ECDSA_CFRG 1SS

ECDSA_CFRG: Schnorr—Kravitz—Vanstone

signatures with a wide-pipe and suffix for high hash-flaw resilience

submitter: Daniel R. L. Brown
presenter: Gaélle Martin-Cocher

Certicom Research / BlackBerry Standards

CFRG, IETF 93, 2015 July 23

Dan Brown (Certicom) ECDSA_CFRG IETF 93

1/31

ECDSA_CFRG

Table of contents

@ Overview of the proposal

© Notation and terminology
© Review of Schnorr signatures
© Review of ECDSA

© ECDSA_CFRG: idea, definition, security, signing, pseudocode

Dan Brown (Certicom) ECDSA_CFRG

Overview of the proposal [WNeIel (LT

An approach for a new elliptic curve signature scheme

@ Improve on security of both ECDSA and EADSA.
@ Mathematical security of ECDSA unbroken: do not fix math.
© Add collision-resilience and other hash-flaw resiliencies.

© Implementation security fixes:
o Deterministic signature generation [per CFRG],
o Side-channel resistance (e.g. constant-time) secret processing.
@ Maintain init-update-finalize processing [per CFRG].
O Backwards compatible ECDSA verification (not signing) for a
given curve.
@ Format agnostic, curve choice (e.g. NIST/Edwards) sets:

o Coordinate system (and representative)
e Conversion from point to integer (via byte string)
o Little-endian or big-endian integer encoding

Dan Brown (Certicom) ECDSA_CFRG IETF 93

3/31

Overview of the proposal ERZ{elEE

The resulting proposal: ECDSA_CFRG

Definition (ECDSA_CFRG)
A pair (R, s) is a valid ECDSA_CFRG signature for message M under
public key Q if:

SR = hyide MIIR)G + f(R)Q M

New over ECDSA:
© Inclusion of ephemeral in hash input (as suffix).
@ Wide-pipe hash.
© Full R in signature.
© Support of Edwards curve formats (not just Weierstrass)

@ Secured signature generation (deterministic, constant-time)

Dan Brown (Certicom) ECDSA_CFRG IETF 93 4/31

Notation and terminology BENIZ1T08

Common notation for Schnorr, ECDSA and
ECDSA_CFERG

For base point G, public key Q, message M, a pair (R, s) is a valid
Schnorr, ECDSA, ECDSA_CEFRG (respectively) signature if

sG = R + h(RIIM)Q ()
sR = h(M)G + f(R)Q ©)]
SR = hyige(MIIR)G + f(R)Q (4)
(respectively).
@ The mathematical design of ECDSA is due to Kravitz and
Vanstone.

e Call R ephemeral public key.

@ Function f converts points to scalar multipliers.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 5/31

Notation and terminology [EESssiinileller:4%

Talk terminology: aegis, frisk, resilience

Definition
Let
Aegis = Age X Eyes ®)

Definition
Formal risk is

Z Probability[threat viable] X Damage(threat launched). (6)

threat

To frisk is to formalize risk.

Definition (Resilience)

Given some threat ¢, let t-resilience be a reduced risk of an attack from
threat t, by either low probability or low damage.

v

Dan Brown (Certicom) ECDSA_CFRG IETF 93 6/31

REGEIAGETS S EGEIFIE Schnorr signature security

How Schnorr depends on hash security

Theorem (Pointcheval-Stern)
Schnorr signatures secure if discrete logs secure and hash is random oracle. J

@ Random oracle is optimistic security for hash.

o Theorem is not evidence of resilience: using suffixed point and
narrow-pipe hash not really collision-resilient.

@ Loose reduction: strictly applies only for doubled group size.

o Trust (verified?) that proofs work if hash also used for
deterministic ephemeral key generation.

e Hash—throughout this presentation—is effectively conventional
bit-string-output hash (e.g. SHA-384) after modular reduction.

o All security properties defined over reduced hash function.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 7/31

REGEIAGETS S EGEIFIE Schnorr signature security

Hash deletion

Definition (Hash deletion)
Message M’ and hash value 1’ such that

h(RIIM') = W’ 7)

for a non-negligible fraction of all R of a given length.

Theorem (2015)
Given a hash deletion, for any s” and public key Q,

(R',s")Y=(G-HQ,s) (8)

is a valid Schnorr signature on M': a signer-absent forgery.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 8/31

REGEIAGETS S EGEIFIE Schnorr signature security

Implicit aegis of deletion attacks

Theorem (2015)

Collision-resistant (and random oracle) hashes are deletion-resistant.

Definition (Nested hash deletion)

Message M’ and hash value I’ such that h(S||h(R||M’)) = I’ for all R, S
(with non-negligible chance).

Theorem (2015)
If HMAC secure, then hash is nested-deletion-resistant.

Theorem (2015, Circular self-aegis)

If Schnorr signatures secure, then hash is deletion-resistant.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 9/31

REGEIAGETS S EGEIFIE Schnorr signature security

Deletion’s aegis deficiencies?

@ Lack of incentives:
@ Not among holy grail of collision, preimage, second preimage.
@ Deletion-resistance is an off-label claim (hash as cure-all not path to
resilience: see earlier comment).
@ No specific mention of deletion in SHA-3 competition.
@ Deletion attacks strictly only relevant to Schnorr.
@ Deletion attacks not known to imply:
@ Preimage attacks
@ Second preimage attacks
@ Lack of partial attacks (= lack of evidence of effort):

@ No MD?5 or SHAQ deletion attacks.
@ No published reduced-round hash deletion attacks.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 10/31

REGEIAGETS S EGEIFIE Schnorr signature security

Deletion threat viability?

@ Joux multicollisions? Kelsey—-Kohno herding?

e Deletion implies a multicollision: a very wide one!

o Wide multicollisions not much harder than collisions, against
iterated hashes like SHA-2.

o Deletion not directly targeted: so these attacks provide no aegis for
deletion.

@ Deletion attacks on some iterated hash corresponds to weak key
some compression functions:

o Message block W’ such that Ew(H) = C 8 H for some constant C.
o Targeted deletion: slight aegis for deletion (my eye).

© Heed these as early warning signs?

© What is the security level of deletion-resistance?

o Pessimist: same as (multi)collision-resistance.
o Optimist: infinity, maybe no (', M’) exists.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 11/31

Review of Schnorr signatures

Schnorr signature security

How Schnorr depends on hash security, revisited

Theorem (Neven, Smart and Warinschi)

Schnorr signatures secure in generic group model if hash has chosen-target
random-prefix (second) preimage resistance (RP(S)P).

@ RP(S)P attacks has implicit aegis similar to deletion attacks:

e Schnorr signatures need RP(S)P secure hash to avoid forgery
o Collision resistant hashes are RP(S)P secure.

@ RP(S)P related to ePre (keyed) hash security of Rogaway, Stam
and others: so it has a little extra aegis.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 12/31

ECDSA security
Now, how deletion-resilient is ECDSA?

Theorem (2015)

Given a deletion attack and signer who will sign attacker chosen message,
adversary can forge a related message.

Proof.

Deletion leads to collision: h(Rq||M") = h(Rz||IM") = h’(M’). Exploit
ECDSA's lack of collision-resilience. Ask signer to sign R;||]M’. Same
signature also valid for unsigned Ry||M". O

v

Dan Brown (Certicom) ECDSA_CFRG IETF 93 13/31

ECDSA security
Mitigating damages from ECDSA deletion

Signer-present mitigations to deletion for ECDSA but not for Schnorr:
© Damage of forgery limited to Ry: else, if signer willing to sign
Rq|IM’, why not just get the signer to sign Ry||M’?
@ Inspect R;||M’ for suspicious content: thwarts weakest deletion
attacks with odd looking messages,

@ Opt to control content of signed messages, such as prefix,
hindering deletion attack: some signers already do this to ward off
potential collision-extension attacks.

© Track messages signed to repudiate those resulting from
deletion/collision attack.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 14/31

RESEMAGREDSY. NN ECDSA security

Hash Zeroizers

Definition
A message M’ such that h(M") = 0.

Theorem (2001)

A hash zeroizer leads to an odd-message signer-absent ECDSA forger. (The
zeroizer message is forged.)

Theorem (2001)
A collision-resistant hash has at most one zeroizer message.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 15/31

GGG @Y. ECDSA security

Domain parameter attacks

Theorem (Vaudenay)

If the elliptic curve order is chosen maliciously, then the hash can have a
zeroizer or a collision, and consequently, ECDSA is forgeable.

Countermeasures:
@ Well-chosen elliptic curves.

e Only known ways to find prime-field curves of order:
o Exhaustive search.
o Complex multiplication.

@ Truncate hash to smaller than order # of G.

Dan Brown (Certicom) ECDSA_CFRG IETF 93

16/31

BCDSA security
One-up problem

Definition (One-up problem (2008))
Given two points A and B, find a point C such that:

C=A+f(C)B)

V.

Theorem (2008)

Given a one-up problem solver S, a signer-absent all-message ECDSA forger
FS can be constructed.

@ Pessimist: 1-up requires m < +/n group ops (low aegis).
e Optimist: 1-up requires n > +/n group ops (best known attack).

@ Theorist: 1-up secure in generic group model (implicit in next).

Dan Brown (Certicom) ECDSA_CFRG IETF 93 17/ 31

GGG @Y. ECDSA security

Kravitz—Vanstone signature mathematical security

Theorem (2002)

Kravitz—Vanstone signature (e.g. ECDSA) with the zeroizer-resistant hash in

the generic group model resists forgery of the type specified below according
additional security of the hash:

Forger type Hash
Signer | Messages forgeable || Additional security
Absent All None
Absent Odd Preimage
Present All Second preimage
Present Odd Collision
Dan Brown (Certicom) ECDSA_CFRG

IETF 93 18/31

RESEMAGREDSY. NN ECDSA security

Kravitz—Vanstone signature mathematical security

Theorem (2005)

Kravitz—Vanstone (e.g. ECDSA) signatures with a random oracle hash resist

all types of forgers if they resist signer-absent all-message forgers (but with a
cost factor proportional to the number of hash queries).

Dan Brown (Certicom) ECDSA_CFRG IETF 93 19/31

REZEMAGIH@DEYNN Risk comparison

Risk comparison: Schnorr versus Kravitz—Vanstone
Formal risk terms due to deletion:
@ Schnorr:
...+ Pr[hash deletion] x Damage(signer-absent forgery) +... (10)
e Kravitz—Vanstone (i.e. DSA/ECDSA):

...+Pr[hash collision] x Damage(signer-present forgery)+... (11)

Comparison:
smaller X larger =~ small X large (12)
,—/v%//
Schnorr ? ECDSA

Other terms in formal risk from other threats: also hard to compare.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 20/31

12(@ DY@ 2 @B Te (SR WG TV 1O SRS A e VN oSS Te (OO (B Unifying Schnorr and Kravitz—Vanstone signatures

Idea: Schnorr—Kravitz—Vanstone
@ Use R thrice in the verification:

s R =hRIMG+ fR) Q (13)
Y ~—

ElGamal Schnorr Kravitz—Vanstone

where, r = f(R), is a multiplier (scalar, integer) mapped from a
point R via a byte string (and a field coordinate).
e Novel combination of apparent resiliencies:

Collision
Deletion
Zeroizer
RP(S)P
One-up

@ Lacks simultaneous message-dependent ephemerals and IUF
processing.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 21/31

ECDSA_CFRG: idea, definition, security, signing, pseudocode @DV @ SRS HiteElE ()1}

The proposal: ECDSA_CFRG

Definition (ECDSA_CFRG)
A pair (R, s) is valid ECDSA_CFRG signature for message M under
public key Q if:

SR = hyige(MIIR)G + f(R)Q (14)

Improvements over basic Schnorr—Kravitz—Vanstone idea:
@ Places R in suffix instead of prefix (IUF processing).
@ Uses wide-pipe hash (collision-resilience with suffix).

@ Signature has R not r = f(R) (batching and faster verify), unlike
old ECDSA standards.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 22/31

ECDSA_CFRG: idea, definition, security, signing, pseudocode @BV W@ HNER S TiteElE (a8

Message digesting?

@ For 256-bit or less curves (Curve25519, P256) use SHA-384:

@ Widely available hash.

@ Wide pipe (512 bits).

@ Truncate to bit length of 1, per existing ECDSA. (Almost defends
against domain parameter attacks: but ECDSA_CFRG has other
defenses.).

@ For 512-bit or less curves, use SHA3-512.

o More trusted hash: better aegis (newer than SHA2, but more eyes,
and arguably more trusted origin).

o Wide pipe: 1024 bits.

e Truncate output to one bit less than n, to better avoid domain
parameter attacks.

© For 521-bit curves, use SHA3-512:

e Pipe almost wide enough (1024 bits nearly 1042 bits).
e Same reasons as above.

@ For other curves, seek wider-pipe hash.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 23/31

ECDSA_CFRG: idea, definition, security, signing, pseudocode IRE@pEV NN @ 3 EFTdis 13

ECDSA_CFRG compared to ECDSA and Schnorr

Theorem (Pointcheval-Stern?)

If discrete logs secure and hash is random oracle, then ECDSA_CFRG is
unforgeable.

Theorem (2015)

If ECDSA is signer-absent unforgeable, then ECDSA_CFRG is signer-absent
unforgeable.

v

Theorem (2015? — RETRACTED: NO LONGER CLAIMED)

RETRACTED: If contrived-hash Schnorr signatures unforgeable, then ECDSA_CFRG is signer-absent, all-message, deterministic
unforgeable. (RETRACTED)

Koblitz-Menezes (2015): informally, generic group model security
proofs for ECDSA also apply to ECDSA_CFRG.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 24/31

ECDSA_CFRG: idea, definition, security, signing, pseudocode R@BEI @R ilo 8

ECDSA_CFRG signature generation

@ Bias and correlated ephemeral signing keys leak static key: so try
to apply all protections with high aegis.

@ Multiplicative masking for the multiplier inversion: do not invert
k directly.

© Use constant-time scalar multiplication kG, additive masking.
© Key derivation:

o Keyed pseudorandom function (PRF)

e Variable-input length, constant output-length

e Not just a simple hash (extensions mean not strict PRF).

@ Static signing key derived from seed: d = PRFqeq(09).
O Ephemeral signing key co-derived from seed and message.

k= PRFseed(lsnM)- (15)

Key separation through PRF properties, not ad hoc ROM
optimism.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 25/31

ECDSA_CERG: idea, definition, security, signing, pseudocode =@V W@ HNER T 15

Key derivation function

e Try to output a fixed extra amount bits, at least 50%.
@ For curves with n of 256 bits or less:

PRF,.q(data) = HMAC-SHA2-384(seed, data) (16)

with no HMAC truncation.
o HMAC widely believed to be a good PRF (aegis).
e Harmony with message digest SHA2-384.

@ For n with m € [257,571] bits, let L = [3m/2] and:

PRF,.i(data) = SHAKE-256(L, seed|| encode(L)||data) (17)

SHAKE is next generation of key derivation.

First SHAKE input is output length.

Length included in SHAKE input to help avoid truncation.
Harmony with message digest SHA3-512.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 26/31

ECDSA_CERG: idea, definition, security, signing, pseudocode =@V W@ HNER T 15

Backwards compatibility with ECDSA

@ Backwards compatible verification:

o Given same curve (and curve formatting),

o ECDSA_CEFRG signature (R, s) of message M can converted to
ECDSA signature (r,s) = (f(R), s) of message M||R.

e Verifiable with existing ECDSA verifiers, which is good: for
codesigning upgrades, etc.

@ Backwards incompatible signing:

o Incompatible signing is good, because any existing insecure
ECDSA signer cannot be re-used for ECDSA_CFRG.
e Active steps would have be taken to modify an ECDSA signer to
build an ECDSA_CFRG signer:
@ Dig past the (r,s) interface to find internal value of R.
@ Find R before s is computed.
@ Append R suffix to message before computing s.
@ Update to a wide-pipe hash.

@ Forwards incompatible verification: good and obvious.

Dan Brown (Certicom) ECDSA_CFRG IETF 93 27/31

ECDSA_CFRG: idea, definition, security, signing, pseudocode @BV @ B EFESIT T ERSEG T 04)

ECDSA_CFRG and ECDSA internal verification

// ECDSA_CFRG pseudocode spec only: not for real use
include "ecdsa_cfrg.hh"
define VERIFY verify // verify_via_ecdsa
static bool verify (point Q, bits M, ecdsa sig)
{
return sig.r == f(Chash(M*G + sig.r*Q) / sig.s) ;
}
static bool verify (point Q, bits M, ecdsa_cfrg sig)
{
return sig.s*sig.R == hash(l||sig.R)*G + f(sig.R)*Q ;
}
static bool verify via_ecdsa (point Q, bits M, ecdsa_cfrg sig)
{
return verify (Q, M||sig.R, (to_ecdsa)(sig)) ;
}

Dan Brown (Certicom) ECDSA_CFRG IETF 93 28/31

ECDSA_CFRG: idea, definition, security, signing, pseudocode @BV @ B EFESIT T ERSEG T 04)

External interface

bool verify_ecdsa_cfrg (bits Q, bits M, bits sig)
{

return VERIFY((to_point)(Q), M, (to_ecdsa_cfrg)(sig)) ;
}

bits verification_key_ecdsa_cfrg (bits key)

{
return (to_bits) (prf(key) * G) ;
}
bits sign_ecdsa_cfrg (bits key, bits M)
{
mult k = prf(key, M) ;
mult m = prf(key, k) ; // mask leaky / op
mult d = prfckey) ;
point R = k*G ;
mult s = ChashM||R) + fR)*d) / (k*m) ;

return (to_bits)((ecdsa_cfrg){R , (s*m)3}) ;

Dan Brown (Certicom) ECDSA_CFRG IETF 93

29/31

ECDSA_CFRG: idea, definition, security, signing, pseudocode @BV @ B EFIIE Vel (RIEGTH o]

File “ecdsa_cfrg.hh” (types and conversions)

typedef struct { /*...*/ } mult ;

typedef struct { /*...*/ } point ;

typedef struct { /*...*/ } bits ;

typedef struct {point R; mult s;} ecdsa_cfrg ;
typedef struct {mult r; mult s;} ecdsa ;
point G = { /*...*/ } ;

bits to_bits (point) ;

point to_point (bits) ;

bits to_bits (ecdsa_cfrg) ;
ecdsa_cfrg to_ecdsa_cfrg (bits) ;

mult to_mult (point P)

/* Weierstrass: { return (to_mult)((to_bits)(x(P)));} */ ;
define f to_mult

ecdsa to_ecdsa (ecdsa_cfrg sig)
{
return (ecdsa){f(sig.R), sig.s} ;
}
Dan Brown (Certicom) ECDSA_CFRG IETF 93

30/31

ECDSA_CFRG: idea, definition, security, signing, pseudocode @BV @ B EFIIE Vel (RIEGTH o]

File “ecdsa_cfrg.hh” (primitive operations)

mult hash (bits) ;

mult prf (bits) ; // MUST: deterministic
mult prf (bits, bits) ; // SHOULD: deterministic
mult prf (bits, mult) ; // SHOULD: non-deterministic
bool operator == (mult, mult);

mult operator + (mult, mult);

mult operator * (mult, mult);

mult operator (mult, mult);

bits operator || (bits, bits);

bits operator || (bits M, point R)

{ return M || (to_bits)(R) ; }

bool operator == (point, point);

point operator + (point, point);

point operator * (mult , point);

point operator / (point, mult); // ECDSA verify spec only

N —

Dan Brown (Certicom) ECDSA_CFRG IETF 93 31/31

