in [RFC6939]. Due to practical

Templin Expires December 19, 2015 [Page 30]



Internet-Draft AERO June 2015

limitations of CLLAO, however, AERO interfaces instead use Vendor-
Specific Information Options as described in the following sections.

3.15.2. AERO Client Behavior

AERO Clients discover the link-layer addresses of AERO Servers via
static configuration, or through an automated means such as DNS name
resolution. In the absence of other information, the Client resolves

the FQDN "linkupnetworks.[domainname]" where "linkupnetworks" is a
constant text string and "[domainname]" is the connection-specific

DNS suffix for the Client’s underlying network connection (e.g.,
"example.com"). After discovering the link-layer addresses, the

Client associates with one or more of the corresponding Servers.

To associate with a Server, the Client acts as a requesting router to
request an ACP through a two-message (i.e., Request/Reply) DHCPv6 PD
exchange [RFC3315][RFC3633]. The Client's Request message includes
fe80::ffff.ffff:ffff.ffff as the IPv6 source address,
'All_DHCP_Relay_Agents_and_Servers’ as the IPv6 destination address
and the link-layer address of the Server as the link-layer

destination address. The Request message also includes a Client
Identifier option with a DHCP Unique Identifier (DUID) and an

Identity Association for Prefix Delegation (IA_PD) option. If the

Client is pre-provisioned with an ACP associated with the AERO

service, it MAY also include the ACP in the IA_PD to indicate its
preference to the DHCPV6 server.

The Client also SHOULD include an AERO Link-registration Request
(ALREQ) option to register one or more links with the Server. The
Server will include an AERO Link-registration Reply (ALREP) option in
the corresponding DHCPv6 Reply message as specified in

Section 3.15.3. (The Client MAY omit the ALREQ option, in which case
the Server will still include an ALREP option in its Reply with "Link

ID" set to 0, "DSCP" set to 0, and "Prf" set to 3.)

The format for the ALREQ option is shown in Figure 6:

Templin Expires December 19, 2015 [Page 31]



Internet-Draft AERO June 2015

0 1 2 3
01234567890123456789012345678901
S I e St S
| OPTION_VENDOR_OPTS | option-len (1) |
S S e e s a3
[ enterprise-number = 45282 |

S R e e S L e e e
| opt-code = OPTION_ALREQ (0) | option-len (2) |
S I e St S
| LinkID | DSCP #1 |Prf| DSCP #2 |Prf]|
s o e L L e s o

Figure 6: AERO Link-registration Request (ALREQ) Option

In the above format, the Client sets 'option-code’ to
OPTION_VENDOR_OPTS, sets 'option-len (1)’ to the length of the option
following this field, sets 'enterprise-number’ to 45282 (see: "IANA
Considerations"), sets opt-code to the value 0 ("OPTION_ALREQ") and
sets 'option-len (2)' to the length of the remainder of the option.

The Client includes appropriate 'Link ID, 'DSCP’ and 'Prf’ values for

the underlying interface over which the DHCPv6 PD Request will be
issued the same as specified for an S/TLLAO Section 3.4. The Client
MAY include multiple (DSCP, Prf) values with this Link ID, with the
number of values indicated by option-len (2). The Server will

register each value with the Link ID in the Client’s neighbor cache

entry. The Client finally includes any necessary authentication

options to identify itself to the DHCPv6 server, and sends the
encapsulated DHCPv6 PD Request via the underlying interface
corresponding to Link ID. (Note that this implies that the Client

must perform additional Renew/Reply DHCPv6 exchanges with the server
following the initial Request/Reply using different underlying

interfaces and their corresponding Link IDs if it wishes to register
additional link-layer addresses and their associated DSCPs.)

When the Client receives its ACP via a DHCPv6 Reply from the AERO
Server, it creates a static neighbor cache entry with the Server’s
link-local address as the network-layer address and the Server's
encapsulation address as the link-layer address. The Client then
considers the link-layer address of the Server as the primary default
encapsulation address for forwarding packets for which no more-
specific forwarding information is available. The Client further

caches any ASPs included in the ALREP option as ASPs to apply to the
AERO link.

Next, the Client autoconfigures an AERO address from the delegated
ACP, assigns the AERO address to the AERO interface and sub-delegates
the ACP to its attached EUNs and/or the Client’s own internal virtual
interfaces. The Client also assigns a default IP route to the AERO

Templin Expires December 19, 2015 [Page 32]



Internet-Draft AERO June 2015

interface as a route-to-interface, i.e., with no explicit next-hop.
The Client can then determine the correct next hops for packets
submitted to the AERO interface by inspecting the neighbor cache.

The Client subsequently renews its ACP delegation through each of its
Servers by performing DHCPv6 Renew/Reply exchanges with the link-
layer address of a Server as the link-layer destination address and

the same options that were used in the initial PD request. Note that

if the Client does not issue a DHCPv6 Renew before the delegation
expires (e.g., if the Client has been out of touch with the Server

for a considerable amount of time) it must re-initiate the DHCPv6 PD
procedure.

Since the Client's AERO address is obtained from the unique ACP
delegation it receives, there is no need for Duplicate Address

Detection (DAD) on AERO links. Other nodes maliciously attempting to
hijack an authorized Client's AERO address will be denied access to
the network by the DHCPV6 server due to an unacceptable link-layer
address and/or security parameters (see: Security Considerations).

3.15.2.1. Autoconfiguration for Constrained Platforms

On some platforms (e.g., popular cell phone operating systems), the

act of assigning a default IPv6 route and/or assigning an address to

an interface may not be permitted from a user application due to

security policy. Typically, those platforms include a TUN/TAP

interface that acts as a point-to-point conduit between user

applications and the AERO interface. In that case, the Client can

instead generate a "synthesized RA" message. The message conforms to
[RFC4861] and is prepared as follows:

o the IPv6 source address is the Client's AERO address
o the IPv6 destination address is all-nodes multicast

o the Router Lifetime is set to a time that is no longer than the
ACP DHCPV6 lifetime

o the message does not include a Source Link Layer Address Option
(SLLAO)

o the message includes a Prefix Information Option (P1O) with a /64
prefix taken from the ACP as the prefix for autoconfiguration

The Client then sends the synthesized RA message via the TUN/TAP
interface, where the operating system kernel will interpret it as
though it were generated by an actual router. The operating system
will then instal