
A Reference Model for Autonomic Networking

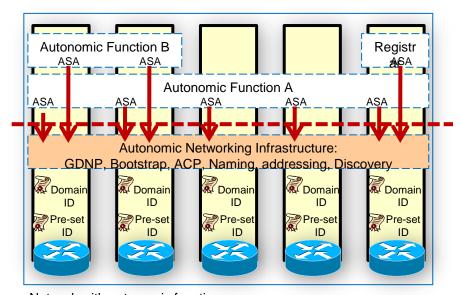
draft-behringer-anima-reference-model-03.txt

93rd IETF, 20 July 2015
Michael Behringer
Brian Carpenter
Toerless Eckert

Reference Model – High Level View

Network with autonomic functions

draft-behringer-anima-reference-model-03.txt


 Introduction	 Moved MASA to "trust infrastructure", and registrar to "ASA" section. Introduced constrained node
3.3. Constrained AN Nodes (*)	 Naming: New section, needs discussion and review
4.1.1. Naming requirements	 Addressing: Merged the addressing draft here, with some changes. Needs more discussion and review.
4.2.3. Possible Sub-Schemes	 Discovery, signalling and intent distribution have new text, needs review.
4.6. Routing	Points to ACP draft. Should probably have more explanation here.
5.2. Domain Certificate	 Ordered several "loose" bits into this section.

draft-behringer-anima-reference-model-03.txt

6. Autonomic Service Agents (ASA)
6.1. General Description of an ASA • Clearly separate ASA from
6.2. Specific ASAs for the Enrolment Process . infrastructure now.
6.2.1. The Enrolment ASA • New section on ASAs
6.2.2. The Enrolment Proxy ASA • The registrar is now covered
6.2.3. The Registrar ASA here, since it is an ASA
7. Management and Programmability
7.1. How an AN Network Is Managed • New section, collecting some
7.2. Intent (*) previously loose bits, and
7.3. Aggregated Reporting (*) some new content Needs
/.4. Feedback Loops to NOC(*) rovious how much detail do
7.5. Control Loops (*)
7, 1 , 1 , 1 , 1 , 1 , 1 , 1
7.5.2. Types of Control Loops (*)
7.5.3. Management of an Autonomic Control Loop (*) 21 7.5.4. Elements of an Autonomic Control Loop (*) 22
7.5.4. Elements of an Autonomic Control Loop (*) 22 7.6. APIs (*)
7.6.1. Dynamic APIs (*)
7.6.2. APIs and Semantics(*) • New section about interactions
7.6.3. API Considerations (*) of autonomic functions. More
7.7. Data Model (*) long term, but highly relevant.
8. Coordination Between Autonomic Functions (*)
8.1. The Coordination Problem (*)
8.2. A Coordination Functional Block (*) • Needs more work.
9. Security Considerations
9.1. Threat Analysis

Document Structure

- Structure of the document becoming stable
- No major issues with the structure itself

Network with autonomic functions

Naming

Why names?

- As an identity
- As a subject name in the autonomic certificate

Structured names:

- Ex: Location-DeviceType-FunctionalRole-DistinguisherNumber@NameofDomain
- Use self-knowledge for part of the name (e.g., device type)
- Use other mechanisms (intent) for other parts (e.g., domain)

Open questions:

- Should we support assigned names, automatically created names, or both?
- If automatic, how do we assign the names?

Addressing – Where to Cover?

- Used to be a separate draft (<u>draft-behringer-autonomic-addressing</u>)
- But, this draft is not a standalone chartered item
- Request from WG chair was to integrate with an existing document
- Currently put the entire addressing doc into the reference draft.
 - Is this the right place? (for addressing schemes?)
- Possible way forward:
 - Leave requirements and concepts in reference draft
 - Put the addressing schemes into … ? ACP draft?

Addressing - Scope

- In scope: Addressing used by the Autonomic Networking Infrastructure (and indirectly by Autonomic Service Agents) inside an autonomic domain.
- Not in scope: Addressing of the data plane, i.e. anything that is used for services to customers.
- An autonomic function could negotiate address space for the data plane, for example draft-jiangauto-addr-management.
 - The function uses autonomic address space
 - But it assigns and manages data plane address space
 - Is that sufficiently clear?

Addressing – Various points

- An Autonomic Node gets an address.
 - ASAs do NOT get addresses.
 - Autonomic nodes multiplex ASAs.
- Non-autonomic nodes do not get autonomic address

Addressing - Requirements

- Zero-touch for simple networks
- Low-touch for complex networks
- Flexibility (allow for growth, splits, merges, etc)
- Robustness (admin can't mess up)
- Support for virtualization
- Simplicity
- Scale
- Upgradability

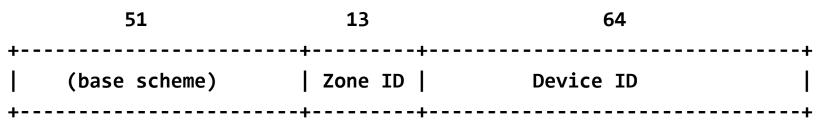
- We do NOT want to require an admin to maintain an address scheme.
- At worst: Assign a prefix to network or a zone.

Addressing - Concepts

- IPv6 only (for the autonomic mechanisms)
- Usage: For autonomic functions exclusively
- Separation (from user address space)
- Overlay network
- Use ULA, on virtual interfaces
- No link addressing, only link local
- No external connectivity

 No consensus here yet: request was to allow IPv4 as well.

 All other points seem to have consensus?

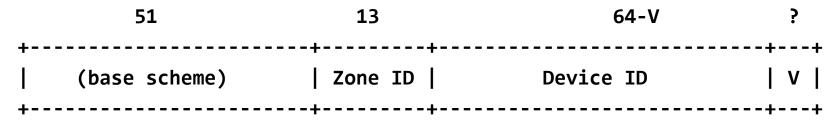

Addressing – Base Scheme

Base Scheme:

- Hash(domain) provides pseudo-random prefix, as required by RFC4193 (ULA)
- We suggest a type field, to allow different address schemes in the future.
- Idea: Standardize only one type initially.
 - Do we agree so far?
 - Comments? Concerns?

Addressing – Sub-Scheme 1

Sub-Scheme 1:



Needs discussion

- Registrar assigns device ID
 - It is unique for a device in a domain
 - It does NOT specify a locator, but an identifier
 - Device ID does not change in the lifetime of a device
- Zone-ID initially zero.
 - When aggregation is required, use a zone-ID <> 0

Addressing – Sub-Scheme 2

Sub-Scheme 2:

- Add "Virtualisation" bits at the end
 - Allow addressing various virtual machines on a single node
- Keep routing simpler:
 - Node announces not a /128, but for example /127

Needs discussion

Discovery, Signaling, Intent Distribution

- Overall goal: Minimise northbound interfaces. Thus:
- Discovery needed for discovering:
 - Nodes
 - Services
- Signalling needed to negotiate between nodes, synchronise, etc.
- Intent distribution should also be horizontal
- All these could be covered with a single protocol
 - Candidate protocol: draft-carpenter-anima-gdn-protocol

Needs discussion

Routing and ACP

(covered in the ACP discussion)

Security and Trust Infrastructure

- Premise: "Self-protection"
 - Autonomic functions do not require configuration to be secure. They are designed and negotiated securely.
- Use a domain based PKI
 - Domain has a CA
 - The registrar(s) are RAs
 - MASA server allows for vendor certification.

 Section needs work, but I believe the fundamental concepts are mostly agreed.

Management Section

- Generally "self-management".
- Admin guidance through Intent
- Coexistence with existing methods (NETCONF, SNMP, SSH, etc)
- Conflict resolution
- Aggregated reporting
- Feedback loops to NOC
- Control loops
- APIs

- · Mostly new content.
- Needs discussion

Coordination between Autonomic Functions

- Autonomic functions may interact:
 - Dependency, conflict, cooperation
- Various ways to deal with interactions, at various times:
 - Build time
 - Deploy time
 - Run time
- Require a coordination function

Summary

- Structure getting solid
- Content still needs work
- Open, high level question: How much detail, how much forward looking items (to be seen over time)
- Adoption as WG document?