
RITE – Reducing Internet Transport Latency

Review: PIE AQM
draft-ietf-aqm-pie-00

Bob Briscoe, BT*

IETF-93, Praha, July 2015

* now independent Summary of full 20pp review
<http://www.bobbriscoe.net/projects/latency/piervw_tr.pdf>

The authors' contributions are part-funded by the European Community under its Seventh
Framework Programme through the Reducing Internet Transport Latency (RITE) project (ICT-
317700). The views expressed here are solely those of the authors.

http://www.bobbriscoe.net/projects/latency/piervw_tr.pdf

Main concerns

1.Proposed Standard, but no normative
language

1.work needed to distinguish between design intent
and specific implementation

2.unclear how strongly the enhancements are
recommended

2.Has PIE been separately tested with and
without each enhancement, to justify each?

3.Needs to enumerate whether it satises each
AQM Design Guideline

1.If not, say why or fix.

2.Particular concerns:

1.No spec of ECN behaviour

2.No autotuning of the two main parameters

3.Transport specific (Reno-based?) autotuning of α & β

4.Rationale for a PI controller not properly
articulated

5.Technical flaws/concerns

1.Turning PIE off

2.`Autotuning' α & β parameters

3.Averaging problems

4.Burst allowance unnecessary?

5.Needs a Large Delay to Make the Delay Small

6.Derandomization: a waste of cycles

7.Bound drop probability at 100% →DoS vulnerability?

8.Avoiding Large Packet Lock-Out under Extreme Load.

6. Numerous magic numbers

1.20 constants, 13 of which are not in the header block.

2.About half ought to be made to depend on other
constants

3.Need to state how to set the remaining constants for
different environments

7.Implementation suggestion for Autotuning α & β

8. Nits (6pp)

Technical concern #2
`Autotuning' α & β parameters

if (p < 0.1%) {
 p += [alpha*(qdelay - QDELAY_REF) + beta*(qdelay-PIE->qdelay_old_)]/128;
} else if (p < 1%) {
 p += [alpha*(qdelay - QDELAY_REF) + beta*(qdelay-PIE->qdelay_old_)]/16;
} else if (p < 10%) {
 p += [alpha*(qdelay - QDELAY_REF) + beta*(qdelay-PIE->qdelay_old_)]/2;
} else {
 p += alpha*(qdelay - QDELAY_REF) + beta*(qdelay-PIE->qdelay_old_);
}

●

-16 -12 -8 -4 0

-14
-12
-10
-8
-6
-4
-2
0
2
4
6

Tuning PIE for drop probability, p

lg(factor) Look-up
table.
draft-ietf-aqm-pie-01
lg(factor) Autotuned.
Proposed function

lg(p)

Mb/s p

6 0.1%

12 0.04%

24 0.016%

48 0.0065%

96 0.0025%

192 0.0010%

384 0.00040%

768 0.00016%

Single Cubic flow, 100ms RTT

above table
in draft
stops here

Instead of a look-up table for the factors,
propose to use p*16 as the factor
Using bit-shifting to avoid multiplication (see review)

Technical concerns #4 & #5

4. Burst allowance too high or even unnecessary?
● 150ms is 5-15 round trips for most traffic (CDNs)

● burst allowance is meant to filter out transients
● If AQM takes >1 RTT to start dropping → delay & tail drop

● PIE already filters bursts (queue sampling and evolution of drop_prob)
● Have you tried removing this additional burst allowance?

5. Needs a Large Delay to Make the Delay Small
● PIE code needs at least 214B of queue before it starts estimating depart_rate,

which is is equivalent to:
● 16ms of queue at 8Mb/s
● 66ms of queue at 2Mb/s

● i.e. for a 2Mb/s uplink, the mechanism PIE uses to hold the queue at 20ms
needs 66ms of queue before it kicks in

Technical concern #6
Derandomization: a waste of cycles

● regular spacing between drops in the aggregate
still leaves irregular spacing within each flow

0 100 200 300 400 500 600
0%

20%

40%

60%

80%

100%

Cumulative distribution function of drop spacing,
drop probability =0.01; #flows =2

Random drop

Perfectly de-
randomized
drop spacing
(in aggregate
or lone flow)

"Perfectly" de-
randomized
drop spacing
(per flow)

drop spacing [packets]

C
u

m
u

la
ti

ve
 P

ro
b

ab
il

it
y

Technical concerns #7 & #8

7. Bound drop probability at 100% → DoS vulnerability?
● In the code, drop_prob is bounded at 100%

– Even 2x link rate arrivals only need 50% drop

– 100% drop implies zero throughput!

● RED initially made the same mistake
– later changed (see link to code in review)

8. Avoiding Large Packet Lock-Out under Extreme Load
CURRENT

if (queue_.is_full()) {
drop(packet);
}

SUGGESTED:
if (queue_.byte_length() > (buffer_size - MTU)) {
drop(packet);

}

6. Numerous Magic Numbers

● 20 magic numbers
– 2 called out as parameters

– 13 embedded in code, not in header (see list in review)

● not all are scenario-independent – should identify them, e.g.
● DQ_THRESHOLD (214B inappropriate if queues are shorter)

● T_UPDATE (16ms inappropriate if RTT < 16ms)
better: define B_UPDATE in bytes, and derive T_UPDATE using the link rate

● ALPHA should be defined in terms of T_UPDATE

● BETA should be defined in terms of ALPHA and a RATIO
● QUEUE_SMALL = BUFFER / 3. Why relate anything to BUFFER?
● 3 parameters for uncongested queue tests seem specific to small #flows
● EWMA const avg_ dq_time_ should equal DQ_THRESHOLD/216

● ...

Main concerns

1.Proposed Standard, but no normative
language

1.work needed to distinguish between design intent
and specific implementation

2.unclear how strongly the enhancements are
recommended

2.Has PIE been separately tested with and
without each enhancement, to justify each?

3.Needs to enumerate whether it satises each
AQM Design Guideline

1.If not, say why or fix.

2.Particular concerns:

1.No spec of ECN behaviour

2.No autotuning of the two main parameters

3.Transport specific (Reno-based?) autotuning of α & β

4.Rationale for a PI controller not properly
articulated

5.Technical flaws/concerns

1.Turning PIE off

2.`Autotuning' α & β parameters

3.Averaging problems

4.Burst allowance unnecessary?

5.Needs a Large Delay to Make the Delay Small

6.Derandomization: a waste of cycles

7.Bound drop probability at 100% →DoS vulnerability?

8.Avoiding Large Packet Lock-Out under Extreme Load.

6. Numerous magic numbers

1.20 constants, 13 of which are not in the header block.

2.About half ought to be made to depend on other
constants

3.Need to state how to set the remaining constants for
different environments

7.Implementation suggestion for Autotuning α & β

8. Nits (6pp)

Summary

● The PIE draft ends with two assertions in the Discussion section:

“PIE is simple to implement”

“PIE does not require any user conguration”

– I do not believe either statement is warranted any more

● The implementation has not retained the elegance of the theory
– The performance benefit from so-called `enhancements' is

questionable or non-existent

– whereas the added complexity is very apparent.

● PIE now contains a large number of hard-coded constants
– I counted 20

– Most ought to be scenario-dependent conguration variables.

Review: PIE AQM
draft-ietf-aqm-pie-00

Q&A
spare slides

Technical concern #3
Averaging problems

3.1 Queue Sample Rate
– aim to sample every 100 or even 1000 of packets

unnecessarily sluggish?

3.2 Incorrect EWMA

ave(depart_rate) = k * ave(1/t1, 1/t2, …)

 != k / ave(t1, t2, …)

– faster than EWMA at first, then slower

– may be good enough approximation – would be complex to
implement correctly – can anyone find scenarios that would
lead to pathological errors?

Technical concerns #5

1. Turning PIE Off
– Background: equipment at the head-end of broadband access, cable

or radio network can handle thousands of users, but typically only 1 or
2% are active at a time

– Since the review: authors confirmed that a regular timer calls
status_update() not packet arrivals (even tho the code checks how
long since it last ran).

● Addresses my concern about drop_prob not reducing during inactive periods.
● But raises another concern about “death by a thousands ticks”.

– Suggested resolution: Draft should clarify it is for customer premises
equipment. For a multi-user scenario, it could be packet triggered, and
include code to 'catch-up' drop_prob proportionate to the idle period.

	WP4
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

