
Based on a review of

draft-ietf-cose-msg-01

Mike Jones

IETF 93

Prague

July 2015

Key Issues and Choices

for COSE

1

*

Key Issues and Choices for

COSE

2

 Our goals should include:

 Keeping simple things simple

 Making complex things possible, when necessary

 Compactness of representations

 Compactness of implementations

 Leading to adoption

 Presentation identifies potential areas for

simplification

Example: Direct MAC

Current Representation

 { 1 (typ): 3 (MAC),

 2 (protected): h'a1016f4145532d434d41432d3235362f3634',

 ({1 (alg): “AES-CMAC-256/64”})

 4 (payload): h'546869732069732074686520636f6e74656e742e',

 (“This is the content.”)

 10 (tag): h'd9afa663dd740848',

 9 (recipients): [

 { 3 (unprotected): {

 1 (alg): -6 (direct),

 5 (kid): h'6f75722d736563726574‘ (“our-secret”)

 } }

]

 }

3

Example: Direct MAC

Possible Simplifications

 { 1 (typ): 3 (MAC),

 2 (protected): h‘encoding TBD',

 ({1 (alg): “AES-CMAC-256/64”

 5 (kid): h'6f75722d736563726574‘ (“our-secret”)

 })

 4 (payload): h'546869732069732074686520636f6e74656e742e',

 (“This is the content.”)

 10 (tag): h'd9afa663dd740848'

 }

 Simplifications applied

 Flattened serialization (no “recipient”)

 Removed key management layer -6 (direct)

4

Choice: Representation of

Single-Recipient Content

 Current draft always uses recipients array

 Always a singleton for single recipient

 Even for direct content, currently always two

sets of header parameters

 Those describing the cryptographic operations

 Those describing the recipient

 In single recipient case we could:

 Eliminate the “recipients” tag and the array

 Have only one set of header parameters
5

Choice: Representation of

Key Management

 Current draft always includes key

management structure, even when “direct”

 An alternative is to include a key

management structure only when needed

 Omit it in the “direct” case and combine headers

 This still allows having one “alg” parameter,

versus JOSE which required two (“alg”, “enc”)

 Note: This approach allows multiple levels of key

management by nesting, like Jim’s Appendix B

6

Choice: Use Maps or

Arrays at Top Level

 Current draft uses maps

 Alternative is to define array representations of

signed, MACed content, encrypted

 Analogous to JOSE compact serializations

 May make representing key management messier

 Would key management maps also become arrays?

 Or would headers for levels be combined, requiring different

“alg” parameters like JOSE’s “alg” and “enc”?

 How to identify the different types?

 CBOR type prefix or first array element?

 I’m personally OK staying with maps

 Seems like there’s fewer special cases that way 7

Choice: Overloaded or

Single Use Label Values

 Current draft overloads map labels with

different meanings onto same value

 E.g., 4 for both payload and ciphertext

 No obvious disadvantage to using different

labels when meanings different

 Some advantages, such as more

comprehensibility of encoding

 Also may avoid conflicts that aren’t apparent now

but may occur when extensions defined

 I’d personally recommend single use labels 8

Choice: Concatenate Tag to

Ciphertext or Keep Separate

 Do we represent authenticated encryption

output with one or two parameters?

 “ciphertext”: ciphertext, “tag”: authentication tag or

 “ciphertext”: ciphertext || authentication tag

 AES GCM [SP 800-38D] specified as

providing two output parameters

 JOSE kept the separate parameters separate

 TLS and some other specs concatenate them

 Already a “tag” parameter used by MACs
9

Issue: Confusing Header

Parameter Descriptions

 Some names copied from JOSE should be

changed:

 “jku” to “cku” (COSE Key URL)

 “jwk” to “ck” (COSE Key)

10

Choice: Which Header

Parameters to Standardize

 Issue 1 in the draft: “Which of the following

items do we want to have standardized in

this document: jku, jwk, x5c, x5t, x5t#S256,

x5u, zip”

 I’d advocate cku, ck, x5c, x5t, x5t#S256, x5u,

zip

 Related choice:

 Do we also want to have “jku” (JWK URL) to point

to keys in JWK format in addition to “cku”?

11

Choice: Include JOSE Alg

Names in COSE Alg Registry

 Advantages of doing so:

 Ability to reuse JOSE alg registrations by just

defining short labels for them

 Clearer documentation when same algs can be

used in both JOSE and COSE

 Encourages registration of algs defined for use by

COSE to also be registered for use with JOSE

 For example, AES-CMAC

 Reduces duplication

 Don’t see much downside in doing so
12

Issue: Why the asymmetry

between sig & mac structs?

Sig_structure = [

 body_protected: bstr,

 sign_protected: bstr,

 payload: bstr

]

 versus

MAC_structure = [

 protected: bstr,

 external_aad: bstr,

 payload: bstr

]
13

Choice: Define “use” Key

Member

 JOSE “use” has two values: “sig”, “enc”

 Based on XML DSIG/ENC key use definition

 Useful for public keys

 Single valued

 JOSE “key_ops” value an array

 Based on WebCrypto API

 WebCrypto API does define how “use” works as well

 Useful for public and private keys

 Semantic compatibility with other systems

argues for keeping it 14

Request: Add Symbolic

Annotations to Examples

 {
 1 (typ): 3 (MAC),

 2 (protected): h'a1016f4145532d434d41432d3235362f3634',

 ({1 (alg): “AES-CMAC-256/64”})

 …

 versus
 {

 1: 3,

 2: h'a1016f4145532d434d41432d3235362f3634',

 …

15

