
NFVRG R. Szabo
Internet-Draft Z. Qiang
Intended status: Informational Ericsson
Expires: April 21, 2016 M. Kind
 Deutsche Telekom AG
 October 19, 2015

 Towards recursive virtualization and programming for network and cloud
 resources
 draft-unify-nfvrg-recursive-programming-02

Abstract

 The introduction of Network Function Virtualization (NFV) in carrier-
 grade networks promises improved operations in terms of flexibility,
 efficiency, and manageability. NFV is an approach to combine network
 and compute virtualizations together. However, network and compute
 resource domains expose different virtualizations and programmable
 interfaces. In [I-D.unify-nfvrg-challenges] we argued for a joint
 compute and network virtualization by looking into different compute
 abstractions.

 In this document we analyze different approaches to orchestrate a
 service graph with transparent network functions relying on a public
 telecommunication network and ending in a commodity data center. We
 show that a recursive compute and network joint virtualization and
 programming has clear advantages compared to other approaches with
 separated control between compute and network resources. In
 addition, the joint virtualization will have cost and performance
 advantages by removing additional virtualization overhead. The
 discussion of the problems and the proposed solution is generic for
 any data center use case; however, we use NFV as an example.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Szabo, et al. Expires April 21, 2016 [Page 1]

Internet-Draft Toward recursive programming October 2015

 This Internet-Draft will expire on April 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terms and Definitions . 3
 3. Use Cases . 4
 3.1. Black Box DC . 4
 3.1.1. Black Box DC with L3 tunnels 5
 3.1.2. Black Box DC with external steering 6
 3.2. White Box DC . 8
 3.3. Conclusions . 9
 4. Recursive approach . 10
 4.1. Virtualization . 11
 4.1.1. The virtualizer’s data model 13
 5. Relation to ETSI NFV . 20
 6. Examples . 23
 6.1. Infrastructure reports 24
 6.2. Simple requests . 29
 7. IANA Considerations . 31
 8. Security Considerations 31
 9. Acknowledgement . 32
 10. Informative References 32
 Authors’ Addresses . 32

1. Introduction

 To a large degree there is agreement in the research community that
 rigid network control limits the flexibility of service creation. In
 [I-D.unify-nfvrg-challenges]

Szabo, et al. Expires April 21, 2016 [Page 2]

Internet-Draft Toward recursive programming October 2015

 o we analyzed different compute domain abstractions to argue that
 joint compute and network virtualization and programming is needed
 for efficient combination of these resource domains;

 o we described challenges associated with the combined handling of
 compute and network resources for a unified production
 environment.

 Our goal here is to analyze different approaches to instantiate a
 service graph with transparent network functions into a commodity
 Data Center (DC). More specifically, we analyze

 o two black box DC set-ups, where the intra-DC network control is
 limited to some generic compute only control programming
 interface;

 o a white box DC set-up, where the intra-DC network control is
 exposed directly to for a DC external control to coordinate
 forwarding configurations;

 o a recursive approach, which illustrates potential benefits of a
 joint compute and network virtualization and control.

 The discussion of the problems and the proposed solution is generic
 for any data center use case; however, we use NFV as an example.

2. Terms and Definitions

 We use the terms compute and "compute and storage" interchangeably
 throughout the document. Moreover, we use the following definitions,
 as established in [ETSI-NFV-Arch]:

 NFV: Network Function Virtualization - The principle of separating
 network functions from the hardware they run on by using virtual
 hardware abstraction.

 NFVI: NFV Infrastructure - Any combination of virtualized compute,
 storage and network resources.

 VNF: Virtualized Network Function - a software-based network
 function.

 MANO: Management and Orchestration - In the ETSI NFV framework
 [ETSI-NFV-MANO], this is the global entity responsible for
 management and orchestration of NFV lifecycle.

 Further, we make use of the following terms:

Szabo, et al. Expires April 21, 2016 [Page 3]

Internet-Draft Toward recursive programming October 2015

 NF: a network function, either software-based (VNF) or appliance-
 based.

 SW: a (routing/switching) network element with a programmable
 control plane interface.

 DC: a data center is an interconnection of Compute Nodes (see below)
 with a data center controller, which offers programmatic resource
 control interface to its clients.

 CN: a server, which is controlled by a DC control plane and provides
 execution environment for virtual machine (VM) images such as
 VNFs.

3. Use Cases

 Service Function Chaining (SFC) looks into the problem how to deliver
 end-to-end services through the chain of network functions (NFs).
 Many of such NFs are envisioned to be transparent to the client,
 i.e., they intercept the client connection for adding value to the
 services without the knowledge of the client. However, deploying
 network function chains in DCs with Virtualized Network Functions
 (VNFs) are far from trivial [I-D.ietf-sfc-dc-use-cases]. For
 example, different exposures of the internals of the DC will imply
 different dynamisms in operations, different orchestration
 complexities and may yield for different business cases with regards
 to infrastructure sharing.

 We investigate different scenarios with a simple NF forwarding graph
 of three VNFs (o->VNF1->VNF2->VNF3->o), where all VNFs are deployed
 within the same DC. We assume that the DC is a multi-tier leaf and
 spine (CLOS) and that all VNFs of the forwarding graph are bump-in-
 the-wire NFs, i.e., the client cannot explicitly access them.

3.1. Black Box DC

 In Black Bock DC set-ups, we assume that the compute domain is an
 autonomous domain with legacy (e.g., OpenStack) orchestration APIs.
 Due to the lack of direct forwarding control within the DC, no native
 L2 forwarding can be used to insert VNFs running in the DC into the
 forwarding graph. Instead, explicit tunnels (e.g., VxLAN) must be
 used, which need termination support within the deployed VNFs.
 Therefore, VNFs must be aware of the previous and the next hops of
 the forwarding graph to receive and forward packets accordingly.

Szabo, et al. Expires April 21, 2016 [Page 4]

Internet-Draft Toward recursive programming October 2015

3.1.1. Black Box DC with L3 tunnels

 Figure 1 illustrates a set-up where an external VxLAN termination
 point in the SDN domain is used to forward packets to the first NF
 (VNF1) of the chain within the DC. VNF1, in turn, is configured to
 forward packets to the next SF (VNF2) in the chain and so forth with
 VNF2 and VNF3.

 In this set-up VNFs must be capable of handling L3 tunnels (e.g.,
 VxLAN) and must act as forwarders themselves. Additionally, an
 operational L3 underlay must be present so that VNFs can address each
 other.

 Furthermore, VNFs holding chain forwarding information could be
 untrusted user plane functions from 3rd party developers.
 Enforcement of proper forwarding is problematic.

 Additionally, compute only orchestration might result in sub-optimal
 allocation of the VNFs with regards to the forwarding overlay, for
 example, see back-forth use of a core switch in Figure 1.

 In [I-D.unify-nfvrg-challenges] we also pointed out that within a
 single Compute Node (CN) similar VNF placement and overlay
 optimization problem may reappear in the context of network interface
 cards and CPU cores.

Szabo, et al. Expires April 21, 2016 [Page 5]

Internet-Draft Toward recursive programming October 2015

 | A A
 +---+ | S |
 |SW1| | D |
 +---+ | N | P
 / \ V | H
 / \ | Y
 | | A | S
 +---+ +-+-+ | | I
 |SW | |SW | | | C
 ,+--++.._ _+-+-+ | | A
 ,-" _|,,‘.""-..+ | C | L
 ,,,--"" | ‘. |""-.. | L |
 +---+ +--++ ‘+-+-+ ""+---+ | O |
 |SW | |SW | |SW | |SW | | U |
 +---+ ,’+---+ ,’+---+ ,’+---+ | D |
 | | ,-" | | ,-" | | ,-" | | | |
 +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ | |
 |CN| |CN| |CN| |CN| |CN| |CN| |CN| |CN| | |
 +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ V V
 | | |
 +-+ +-+ +-+ A
 |V| |V| |V| | L
 |N| |N| |N| | O
 |F| |F| |F| | G
 |1| |3| |2| | I
 +-+ +-+ +-+ | C
 +---+ --1>-+ | | +--<3---------------<3---+ | | A
 |SW1| +-2>-----------------------------2>---+ | L
 +---+ <4--------------+ V

 <<===>>
 IP tunnels, e.g., VxLAN

 Figure 1: Black Box Data Center with VNF Overlay

3.1.2. Black Box DC with external steering

 Figure 2 illustrates a set-up where an external VxLAN termination
 point in the SDN domain is used to forward packets among all the SFs
 (VNF1-VNF3) of the chain within the DC. VNFs in the DC need to be
 configured to receive and send packets between only the SDN endpoint,
 hence are not aware of the next hop VNF address. Shall any VNFs need
 to be relocated, e.g., due to scale in/out as described in
 [I-D.zu-nfvrg-elasticity-vnf], the forwarding overlay can be
 transparently re-configured at the SDN domain.

Szabo, et al. Expires April 21, 2016 [Page 6]

Internet-Draft Toward recursive programming October 2015

 Note however, that traffic between the DC internal SFs (VNF1, VNF2,
 VNF3) need to exit and re-enter the DC through the external SDN
 switch. This, certainly, is sub-optimal an results in ping-pong
 traffic similar to the local and remote DC case discussed in
 [I-D.zu-nfvrg-elasticity-vnf].

 | A A
 +---+ | S |
 |SW1| | D |
 +---+ | N | P
 / \ V | H
 / \ | Y
 | | ext port A | S
 +---+ +-+-+ | | I
 |SW | |SW | | | C
 ,+--++.._ _+-+-+ | | A
 ,-" _|,,‘.""-..+ | C | L
 ,,,--"" | ‘. |""-.. | L |
 +---+ +--++ ‘+-+-+ ""+---+ | O |
 |SW | |SW | |SW | |SW | | U |
 +---+ ,’+---+ ,’+---+ ,’+---+ | D |
 | | ,-" | | ,-" | | ,-" | | | |
 +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ | |
 |CN| |CN| |CN| |CN| |CN| |CN| |CN| |CN| | |
 +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ V V
 | | |
 +-+ +-+ +-+ A
 |V| |V| |V| | L
 |N| |N| |N| | O
 |F| |F| |F| | G
 |1| |3| |2| | I
 +-+ +-+ +-+ | C
 +---+ --1>-+ | | | | | | A
 |SW1| <2-----+ | | | | | L
 | | --3>---------------------------------------+ | |
 | | <4---+ |
 | | --5>------------+ | |
 +---+ <6----------------+ V

 <<===>>
 IP tunnels, e.g., VxLAN

 Figure 2: Black Box Data Center with ext Overlay

Szabo, et al. Expires April 21, 2016 [Page 7]

Internet-Draft Toward recursive programming October 2015

3.2. White Box DC

 Figure 3 illustrates a set-up where the internal network of the DC is
 exposed in full details through an SDN Controller for steering
 control. We assume that native L2 forwarding can be applied all
 through the DC until the VNFs’ port, hence IP tunneling and tunnel
 termination at the VNFs are not needed. Therefore, VNFs need not be
 forwarding graph aware but transparently receive and forward packets.
 However, the implications are that the network control of the DC must
 be handed over to an external forwarding controller (see that the SDN
 domain and the DC domain overlaps in Figure 3). This most probably
 prohibits clear operational separation or separate ownerships of the
 two domains.

Szabo, et al. Expires April 21, 2016 [Page 8]

Internet-Draft Toward recursive programming October 2015

 | A A
 +---+ | S |
 |SW1| | D |
 +---+ | N | P
 / \ | | H
 / \ | | Y
 | | ext port | A | S
 +---+ +-+-+ | | | I
 |SW | |SW | | | | C
 ,+--++.._ _+-+-+ | | | A
 ,-" _|,,‘.""-..+ | | C | L
 ,,,--"" | ‘. |""-.. | | L |
 +---+ +--++ ‘+-+-+ ""+---+ | | O |
 |SW | |SW | |SW | |SW | | | U |
 +---+ ,’+---+ ,’+---+ ,’+---+ V | D |
 | | ,-" | | ,-" | | ,-" | | | |
 +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ | |
 |CN| |CN| |CN| |CN| |CN| |CN| |CN| |CN| | |
 +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ V V
 | | |
 +-+ +-+ +-+ A
 |V| |V| |V| | L
 |N| |N| |N| | O
 |F| |F| |F| | G
 |1| |3| |2| | I
 +-+ +-+ +-+ | C
 +---+ --1>-+ | | +--<3---------------<3---+ | | A
 |SW1| +-2>-----------------------------2>---+ | L
 +---+ <4--------------+ V

 <<===>>
 L2 overlay

 Figure 3: White Box Data Center with L2 Overlay

3.3. Conclusions

 We have shown that the different solutions imply different operation
 and management actions. From network operations point of view, it is
 not desirable to run and manage similar functions several times (L3
 blackbox DC case) - especially if the networking overlay can be
 easily managed upfront by using a programmatic interface, like with
 the external steering in black and whitebox DC scenarios.

Szabo, et al. Expires April 21, 2016 [Page 9]

Internet-Draft Toward recursive programming October 2015

4. Recursive approach

 We argued in [I-D.unify-nfvrg-challenges] for a joint software and
 network programming interface. Consider that such joint software and
 network abstraction (virtualization) exists around the DC with a
 corresponding resource programmatic interface. A software and
 network programming interface could include VNF requests and the
 definition of the corresponding network overlay. However, such
 programming interface is similar to the top level services
 definition, for example, by the means of a VNF Forwarding Graph.

 Figure 4 illustrates a joint domain virtualization and programming
 setup. In Figure 4 "[x]" denotes ports of the virtualized data plane
 while "x" denotes port created dynamically as part of the VNF
 deployment request. Over the joint software and network
 virtualization VNF placement and the corresponding traffic steering
 could be defined in an atomic, which is orchestrated, split and
 handled to the next levels (see Figure 5) in the hierarchy for
 further orchestration. Such setup allows clear operational
 separation, arbitrary domain virtualization (e.g., topology details
 could be omitted) and constraint based optimization of domain wide
 resources.

 |
 +-----------------------[x]--------------------+ A
 |Domain 0 | | |O
 | +--------[x]----------+ | |V
 | | / \ | | |E
 |Big Switch | -<--- --->-- | | |R
 |with | / BiS-BiS \ | | |A
 |Big Software | | +-->-+ +-->-+ | | | |R
 |(BiS-BiS) | | | | | | | | | |C
 | +--x-x----x-x----x-x--+ | |H
 | | | | | | | | |I
 | +-+ +-+ +-+ | |N
 | |V| |V| |V| | |G V
 | |N| |N| |N| | | N
 | |F| |F| |F| | | F
 | |1| |2| |3| | |
 | +-+ +-+ +-+ | | F
 | | | G
 +--+ V

 Figure 4: Recursive Domain Virtualization and Joint VNF FG
 programming: Overarching View

Szabo, et al. Expires April 21, 2016 [Page 10]

Internet-Draft Toward recursive programming October 2015

 +-------------------------|-----------------------------+ A
 | +----------------------[x]---------------------+ AV | | | | | |
 | | Domain 1 / \ | |N | |
 | | | A | |F | |
 | | Big Switch (BS) | | | | | |O
 | | V | | |F | |V
 | | / \ | |G | |E
 | +-----------------[x]--------[x]---------------+ V1 | |R
 | | | | |A
 | +------------------|----------|----------------+ A | |R
 | |Domain 2 | A | | | |C
 | | V | | | | |H
 | | +---[x]--------[x]----+ | |V | |I
 | |Big Switch | / BiS-BiS \ | | |N | |N
 | |with | / \ | | |F | |G
 | |Big Software | | +-->-+ +-->-+ | | | | | |
 | |(BiS-BiS) | | | | | | | | | |F | |V
 | | +--x-x----x-x----x-x--+ | |G | |N
 | | | | | | | | | |2 | |F
 | | +-+ +-+ +-+ | | | |
 | | |V| |V| |V| | | | |F
 | | |N| |N| |N| | | | |G
 | | |F| |F| |F| | | | |
 | | |1| |2| |3| | | | |
 | | +-+ +-+ +-+ | | | |
 | +--+ V | |
 +---+ V

 Figure 5: Recursive Domain Virtualization and Joint VNF FG
 programming: Domain Views

4.1. Virtualization

 Let us first define the joint software and network abstraction
 (virtualization) as a Big Switch with Big Software (BiS-BiS). A BiS-
 BiS is a node abstraction, which incorporates both software and
 networking resources with an associated joint software and network
 control API (see Figure 6).

Szabo, et al. Expires April 21, 2016 [Page 11]

Internet-Draft Toward recursive programming October 2015

 API o __
 | \
 Software Ctrler \
 API O-------------+ \ \
 | \ \
 Compute Ctrler \ |
 | \ |
 | +---------------------+ |
 | | | | Joint Software &
 | | {vCPU | | Network Ctrl API
 | | memory | | o
 | | storage} | | |
 | | | | +---------------------+
 | | | | | {{vCPU |
 | |Compute Node | \ [1 memory 3]
 | | | ==> | storage} |
 | +----------x----------+ / [2 {port rate 4]
 \ | | | switching delay}} |
 +----------x----------+ | +---------------------+
 | | | Big Switch &
 [1 {port rate 3] | Big Software (BiS-BiS)
 | switching delay} | | with joint
 [2 4] / Software & Network Ctrler
 | Network Element | /
 +---------------------+ /
 __/

 Figure 6: Big Switch with Big Software definition

 The configuration over a BiS-BiS allows the atomic definition of NF
 placements and the corresponding forwarding overlay as a Network
 Function - Forwarding Graph (NF-FG). The embedment of NFs into a
 BiS-BiS allows the inclusion of NF ports into the forwarding overlay
 definition (see ports a, b, ...,f in Figure 7). Ports 1,2, ..., 4
 are seen as infrastructure ports while NF ports are created and
 destroyed with NF placements.

Szabo, et al. Expires April 21, 2016 [Page 12]

Internet-Draft Toward recursive programming October 2015

 Step 1: Placement of NFs
 Step 2: Interconnect NFs __ Step 1: Placement of NFs
 \ with the forwarding
 Compute Node \ overlay definition
 +---------------------+ \
 | +-+ +-+ +-+ | \ +-+ +-+ +-+
 | |V| |V| |V| | | |V| |V| |V|
 | |N| |N| |N| | | |N| |N| |N|
 | |F| |F| |F| | | |F| |F| |F|
 | |1| |2| |3| | | |1| |2| |3|
 | +-+ +-+ +-+ | | +-+ +-+ +-+
 | | +---.| |.---+ | | \ | | | | | |
 | +------\ /------+ | ==> +--a-b----c-d----e-f--+
 +----------x----------+ / | | | | | | | |
 | | [1->+ +-->-+ +-->-+ | 3]
 +----------x----------+ | | | |
 | / \ | | [2 +->4]
 [1->----->- -->---+ 3] | | |
 | | | | +---------------------+
 [2 +->4] / Big Switch with
 | Network Element | / Big Software (BiS-BiS)
 +---------------------+ /
 __/

 Figure 7: Big Switch with Big Software definition with a Network
 Function - Forwarding Graph (NF-FG)

4.1.1. The virtualizer’s data model

4.1.1.1. Tree view

 module: virtualizer
 +--rw virtualizer
 +--rw id? string
 +--rw name? string
 +--rw nodes
 | +--rw node* [id]
 | +--rw id string
 | +--rw name? string
 | +--rw type string
 | +--rw ports
 | | +--rw port* [id]
 | | +--rw id string
 | | +--rw name? string
 | | +--rw port_type string
 | | +--rw port_data? string
 | +--rw links
 | | +--rw link* [src dst]

Szabo, et al. Expires April 21, 2016 [Page 13]

Internet-Draft Toward recursive programming October 2015

 | | +--rw id? string
 | | +--rw name? string
 | | +--rw src port-ref
 | | +--rw dst port-ref
 | | +--rw resources
 | | +--rw delay? string
 | | +--rw bandwidth? string
 | +--rw resources
 | | +--rw cpu string
 | | +--rw mem string
 | | +--rw storage string
 | +--rw NF_instances
 | | +--rw node* [id]
 | | +--rw id string
 | | +--rw name? string
 | | +--rw type string
 | | +--rw ports
 | | | +--rw port* [id]
 | | | +--rw id string
 | | | +--rw name? string
 | | | +--rw port_type string
 | | | +--rw port_data? string
 | | +--rw links
 | | | +--rw link* [src dst]
 | | | +--rw id? string
 | | | +--rw name? string
 | | | +--rw src port-ref
 | | | +--rw dst port-ref
 | | | +--rw resources
 | | | +--rw delay? string
 | | | +--rw bandwidth? string
 | | +--rw resources
 | | +--rw cpu string
 | | +--rw mem string
 | | +--rw storage string
 | +--rw capabilities
 | | +--rw supported_NFs
 | | +--rw node* [id]
 | | +--rw id string
 | | +--rw name? string
 | | +--rw type string
 | | +--rw ports
 | | | +--rw port* [id]
 | | | +--rw id string
 | | | +--rw name? string
 | | | +--rw port_type string
 | | | +--rw port_data? string
 | | +--rw links

Szabo, et al. Expires April 21, 2016 [Page 14]

Internet-Draft Toward recursive programming October 2015

 | | | +--rw link* [src dst]
 | | | +--rw id? string
 | | | +--rw name? string
 | | | +--rw src port-ref
 | | | +--rw dst port-ref
 | | | +--rw resources
 | | | +--rw delay? string
 | | | +--rw bandwidth? string
 | | +--rw resources
 | | +--rw cpu string
 | | +--rw mem string
 | | +--rw storage string
 | +--rw flowtable
 | +--rw flowentry* [port match action]
 | +--rw port port-ref
 | +--rw match string
 | +--rw action string
 | +--rw resources
 | +--rw delay? string
 | +--rw bandwidth? string
 +--rw links
 +--rw link* [src dst]
 +--rw id? string
 +--rw name? string
 +--rw src port-ref
 +--rw dst port-ref
 +--rw resources
 +--rw delay? string
 +--rw bandwidth? string

 Figure 8: Virtualizer’s YANG data model: tree view

4.1.1.2. YANG Module

 <CODE BEGINS> file "virtualizer.yang"

 module virtualizer {
 namespace "http://fp7-unify.eu/framework/virtualizer";
 prefix virt;
 organization "EU-FP7-UNIFY";
 contact "Robert Szabo <robert.szabo@ericsson.com>";
 description "data model for joint software and network
 virtualization and resource control";

 revision 2015-06-27 {
 reference "Initial version";
 }

Szabo, et al. Expires April 21, 2016 [Page 15]

Internet-Draft Toward recursive programming October 2015

 // REUSABLE GROUPS
 grouping id-name {
 description "used for key (id) and naming";
 leaf id {
 type string;
 description "For unique key id";}
 leaf name {
 type string;
 description "Descriptive name";}
 }

 grouping node-type {
 description "For node type defintion";
 leaf type{
 type string;
 mandatory true;
 description "to identify nodes (infrastructure or NFs)";
 }
 }

 // PORTS
 typedef port-ref {
 type string;
 description "path to a port; can refer to ports at multiple
 levels in the hierarchy";
 }

 grouping port {
 description "Port definition: used for infrastructure and NF
 ports";
 uses id-name;
 leaf port_type {
 type string;
 mandatory true;
 description "Port type identification: abstract is for
 technology independent ports and SAPs for technology specific
 ports";}
 leaf port_data{
 type string;
 description "Opaque data for port specific types";
 }
 }

 grouping ports {
 description "Collection of ports";
 container ports {
 description "see above";
 list port{

Szabo, et al. Expires April 21, 2016 [Page 16]

Internet-Draft Toward recursive programming October 2015

 key "id";
 uses port;
 description "see above";
 }
 }
 }
 // FORWARDING BEHAVIOR
 grouping flowentry {
 leaf port {
 type port-ref;
 mandatory true;
 description "path to the port";
 }
 leaf match {
 type string;
 mandatory true;
 description "matching rule";
 }
 leaf action {
 type string;
 mandatory true;
 description "forwarding action";
 }
 container resources{
 uses link-resource;
 description "network resources assigned to forwarding entry";
 }
 description "SDN forwarding entry";
 }

 grouping flowtable {
 container flowtable {
 description "Collection of flowentries";
 list flowentry {
 key "port match action";
 description "Index list of flowentries";
 uses flowentry;
 }
 }
 description "See container description";
 }

 // LINKS
 grouping link-resource {
 description "Core networking characteristics / resources
 (bandwidth, delay)";
 leaf delay {
 type string;

Szabo, et al. Expires April 21, 2016 [Page 17]

Internet-Draft Toward recursive programming October 2015

 description "Delay value with unit; e.g. 5ms";
 }
 leaf bandwidth {
 type string;
 description "Bandwithd value with unit; e.g. 10Mbps";
 }
 }

 grouping link {
 description "Link between src and dst ports with attributes";
 uses id-name;
 leaf src {
 type port-ref;
 description "relative path to the source port";
 }
 leaf dst {
 type port-ref;
 description "relative path to the destination port";
 }
 container resources{
 uses link-resource;
 description "Link resources (attributes)";
 }
 }

 grouping links {
 description "Collection of links in a virtualizer or a node";
 container links {
 description "See above";
 list link {
 key "src dst";
 description "Indexed list of links";
 uses link;
 }
 }
 }

 // CAPABILITIES
 grouping capabilities {
 description "For capability reporting: currently supported NF
 types";
 container supported_NFs { // supported NFs are enumerated
 description "Collecction of nodes as supported NFs";
 list node{
 key "id";
 description "see above";
 uses node;
 }

Szabo, et al. Expires April 21, 2016 [Page 18]

Internet-Draft Toward recursive programming October 2015

 }
 // TODO: add other capabilities
 }

 // NODE

 grouping software-resource {
 description "Core software resources";
 leaf cpu {
 type string;
 mandatory true;
 description "In virtual CPU (vCPU) units";
 }
 leaf mem {
 type string;
 mandatory true;
 description "Memory with units, e.g., 1Gbyte";
 }
 leaf storage {
 type string;
 mandatory true;
 description "Storage with units, e.g., 10Gbyte";
 }
 }

 grouping node {
 description "Any node: infrastructure or NFs";
 uses id-name;
 uses node-type;
 uses ports;
 uses links;
 container resources{
 description "Software resources offer/request of the node";
 uses software-resource;
 }
 }

 grouping infra-node {
 description "Infrastructure nodes wich can contain other nodes
 as NFs";
 uses node;
 container NF_instances {
 description "Hosted NFs";
 list node{
 key "id";
 uses node;
 description "see above";
 }

Szabo, et al. Expires April 21, 2016 [Page 19]

Internet-Draft Toward recursive programming October 2015

 }
 container capabilities {
 description "Supported NFs as capability reports";
 uses capabilities;
 }
 uses flowtable;
 }

 //======== Virtualizer ====================

 container virtualizer {
 description "Definition of a virtualizer instance";
 uses id-name;

 container nodes{
 description "infra nodes, which embeds NFs and report
 capabilities";
 list node{
 key "id";
 uses infra-node;
 description "see above";
 }
 }
 uses links;
 }
 }
 <CODE ENDS>

 Figure 9: Virtualizer’s YANG data model

5. Relation to ETSI NFV

 According to the ETSI MANO framework [ETSI-NFV-MANO], an NFVO is
 split into two functions:

 o the orchestration of NFVI resources across multiple VIMs,
 fulfilling the Resource Orchestration functions;

 o The NFVO uses the Resource Orchestration functionality to provide
 services that support accessing NFVI resources in an abstracted
 manner independently of any VIMs, as well as governance of VNF
 instances sharing resources of the NFVI infrastructure

 Similarly, a VIM is split into two functions:

 o Orchestrating the allocation/upgrade/release/reclamation of NFVI
 resources (including the optimization of such resources usage),
 and

Szabo, et al. Expires April 21, 2016 [Page 20]

Internet-Draft Toward recursive programming October 2015

 o managing the association of the virtualised resources to the
 physical compute, storage, networking resources.

 The functional split is shown in Figure 13.

 +-------------------+
 |NVFO |
 | +--------------+ |
 | |NFVO: | |
 | |Service | |
 | |Lifecycle | |
 | |Management | |
 | +------+-------+ |
 | | |
 | +------+-------+ |
 | |NFVO: | |
 | |Resrouce | |
 | |Orchestration | |
 | +--+---+----+--+ |
 +-----|---|----|----+
 / | \
 /---------/ | \------------\
 / | \
 +-------------|-----+ +--------|----------+ +------|------------+
 |VIM | | |VIM | | |VIM | | | | |
 | +----------+---+ | | +-----+--------+ | | +---+----------+ |
 | |VIM: | | | |VIM: | | | |VIM: | |
 | |Orchestration | | | |Orchestration | | | |Orchestration | |
 | |& | | | |& | | | |& | |
 | |Optimization | | | |Optimization | | | |Optimization | |
 | +------+-------+ | | +------+-------+ | | +------+-------+ |
 | | | | | | | | |
 | +------+-------+ | | +------+-------+ | | +------+-------+ |
 | |VIM: | | | |VIM: | | | |VIM: | |
 | |Virtualized 2 | | | |Virtualized 2 | | | |Virtualized 2 | |
 | |Pys mapping | | | |Pys mapping | | | |Pys mapping | |
 | +--------------+ | | +--------------+ | | +--------------+ |
 +-------------------+ +-------------------+ +-------------------+

 Figure 10: Functional decomposition of the NFVO and the VIM according
 to the ETSI MANO

 If the Joint Software and Network Control API (Joint API) could be
 used between all the functional components working on the same
 abstraction, i.e., from the north of the VIM Virtualized to physical
 mapping component to the south of the NFVO: Service Lifecycle

Szabo, et al. Expires April 21, 2016 [Page 21]

Internet-Draft Toward recursive programming October 2015

 Management as shown in Figure 11, then a more flexible virtualization
 programming architecture could be created as shown in Figure 12.

 +-------------------+
 |NVFO |
 | +--------------+ |
 | |NFVO: | |
 | |Service | |
 | |Lifecycle | |
 | |Management | |
 | +------+-------+ |
 | | | <-- Joint API
 | +------+-------+ |
 | |NFVO: | |
 | |Resrouce | |
 | |Orchestration | |
 | +--+---+-------+ |
 +-----|---|---------+
 / |
 /---------/ | <-- Joint API
 / |
 +-------------|-----+ +--------|----------+
 |VIM | | |VIM | | | |
 | +----------+---+ | | +-----+--------+ |
 | |VIM: | | | |VIM: | |
 | |Orchestration | | | |Orchestration | |
 | |& | | | |& | |
 | |Optimization | | | |Optimization | |
 | +------+-------+ | | +------+-------+ |
 | | | | | | <-- Joint API
 | +------+-------+ | | +------+-------+ | | | | |
 | |VIM: | | | |VIM: | |
 | |Virtualized 2 | | | |Virtualized 2 | |
 | |Pys mapping | | | |Pys mapping | |
 | +--------------+ | | +--------------+ |
 +-------------------+ +-------------------+

 Figure 11: Functional decomposition of the NFVO and the VIM with the
 Joint Software and Network control API

Szabo, et al. Expires April 21, 2016 [Page 22]

Internet-Draft Toward recursive programming October 2015

 +--------------+
 | |
 |Orchestration |
 Domain 4 | |
 +--+-----------+
 **********************|******************
 * +--------------+ |
 * |NFVO: | |
 * |Service | |
 * |Lifecycle | |
 * |Management | |
 * +-------+------+ /
 * | / <-- Joint API
 * +-+---------+--+
 * | |
 * |Orchestration |
 ******************** * | |
 +--------------+ * * +--+---+-------+ Domain 3
 |NFVO: | * ********|***|*************************
 |Service | * / |
 |Lifecycle | /---------/ |
 |Management | / * |
 +---------+----+ | * |
 | | * | <-- Joint API
 +--+-------+---+* |
 | |* |
 |Orchestration |* |
 | |* |
 | |* |
 +------+-------+* |
 | * *********|********** <-- Joint API
 +------+-------+* * +------+-------+ *
 |VIM: |* * |VIM: | *
 |Virtualized 2 |* * |Virtualized 2 | *
 |Pys mapping |* * |Pys mapping | *
 +--------------+* * +--------------+ *
 Domain 1 * * Domain 2 *
 ************************* * *

 Figure 12: Joint Software and Network Control API: Recurring Flexible
 Architecture

6. Examples

Szabo, et al. Expires April 21, 2016 [Page 23]

Internet-Draft Toward recursive programming October 2015

6.1. Infrastructure reports

 Figure 13 and Figure 14 show a single node infrastructure report.
 The example shows a BiS-BiS with two ports, out of which Port 0 is
 also a Service Access Point 0 (SAP0).

 20 CPU
 +-----------+ 64GB MEM
 SAP1--[0 BiS-BiS | 1TB STO
 | (UUID13) |
 +[2 1]+
 | +-----------+ |
 | |
 | |
 +-----------+ | | +-----------+
 SAP0--[0 BiS-BiS 1]+ +[0 BiS-BiS 1]--SAP1
 | (UUID11) | | (UUID12) |
 | 2]-----------------[2 |
 +-----------+ +-----------+
 20 CPU 10 CPU
 64GB MEM 32GB MEM
 100TB STO 100TB STO

 Figure 13: Single node infrastructure report example: Virtualization
 view

Szabo, et al. Expires April 21, 2016 [Page 24]

Internet-Draft Toward recursive programming October 2015

 <virtualizer xmlns="http://fp7-unify.eu/framework/virtualizer">
 <id>UUID001</id>
 <name>Single node simple infrastructure report</name>
 <nodes>
 <node>
 <id>UUID11</id>
 <name>single Bis-Bis node</name>
 <type>BisBis</type>
 <ports>
 <port>
 <id>0</id>
 <name>SAP0 port</name>
 <port_type>port-sap</port_type>
 <vxlan>...</vxlan>
 </port>
 <port>
 <id>1</id>
 <name>North port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 <port>
 <id>2</id>
 <name>East port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 </ports>
 <resources>
 <cpu>20</cpu>
 <mem>64 GB</mem>
 <storage>100 TB</storage>
 </resources>
 </node>
 </nodes>
 </virtualizer>

 Figure 14: Single node infrastructure report example: xml view

 Figure 15 and Figure 16 show a 3-node infrastructure report with 3
 BiS-BiS nodes. Infrastructure links are inserted into the
 virtualization view between the ports of the BiS-BiS nodes.

Szabo, et al. Expires April 21, 2016 [Page 25]

Internet-Draft Toward recursive programming October 2015

 20 CPU
 +-----------+ 64GB MEM
 SAP1--[0 BiS-BiS | 1TB STO
 | (UUID13) |
 +[2 1]+
 | +-----------+ |
 | |
 | |
 +-----------+ | | +-----------+
 SAP0--[0 BiS-BiS 1]+ +[0 BiS-BiS 1]--SAP1
 | (UUID11) | | (UUID12) |
 | 2]-----------------[2 |
 +-----------+ +-----------+
 20 CPU 10 CPU
 64GB MEM 32GB MEM
 100TB STO 100TB STO

 Figure 15: 3-node infrastructure report example: Virtualization view

 <virtualizer xmlns="http://fp7-unify.eu/framework/virtualizer">
 <id>UUID002</id>
 <name>3-node simple infrastructure report</name>
 <nodes>
 <node>
 <id>UUID11</id>
 <name>West Bis-Bis node</name>
 <type>BisBis</type>
 <ports>
 <port>
 <id>0</id>
 <name>SAP0 port</name>
 <port_type>port-sap</port_type>
 <vxlan>...</vxlan>
 </port>
 <port>
 <id>1</id>
 <name>North port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 <port>
 <id>2</id>
 <name>East port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 </ports>
 <resources>

Szabo, et al. Expires April 21, 2016 [Page 26]

Internet-Draft Toward recursive programming October 2015

 <cpu>20</cpu>
 <mem>64 GB</mem>
 <storage>100 TB</storage>
 </resources>
 </node>
 <node>
 <id>UUID12</id>
 <name>East Bis-Bis node</name>
 <type>BisBis</type>
 <ports>
 <port>
 <id>1</id>
 <name>SAP1 port</name>
 <port_type>port-sap</port_type>
 <vxlan>...</vxlan>
 </port>
 <port>
 <id>0</id>
 <name>North port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 <port>
 <id>2</id>
 <name>West port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 </ports>
 <resources>
 <cpu>10</cpu>
 <mem>32 GB</mem>
 <storage>100 TB</storage>
 </resources>
 </node>
 <node>
 <id>UUID13</id>
 <name>North Bis-Bis node</name>
 <type>BisBis</type>
 <ports>
 <port>
 <id>0</id>
 <name>SAP2 port</name>
 <port_type>port-sap</port_type>
 <vxlan>...</vxlan>
 </port>
 <port>
 <id>1</id>

Szabo, et al. Expires April 21, 2016 [Page 27]

Internet-Draft Toward recursive programming October 2015

 <name>East port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 <port>
 <id>2</id>
 <name>West port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 </ports>
 <resources>
 <cpu>20</cpu>
 <mem>64 GB</mem>
 <storage>1 TB</storage>
 </resources>
 </node>
 </nodes>
 <links>
 <link>
 <id>0</id>
 <name>Horizontal link</name>
 <src>../../nodes/node[id=UUID11]/ports/port[id=2]</src>
 <dst>../../nodes/node[id=UUID12]/ports/port[id=2]</dst>
 <resources>
 <delay>2 ms</delay>
 <bandwidth>10 Gb</bandwidth>
 </resources>
 </link>
 <link>
 <id>1</id>
 <name>West link</name>
 <src>../../nodes/node[id=UUID11]/ports/port[id=1]</src>
 <dst>../../nodes/node[id=UUID13]/ports/port[id=2]</dst>
 <resources>
 <delay>5 ms</delay>
 <bandwidth>10 Gb</bandwidth>
 </resources>
 </link>
 <link>
 <id>2</id>
 <name>East link</name>
 <src>../../nodes/node[id=UUID12]/ports/port[id=0]</src>
 <dst>../../nodes/node[id=UUID13]/ports/port[id=1]</dst>
 <resources>
 <delay>2 ms</delay>
 <bandwidth>5 Gb</bandwidth>
 </resources>

Szabo, et al. Expires April 21, 2016 [Page 28]

Internet-Draft Toward recursive programming October 2015

 </link>
 </links>
 </virtualizer>

 Figure 16: 3-node infrastructure report example: xml view

6.2. Simple requests

 Figure 17 and Figure 18 show the allocation request for 3 NFs (NF1:
 Parental control B.4, NF2: Http Cache 1.2 and NF3: Stateful firewall
 C) as instrumented over a BiS-BiS node. It can be seen that the
 configuration request contains both the NF placement and the
 forwarding overlay definition as a joint request.

 +---+ +---+ +---+
 |NF1| |NF2| |NF3|
 +---+ +---+ +---+
 | | | | | |
 +-2-3----4-5----6-7--+
 --[0-/ ____/ \----|- \ |
 | |___________| \-+1]--
 | |
 | BiS-BiS (UUID11) |
 +--------------------+

 Figure 17: Simple request of 3 NFs on a single BiS-BiS:
 Virtualization view

 <virtualizer xmlns="http://fp7-unify.eu/framework/virtualizer">
 <id>UUID001</id>
 <name>Single node simple request</name>
 <nodes>
 <node>
 <id>UUID11</id>
 <NF_instances>
 <node>
 <id>NF1</id>
 <name>first NF</name>
 <type>Parental control B.4</type>
 <ports>
 <port>
 <id>2</id>
 <name>in</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 <port>
 <id>3</id>

Szabo, et al. Expires April 21, 2016 [Page 29]

Internet-Draft Toward recursive programming October 2015

 <name>out</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 </ports>
 </node>
 <node>
 <id>NF2</id>
 <name>cache</name>
 <type>Http Cache 1.2</type>
 <ports>
 <port>
 <id>4</id>
 <name>in</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 <port>
 <id>5</id>
 <name>out</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 </ports>
 </node>
 <node>
 <id>NF3</id>
 <name>firewall</name>
 <type>Stateful firewall C</type>
 <ports>
 <port>
 <id>6</id>
 <name>in</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 <port>
 <id>7</id>
 <name>out</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 </ports>
 </node>
 </NF_instances>
 <flowtable>
 <flowentry>
 <port>../../ports/port[id=0]</port>

Szabo, et al. Expires April 21, 2016 [Page 30]

Internet-Draft Toward recursive programming October 2015

 <match>*</match>
 <action>output:../../NF_instances/node[id=NF1]
 /ports/port[id=2]</action>
 </flowentry>
 <flowentry>
 <port>../../NF_instances/node[id=NF1]
 /ports/port[id=3]</port>
 <match>fr-a</match>
 <action>output:../../NF_instances/node[id=NF2]
 /ports/port[id=4]</action>
 rpcre </flowentry>
 <flowentry>
 <port>../../NF_instances/node[id=NF1]
 /ports/port[id=3]</port>
 <match>fr-b</match>
 <action>output:../../NF_instances/node[id=NF3]
 /ports/port[id=6]</action>
 </flowentry>
 <flowentry>
 <port>../../NF_instances/node[id=NF2]
 /ports/port[id=5]</port>
 <match>*</match>
 <action>output:../../ports/port[id=1]</action>
 </flowentry>
 <flowentry>
 <port>../../NF_instances/node[id=NF3]
 /ports/port[id=7]</port>
 <match>*</match>
 <action>output:../../ports/port[id=1]</action>
 </flowentry>
 </flowtable>
 </node>
 </nodes>
 </virtualizer>

 Figure 18: Simple request of 3 NFs on a single BiS-BiS: xml view

7. IANA Considerations

 This memo includes no request to IANA.

8. Security Considerations

 TBD

Szabo, et al. Expires April 21, 2016 [Page 31]

Internet-Draft Toward recursive programming October 2015

9. Acknowledgement

 The research leading to these results has received funding from the
 European Union Seventh Framework Programme (FP7/2007-2013) under
 grant agreement no. 619609 - the UNIFY project. The views expressed
 here are those of the authors only. The European Commission is not
 liable for any use that may be made of the information in this
 document.

 We would like to thank in particular David Jocha and Janos Elek from
 Ericsson for the useful discussions.

10. Informative References

 [ETSI-NFV-Arch]
 ETSI, "Architectural Framework v1.1.1", Oct 2013,
 <http://www.etsi.org/deliver/etsi_gs/
 NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf>.

 [ETSI-NFV-MANO]
 ETSI, "Network Function Virtualization (NFV) Management
 and Orchestration V0.6.1 (draft)", Jul. 2014,
 <http://docbox.etsi.org/ISG/NFV/Open/Latest_Drafts/
 NFV-MAN001v061-%20management%20and%20orchestration.pdf>.

 [I-D.ietf-sfc-dc-use-cases]
 Surendra, S., Tufail, M., Majee, S., Captari, C., and S.
 Homma, "Service Function Chaining Use Cases In Data
 Centers", draft-ietf-sfc-dc-use-cases-03 (work in
 progress), July 2015.

 [I-D.unify-nfvrg-challenges]
 Szabo, R., Csaszar, A., Pentikousis, K., Kind, M., Daino,
 D., Qiang, Z., and H. Woesner, "Unifying Carrier and Cloud
 Networks: Problem Statement and Challenges", draft-unify-
 nfvrg-challenges-02 (work in progress), July 2015.

 [I-D.zu-nfvrg-elasticity-vnf]
 Qiang, Z. and R. Szabo, "Elasticity VNF", draft-zu-nfvrg-
 elasticity-vnf-01 (work in progress), March 2015.

Authors’ Addresses

Szabo, et al. Expires April 21, 2016 [Page 32]

Internet-Draft Toward recursive programming October 2015

 Robert Szabo
 Ericsson Research, Hungary
 Irinyi Jozsef u. 4-20
 Budapest 1117
 Hungary

 Email: robert.szabo@ericsson.com
 URI: http://www.ericsson.com/

 Zu Qiang
 Ericsson
 8400, boul. Decarie
 Ville Mont-Royal, QC 8400
 Canada

 Email: zu.qiang@ericsson.com
 URI: http://www.ericsson.com/

 Mario Kind
 Deutsche Telekom AG
 Winterfeldtstr. 21
 10781 Berlin
 Germany

 Email: mario.kind@telekom.de

Szabo, et al. Expires April 21, 2016 [Page 33]

