
1

Signatures: Ilari's proposal

 A modified version of EdDSA

2

Introduction: EdDSA

• An advanced digital signature primitive,
encompassing lots of improvents to original
ElGamal Scheme

• No inversions modulo order
• Deterministic

3

Introduction: Why not original
EdDSA

 Orig. EdDSA does not support IUF
 Curve requirements not met by Orig. EdDSA
 Requires exotic hashes at >255 bits

− >512 bit output and such

 Later revision of EdDSA addressed first two
− And proposed modifications to address third

4

Adding IUF

 IUF via prehashing
− Some protocols assume hash signing

 Add firewalling (sign the hash used)
− Prevents cross-hash attacks
− Widely used (but broken) RSA PKCS#1 v1.5
− Put into main signature to avoid bypass
− There can be value for identity (offline signature)
− Obviously not helpful if internal hash really broken

5

More curves

 One can add support for more curves by
modifying point encoding.
− Little-endian Y enough-bits + X-sign bit encoding.
− Can encode any prime Edwards curve

 Allows all sorts of curves (not all good)

6

Using ordinary hashes (#1)

 EdDSA specifies double-width hash
− Seemingly great overkill.
− 64 extra bits should be enough.

 Enough to reach 448-bits with 512-bit hash.
 Enough for 2^128 signatures with arbitrary curve
 Enough for sqrt(l) signatures with near-POT curve

 Nevertheless use more for arbitrary curves
− 1/4 of bits, to reach sqrt(l) signatures.

 Schnorr croaks at sqrt(l) signatures.

7

Using ordinary hashes (#2)

 Seed/a generation in EdDSA is via splitting
− So generate seed and a separatedly.
− Some sort of labeled PRF.
− Seed/a might get stored in private key.

8

Limits of ordinary hashes

 Ordinary hashes cap at 512 bits
− Limits curves to 448 bits for near-PoT
− Limits curves to 409 bits for arbitrary.

 Few curves outside these limits
− Ridinghood (in fact, seems OK)
− E-521 (definitely not OK)

 PRF would be possible but extra complexity
− Really avoid nonstandard APIs.

9

Extras: Personalization

 Cross-protocol attacks are a perenial problem
 Difficult to avoid in protocol design
 One way to deal with it: Personalization
 Signer and verifier need to agree context

− Specified by protocol, arbitrary length
 Idea: <Protocol> <version>, <role in protocol>

− E.g. ”TLS 1.2, Client Certificate Verify”

 Use the same encoding as hash/message
− Unaligned hashes, but those should be OK

10

Design: Some other approaches

 Double-pipe seed|m, m|rB.
− Requires signer to pick key beforehand.
− Doesn't fit protocols assuming hash-signing.

 Forking: m|pad|seed, m|pad|rB.
− Is this even secure?
− Pad has to be picked carefully.
− Needs somewhat non-standard hash interface.
− Again, same fit problems as above.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

