SDN & NFV

OpenFlow and ForCES
IETF-93

Presented by
- Yaakov Stein RAD (yaakov _s@rad.com)

- Evangelos Haleplidis U of Patras
(ehalep@ece.upatras.gr)

Why SDN and NFV ?

Before explaining what SDN and NFV are
we need to explain why SDN and NFV are

Its all started with two related trends ...

1. The blurring of the distinction

between computation and communications
revealing a fundamental disconnect

between software and networking

2. The decrease in profitability

of traditional communications service providers
along with the increase in profitability

of Cloud and Over The Top service providers

The 1%t led directly to SDN
and the 2" to NFV
but today both are intertwined

SDN & NFV, OF & ForCES 2 .

1. Computation and communications

Once there was little overlap
between communications (telephone, radio, TV)
and computation (computers)

Actually communications devices always ran complex algorithms
but these are hidden from the user

But this dichotomy has become blurred

Most home computers are not used for computation at all
rather for entertainment and communications (email, chat, VolIP)

Cellular telephones have become computers
The differentiation can still be seen in the terms algorithm and protocol

Protocol design is fundamentally harder
since there are two interacting entities (the interoperability problem)

SDN academics claim that packet forwarding is a computation problem
and protocols as we know them should be avoided
SDN & NFV, OF & ForCES 3.

1. Rich communications services

Traditional communications services are pure connectivity services
transport data from Ato B
with constraints (e.g., minimum bandwidth, maximal delay)
with maximal efficiency (minimum cost, maximized revenue)

Modern communications services are richer
combining connectivity and network functionalities
e.g., firewall, NAT, load balancing, CDN, parental control, ...

Such services further blur the computation/communications distinction
and make service deployment optimization more challenging

SDN & NFV, OF & ForCES 4 .

1. Software and networking speed

Today, developing a new iOS/Android app takes hours to days
but developing a new communications service takes months to years

Even adding new instances of well-known services
is a time consuming process for conventional networks

When a new service types requires new protocols, the timeline is
e protocol standardization (often in more than one SDO)

e hardware development

e interop testing

e vendor marketing campaigns and operator acquisition cycles

e staff training
e deployment how long has it been since the first IPvé RFC ?

This leads to a fundamental disconnect
between software and networking development timescales

An important goal of SDN and NFV is
to create new network functionalities at the speed of software
SDN & NFV, OF & ForCES 5.

2. Today’s communications world

Today’s infrastructures are composed of many different Network Elements (NEs)

e sensors, smartphones, notebooks, laptops, desk computers, servers,

e DSL modems, Fiber transceivers,

e SONET/SDH ADMs, OTN switches, ROADMs,

e Ethernet switches, IP routers, MPLS LSRs, BRAS, SGSN/GGSN,

e NATs, Firewalls, IDS, CDN, WAN aceleration, DPI,

e VolP gateways, IP-PBXes, video streamers,

e performance monitoring probes, performance enhancement middleboxes,

e etc., etc., etc.

New and ever more complex NEs are being invented all the time,
and while equipment vendors like it that way

Service Providers find it hard to shelve and power them all !

In addition, while service innovation is accelerating

the increasing sophistication of new services

the requirement for backward compatibility

and the increasing number of different SDOs, consortia, and industry groups
which means that

it has become very hard to experiment with new networking ideas

NEs are taking longer to standardize, design, acquire, and learn how to operate

NEs are becoming more complex and expensive to maintain .

SDN & NFV, OF & ForCES 6

2. The service provider crisis

\ Service Provider

bankruptcy point

time
This is a qualitative picture of the service provider’s world

Revenue is at best increasing with number of users

Expenses are proportional to bandwidth — doubling every 9 months

This situation obviously can not continue forever ! .
SDN & NFV, OF & ForCES 7

Two complementary solutions

Software Defined Networks (SDN)
SDN advocates replacing standardized networking protocols
with centralized software applications
that configure all the NEs in the network
Advantages:
e easy to experiment with new ideas
e control software development is much faster than protocol standardization
e centralized control enables stronger optimization
e functionality may be speedily deployed, relocated, and upgraded

Network Functions Virtualization (NFV)
NFV advocates replacing hardware network elements
with software running on COTS computers
that may be housed in POPs and/or datacenters
Advantages:
e COTS server price and availability scales with end-user equipment
e functionality can be located where-ever most effective or inexpensive
e functionalities may be speedily combined, deployed, relocated, and upgraded

SDN & NFV, OF & ForCES 8

SDN

SDN & NFV, OF & ForCES 9

Abstractions

SDN was triggered by the development of networking technologies
not keeping up with the speed of software application development

Computer science theorists theorized
that this derived from not having the required abstractions

In CS an abstraction is a representation
that reveals semantics needed at a given level
while hiding implementation details

thus allowing a programmer to focus on necessary concepts
without getting bogged down in unnecessary details

Programming is fast because programmers exploit abstractions

Example:
It is very slow to code directly in assembly language (with few abstractions, e.g. opcode mnemonics)
It is a bit faster to coding in a low-level language like C (additional abstractions : variables, structures)
It is much faster coding in high-level imperative language like Python
It is much faster yet coding in a declarative language (coding has been abstracted away)
It is fastest coding in a domain-specific language (only contains the needed abstractions)
In contrast, in protocol design we return to bit level descriptions every time
SDN & NFV, OF & ForCES 10 .

Packet forwarding abstraction

The first abstraction relates to how network elements forward packets

At a high enough level of abstraction
all network elements perform the same task

Abstraction 1 Packet forwarding as a computational problem
The function of any network element (NE) is to

e receive a packet

e observe packet fields

e apply algorithms (classification, decision logic)

e optionally edit the packet

e forward or discard the packet

For example

e An Ethernet switch observes MAC DA and VLAN tags, performs exact match, forwards the packet
e A router observes IP DA, performs LPM, updates TTL, forwards packet
e A firewall observes multiple fields, performs regular expression match, optionally discards packet

We can replace all of these NEs with a configurable whitebox switch

SDN & NFV, OF & ForCES 11 .

Network state and graph algorithms

How does a whitebox switch learn its required functionality ?

Forwarding decisions are optimal
when they are based on full global knowledge of the network

With full knowledge of topology and constraints
the path computation problem can be solved by a graph algorithm

While it may sometimes be possible to perform path computation (e.g., Dijkstra)
in a distributed manner
It makes more sense to perform them centrally

Abstraction 2 Routing as a computational problem
Replace distributed routing protocols with graph algorithms

performed at a central location

*
Note with SDN, the pendulum that swung

from the completely centralized PSTN

to the completely distributed Internet

swings back to completely centralized control ® .
SDN & NFV, OF & ForCES 12

Configuring the whitebox switch

How does a whitebox switch acquire the information needed to forward
that has been computed by an omniscient entity at a central location ?

Abstraction 3 Configuration
Whitebox switches are directly configured by an SDN controller

Conventional network elements have two parts:
1. smart but slow CPUs that create a Forwarding Information Base
2. fast but dumb switch fabrics that use the FIB

Whitebox switches only need the dumb part, thus
e eliminating distributed protocols
e not requiring intelligence

The API from the SDN controller down to the whitebox switches
is conventionally called the southbound API (e.g., OpenFlow, ForCES)

Note that this SB APl is in fact a protocol
but is a simple configuration protocol
not a distributed routing protocol
SDN & NFV, OF & ForCES 13.

Separation of data and control

You will often hear stated that the defining attribute of SDN is
the separation of the data and control planes

This separation was not invented recently by SDN academics

Since the 1980s all well-designed communications systems
have enforced logical separation of 3 planes :

e data plane (forwarding)

e control plane (e.g., routing)

e management plane (e.g., policy, commissioning, billing)

What SDN really does is to
1) insist on physical separation of data and control
2) erase the difference between control and management planes

management plane
control plane

data plane

SDN & NFV, OF & ForCES 14 .

Control or management

What happened to the management plane ?

Traditionally the distinction between control and management was that :
e management had a human in the loop
e while the control plane was automatic

With the introduction of more sophisticated software
the human could often be removed from the loop

The difference that remains is that

e the management plane is slow and centralized
e the control plane is fast and distributed

So, another way of looking at SDN
is to say that it merges
the control plane

into a single centralized management plane

SDN & NFV, OF & ForCES 15 .

SDN vs. distributed routing

Distributed routing protocols are limited to
e finding simple connectivity
* minimizing number of hops (or other additive cost functions)

but find it hard to perform more sophisticated operations, such as
e guaranteeing isolation (privacy)

e optimizing paths under constraints

e setting up non-overlapping backup paths (the Suurballe problem)

e integrating networking functionalities (e.g., NAT, firewall) into paths

This is why MPLS created the Path Computation Element architecture

An SDN controller is omniscient (the God box)
and holds the entire network description as a graph
on which arbitrary optimization calculations can be performed

But centralization comes at a price

e the controller is a single point of failure
(more generally different CAP-theorem trade-offs are involved)

e the architecture is limited to a single network

e additional (overhead) bandwidth is required

e additional set-up delay may be incurred .
SDN & NFV, OF & ForCES 16

Flows

It would be too slow for a whitebox switch
to query the centralized SDN controller
for every packet received

So we identify packets as belonging to flows

Abstraction 4 Flows (as in OpenFlow)
Packets are handled solely based on the flow to which they belong

Flows are thus just like Forwarding Equivalence Classes

Thus a flow may be determined by

e an IP prefix in an IP network

e alabelin an MPLS network

e VLANs in VLAN cross-connect networks

The granularity of a flow depends on the application

SDN & NFV, OF & ForCES 17 .

Control plane abstraction

In the standard SDN architecture, the SDN controller is omniscient
but does not itself program the network
since that would limit development of new network functionalities

With software we create building blocks with defined APIs
which are then used, and perhaps inherited and extended, by programmers

With networking, each network application has a tailored-made control plane
with its own element discovery, state distribution, failure recovery, etc.

Note the subtle change of terminology we have just introduced
instead of calling switching, routing, load balancing, etc. network functions
we call them network applications (similar to software apps)

Abstraction 5 Northbound APIs instead of protocols
Replace control plane protocols with well-defined APIs to network applications

This abstraction hide details of the network from the network application
revealing high-level concepts, such as requesting connectivity between A and B
but hiding details unimportant to the application
such as details of switches through which the path A - B passes .

SDN & NFV, OF & ForCES 18

SDN overall architecture

SDN
switch

SDN
controller

TN

SDN
switch

/

SDN
switch

/ Network \

SDN
switch

<€— northbound interface

€&——— southbound interface

(e.g., OpenFlow, ForCES)

SDN

switch

SDN
SWitCh/

SDN & NFV, OF & ForCES 19 .

Network Operating System

For example, a computer operating system
e sits between user programs and the physical computer hardware

e reveals high level functions (e.g., allocating a block of memory or writing to disk)
e hides hardware-specific details (e.g., memory chips and disk drives)

We can think of SDN as a Network Operating System

Note: apps
can be

user

user
application

user
application

network
application

network
application

network
application

application

added
without
changing OS

Computer Operating System Network Operating System

switch

SDN & NFV, OF & ForCES 20 .

HW HW HW whitebox whitebox whitebox
component)| component || component switch switch

SDN overlay model

We have been discussing the purist SDN model
where SDN builds an entire network using whiteboxes

For non-greenfield cases this model requires
upgrading (downgrading?) hardware to whitebox switches

An alternative model builds an SDN overlay network

The overlay tunnels traffic through the physical network
running SDN on top of switches that do not explicitly support SDN

Of course you may now need to administer two separate networks

SDN & NFV, OF & ForCES 21 .

Organizations working on SDN

The IRTF’'s SDNRG
e see RFC 7426

The Open Networking Forum (ONF)
e responsible for OpenFlow and related work
e promoting SDN principles

ITU-T SG13

e working on architectural issues

and many open source communities, including :
OpenDaylight

ON.Lab

Open Source SDN (OSSDN)

many other controllers

SDN & NFV, OF & ForCES 22 .

NFV

SDN & NFV, OF & ForCES 23

Virtualization of computation

In the field of computation, there has been a major trend towards virtualization

Virtualization here means the creation of a virtual machine (VM)
that acts like an independent physical computer

A VM is software that emulates hardware (e.g., an x86 CPU)
over which one can run software as if it is running on a physical computer

The VM runs on a host machine

and creates a guest machine (e.g., an x86 environment)
A single host computer may host many fully independent guest VMs

and each VM may run different Operating Systems and/or applications
For example

e a datacenter may have many racks of server cards
e each server card may have many (host) CPUs
e each CPU may run many (guest) VMs

A hypervisor is software that enables creation and monitoring of VMs

SDN & NFV, OF & ForCES 24 .

Network Functions Virtualization

CPUs are not the only hardware device that can be virtualized

Many (but not all) NEs can be replaced by software running on a CPU or VM

This would enable
e using standard COTS hardware (whitebox servers)
— reducing CAPEX and OPEX
e fully implementing functionality in software
— reducing development and deployment cycle times, opening up the R&D market
e consolidating equipment types
— reducing power consumption

e optionally concentrating network functions in datacenters or POPs
— obtaining further economies of scale. Enabling rapid scale-up and scale-down

For example, switches, routers, NATs, firewalls, IDS, etc.
are all good candidates for virtualization
as long as the data rates are not too high

Physical layer functions (e.g., Software Defined Radio) are not ideal candidates

High data-rate (core) NEs will probably remain in dedicated hardware

SDN & NFV, OF & ForCES 25

Potential VNFs

Potential Virtualized Network Functions

forwarding elements: Ethernet switch, router, Broadband Network Gateway, NAT
virtual CPE: demarcation + network functions + VASes

mobile network nodes: HLR/HSS, MME, SGSN, GGSN/PDN-GW, RNC, NodeB, eNodeB
residential nodes: home router and set-top box functions

gateways: |IPSec/SSL VPN gateways, IPv4-IPv6 conversion, tunneling encapsulations
traffic analysis: DPI, QOE measurement

QoS: service assurance, SLA monitoring, test and diagnostics

NGN signalling: SBCs, IMS

converged and network-wide functions: AAA servers, policy control, charging platforms
application-level optimization: CDN, cache server, load balancer, application accelerator

security functions: firewall, virus scanner, IDS/IPS, spam protection

SDN & NFV, OF & ForCES 26 .

Function relocation

Once a network functionality has been virtualized
it is relatively easy to relocate it

By relocation we mean
placing a function somewhere other than its conventional location
e.g., at Points of Presence and Data Centers

Many (mistakenly) believe that the main reason for NFV
is to move networking functions to data centers
where one can benefit from economies of scale

Some telecomm functionalities need to reside at their conventional location

e Loopback testing
e E2E performance monitoring

but many don’t

e routing and path computation
* billing/charging

e traffic management

e DoS attack blocking

Note: even nonvirtualized functions can be relocated
SDN & NFV, OF & ForCES 27

Example of relocation with SDN

SDN is, in fact, a specific example of function relocation

In conventional IP networks routers perform 2 functions
e forwarding
— observing the packet header
— consulting the Forwarding Information Base
— forwarding the packet
e routing
— communicating with neighboring routers to discover topology (routing protocols)
— runs routing algorithms (e.g., Dijkstra)
— populating the FIB used in packet forwarding

SDN enables moving the routing algorithms to a centralized location

e replace the router with a simpler but configurable whitebox switch
e install a centralized SDN controller

— runs the routing algorithms (internally — w/o on-the-wire protocols)
— configures the NEs by populating the FIB

SDN & NFV, OF & ForCES 28 .

Virtualization and Relocation of CPE

Recent attention has been on NFV
for Customer Premises Equipment

Network

Partial Virtualization ~*~ ~a Full Virtualization
| pvePE —

I | I\

11 /1 1\

! : HEl

v v !

1 1
Partial ‘ [i 1 ‘ | it
Relocation ‘ pVCPE : !._V_C_P_E__' vCPE | ‘| Ly_C_P_E__!

i :

1 i

1 1

’ Y
Full m————— i
R:Iocation pCPE ‘ L‘.’S:P_E_.! ‘ I ._VCPE=

SDN & NFV, OF & ForCES 29 .

Distributed NFV

The idea of optimally placing virtualized network functions in the network
from edge (CPE) through aggregation through PoPs and HQs to datacenters
is called Distributed-NFV (DNFV)

Optimal location of a functionality needs to take into consideration:
* resource availability (computational power, storage, bandwidth)
* real-estate availability and costs

* energy and cooling

* management and maintenance

* other economies of scale

* security and privacy

* regulatory issues

For example, consider moving a DPI engine from where it is needed
this requires sending the packets to be inspected to a remote DPI engine

If bandwidth is unavailable or expensive or excessive delay is added
then DPI must not be relocated
even if computational resources are less expensive elsewhere!
SDN & NFV, OF & ForCES 30.

ETSI NFV-ISG architecture

NFV Management and
Orchestration
Os-Ma |

wee OSS/BSS } Orchestrator
Se-Ma
: g @ce, VNF and Infrastructure 1
- —— o)
: Description i Or-Vnfm
EMS 1 EMS 2 EMS 3 Ve-Vnfm|
: : : : } VNF
—+ - B Manager(s)
VNF 1 VNF 2 VNF 3 4 orvi
: I E Vn-Nf I : _ 4 Vi-vnim
i [NEVI |
Virtual Virtual Virtual
Computing Storage Network
: - — Nf-Vi Virtualised
. Virtualisation Layer | Infrastructure
VI-Ha I Mahager(s)
: Hardware resources
teessks{ | Computing Storage Network :

Hardware Hardware Hardware |

o—o Execution reference points «-} - Other reference points ~ ==jmm Main NFV reference points .

SDN & NFV, OF & ForCES 31

MANO ? VIM ? VNFM? NFVO?

Traditional NEs have NMS (EMS) and perhaps are supported by an OSS

NFV has in addition the MANO (Management and Orchestration) containing :
e an orchestrator

e VNFM(s) (VNF Manager)

e VIM(s) (Virtual Infrastructure Manager)

* |ots of reference points (interfaces) !

The VIM (usually OpenStack) manages NFVI resources in one NFVI domain
e life-cycle of virtual resources (e.g., set-up, maintenance, tear-down of VMs)

e inventory of VMs

e FM and PM of hardware and software resources

e exposes APIs to other managers

The VNFM manages VNFs in one VNF domain

e life-cycle of VNFs (e.g., set-up, maintenance, tear-down of VNF instances)
e inventory of VNFs

e FM and PM of VNFs

The NFVO is responsible for resource and service orchestration

e controls NFVI resources everywhere via VIMs

e creates end-to-end services via VNFMs .
SDN & NFV, OF & ForCES 32

Organizations working on NFV

ETSI NFV Industry Specification Group (NFV-ISG)
e architecture and MANO
e Proofs of Concept

ETSI Mobile Edge Computing Industry Specification Group (MEC ISG)
e NFV for mobile backhaul networks

Broadband Forum (BBF)
e vCPE for residence and business applications

and many open source communities, including :

Open Platform for NFV (OPNFV)

e open source platform for accelerating NFV deployment
OpenStack — the most popular VIM

Open vSwitch —an open source switch supporting OpenFlow
DPDK, ODP —tools for making NFV more efficient

SDN & NFV, OF & ForCES 33 .

OpenFlow

What is OpenFlow ?

OpenFlow is an SDN southbound interface —
i.e., a protocol from an SDN controller to an SDN switch (whitebox)
that enables configuring forwarding behavior

What makes OpenFlow different from similar protocols is its switch model
it assumes that the SDN switch is based on TCAM matcher(s)
so flows are identified by exact match with wildcards on header field
supported header fields include:

e Ethernet - DA, SA, EtherType, VLAN

e MPLS —top label and BoS bit

e |P (v4 or v6) — DA, SA, protocol, DSCP, ECN

e TCP/UDP ports

OpenFlow grew out of Ethane and is now developed by the ONF
it has gone through several major versions
the latest is 1.5.0

SDN & NFV, OF & ForCES 35 .

OpenFlow

The OpenFlow specifications describe
e the southbound protocol between OF controller and OF switches
e the operation of the OF switch

The OpenFlow specifications do not define

e the northbound interface from OF controller to applications

e how to boot the network

e how an E2E path is set up by touching multiple OF switches

e how to configure or maintain an OF switch (which can be done by of-config)

The OF-CONFIG specification defines OF OF OF
a configuration and management protocol between

OF configuration point and OF capable switch N e s
e configures which OpenFlow controller(s) to use S‘,ﬁfch
e configures queues and ports

OF

e remotely changes port status (e.g., up/down) ng for open vswitch switch
e configures certificates OVSDE (RFC 7047) OF

. . . switch
e switch capability discovery OF-CONFIG =———>

e configuration of tunnel types (IP-in-GRE, VXLAN) OF capable switch |

SDN & NFV, OF & ForCES 36

OF matching

The basic entity in OpenFlow is the flow
A flow is a sequence of packets
that are forwarded through the network in the same way

Packets are classified as belonging to flows
based on match fields (switch ingress port, packet headers, metadata)
detailed in a flow table (list of match criteria)

Only a finite set of match fields is presently defined
and an even smaller set that must be supported

The matching operation is exact match
with certain fields allowing bit-masking
Since OF 1.1 the matching proceeds in a pipeline

Note: this limited type of matching is too primitive

to support a complete NFV solution
(it is even too primitive to support IP forwarding, let alone NAT, firewall ,or IDS!)

However, the assumption is that DPI is performed by the network application
and all the relevant packets will be easy to match .
SDN & NFV, OF & ForCES 37

OF flow table

match fields actions counters

flow entry =—> | match fields actions counters
match fields actions counters

flow miss entry —> actions counters

The flow table is populated by the controller

The incoming packet is matched by comparing to match fields
For simplicity, matching is exact match to a static set of fields
If matched, actions are performed and counters are updated
Entries have priorities and the highest priority match succeeds

Actions include editing, metering, and forwarding

SDN & NFV, OF & ForCES 38 .

OpenFlow 1.3 basic match fields

Switch input port
Physical input port
Metadata

Ethernet DA
Ethernet SA
EtherType
VLAN id
VLAN priority

IP DSCP

IP ECN

IP protocol
IPv4 SA
IPv4 DA
IPv6 SA
IPv6 DA

TCP source port

TCP destination port
UDP source port
UDP destination port
SCTP source port
SCTP destination port

ICMP type

ICMP code

ARP opcode

ARP source IPV4
address

ARP target IPv4 address
ARP source HW address
ARP target HW address

bold match fields MUST be supported

IPv6 Flow Label

ICMPvV6 type

ICMPvV6 code

Target address for IPv6 ND
Source link-layer for ND
Target link-layer for ND
IPv6 Extension Header
pseudo-field

MPLS label
MPLS BoS bit

PBB I-SID

Logical Port Metadata
(GRE, MPLS, VXLAN)

SDN & NFV, OF & ForCES 39 .

OpenFlow Switch Operation

There are two different kinds of OpenFlow compliant switches
e OF-only all forwarding is based on OpenFlow
e OF-hybrid supports conventional and OpenFlow forwarding

Hybrid switches will use some mechanism (e.g., VLAN ID) to differentiate
between packets to be forwarded by conventional processing
and those that are handled by OF

The switch first has to classify an incoming packet as
e conventional forwarding

e OF protocol packet from controller

e packet to be sent to flow table(s)

OF forwarding is accomplished by a flow table or since 1.1 by flow tables
An OpenFlow compliant switch must contain at least one flow table

OF also collects PM statistics (counters)
and has basic rate-limiting (metering) capabilities

An OF switch can not usually react by itself to network events
but there is a group mechanism that can be used for limited reactions .

SDN & NFV, OF & ForCES 40

Matching fields

An OF flow table can match multiple fields
So a single table may require

ingress port =P and

source MAC address =SM and destination MAC address =DM and
VLAN ID =VID and EtherType = ET and

source IP address = S and destination IP address=DI and

IP protocol number =P and

source TCP port =ST and destination TCP port = DT

This kind of exact match of many fields is expensive in software
but can readily implemented via TCAMs

Eth |Eth IP | IP
DA | SA SA | DA

IP
pro

ingress
port

TCP| TCP
SP | DP

VID‘ ET

OF 1.0 had only a single flow table
which led to overly limited hardware implementations
since practical TCAMs are limited to several thousand entries

OF 1.1 introduced multiple tables for scalability .
SDN & NFV, OF & ForCES 41

OF 1.1+ flow tables

packet flow flow flow action)
o ==—=| table table eee =] table al ot ‘ P acket

0 1 n

Table matching

e each flow table is ordered by priority

highest priority match is used (match can be made “negative” using drop action)
matching is exact match with certain fields allowing bit masking

table may specify ANY to wildcard the field

fields matched may have been modified in a previous step

Although the pipeline was introduced mainly for scalability

it gives the matching syntax more expressibility to (although no additional semantics)
In addition to the verbose

if (field1=valuel) AND (field2=value2) then ...
if (field1=value3) AND (field2=value4) then ...
it is now possible to accommodate
if (field1=valuel) then if (field2=value2) then ...

else if (field2=value4) then ... SON & NFY, OF & ForCES 42.

Unmatched packets

What happens when no match is found in the flow table ?

A flow table may contain a flow miss entry
to catch unmatched packets

The flow miss entry must be inserted by the controller just like any other entry
and is defined as wildcard on all fields, and lowest priority

The flow miss entry may be configured to :
— discard packet
— forward to a subsequent table
— forward (OF-encapsulated) packet to controller
— use “normal” (conventional) forwarding (for OF-hybrid switches)

If there is no flow miss entry
the packet is by default discarded
but this behavior may be changed via of-config

SDN & NFV, OF & ForCES 43 .

OF switch ports

The ports of an OpenFlow switch can be physical or logical

The following ports are defined :

e physical ports (connected to switch hardware interface)

e |ogical ports connected to tunnels (tunnel ID and physical port are reported to controller)
e ALL output port (packet sent to all ports except input and blocked ports)

e CONTROLLER packet from or to controller

e TABLE represents start of pipeline

e IN_PORT output port which represents the packet’s input port

e ANY wildcard port

e LOCAL optional — switch local stack for connection over network

e NORMAL optional port sends packet for conventional processing (ybrid switches oniy)

e FLOOD output port sends packet for conventional flooding

SDN & NFV, OF & ForCES 44 .

Instructions

Each flow entry contains an instruction set to be executed upon match

Instructions include:

e Metering : rate limit the flow (may result in packet being dropped)

Apply-Actions : causes actions in action list to be executed immediately
(may result in packet modification)

Write-Actions / Clear-Actions : changes action set associated with packet
which are performed when pipeline processing is over

Write-Metadata : writes metadata into metadata field associated with packet

Goto-Table : indicates the next flow table in the pipeline
if the match was found in flow table k
then goto-table m must obey m >k

SDN & NFV, OF & ForCES 45 .

Actions

OF enables performing actions on packets

e output packet to a specified port

e drop packet (if no actions are specified)

e apply group bucket actions (to be explained later)
e overwrite packet header fields

e copy or decrement TTL value

e push or pop push MPLS label or VLAN tag

e set QoS JUEUE (into which the packet will be placed before forwarding)

mandatory to support

optional to support

Action lists are performed immediately upon match

e actions are accumulatively performed in the order specified in the list
e particular action types may be performed multiple times

e further pipeline processing is on the modified packet

Action sets are performed at the end of pipeline processing
e actions are performed in the order specified in OF specification
e actions can only be performed once
SDN & NFV, OF & ForCES 46.

Meters

OF is not very strong in QoS features
but does have a metering mechanism

A flow entry can specify a meter, and the meter measures and limits the
aggregate rate of all flows to which it is attached

The meter can be used directly for simple rate-limiting (by discarding)
or can be combined with DSCSP remarking for DiffServ mapping

Each meter can have several meter bands

if the meter rate surpasses a meter band, the configured action takes place
where possible actions are
e drop
e increase DSCP drop precedence

SDN & NFV, OF & ForCES 47 .

OpenFlow statistics

OF switches maintain counters for every
e flow table

flow entry

e port

* queue

group

group bucket

meter

meter band

Counters are unsigned integers and wrap around without overflow indication
Counters may count received/transmitted packets, bytes, or durations

See table 5 of the OF specification for the list of mandatory and optional counters

SDN & NFV, OF & ForCES 48 .

Flow removal and expiry

Flows may be explicitly deleted by the controller at any time

However, flows may be preconfigured with finite lifetimes
and are automatically removed upon expiry

Each flow entry has two timeouts
e hard_timeout : if non-zero, the flow times out after X seconds

e idle_timeout: if non-zero, the flow times out
after not receiving a packet for X seconds

When a flow is removed for any reason,

there is flag which requires the switch to inform the controller
that the flow has been removed

the reason for its removal (expiry/delete)

the lifetime of the flow

statistics of the flow

SDN & NFV, OF & ForCES 49 .

Groups

Groups enable performing some set of actions on multiple flows
thus common actions can be modified once, instead of per flow

Groups also enable additional functionalities, such as
e replicating packets for multicast
e |oad balancing

e protection switch D | type | counters

Group operations are defined in group table

action buckets

Group tables provide functionality not available in flow table

While flow tables enable dropping or forwarding to one port
group tables enable (via group type) forwarding to :

e arandom port from a group of ports (load-balancing)

* the first live port in a group of ports (for failover)

e all ports in a group of ports (packet replicated for multicasting)

Action buckets are triggered by type:

e All execute all buckets in group

* Indirect execute one defined bucket

e Select (optional) execute a bucket (via round-robin, or hash algorithm)
e Fast failover (optional) execute the first live bucket

SDN & NFV, OF & ForCES 50

Slicings

Network slicing

A network can be divided into isolated slices
each with different behavior
each controlled by different controller

Thus the same switches can treat different packets in completely different ways
(for example, L2 switch some packets, L3 route others)

Bandwidth slicing

OpenFlow supports multiple queues per output port
in order to provide some minimum data bandwidth per flow

This is also called slicing since it provides a slice of the bandwidth to each queue

Queues may be configured to have :
e given length

e minimal/maximal bandwidth

e other properties

SDN & NFV, OF & ForCES 51 .

OpenFlow

OpenFlow protocol packet format

OF runs over TCP (optionally SSL for secure operation) using port 6633
and is specified by C structs

OF is a very low-level specification (assembly-language-like)

\

Ethernet header

IP header (20B)

TCP header with destination port 6633 or 6653 (20B)

Version (1B)
0x01/2/3/4

Type (1B) Length (2B)

Transaction ID (4B)

Type-specific information

SDN & NFV, OF & ForCES 52 .

OpenFlow messages

The OF protocol was built to be minimal and powerful

There are 3 types of OpenFlow messages :

OF controller to switch

e populates flow tables which SDN switch uses to forward
e request statistics

OF switch to controller (asynchronous messages)
e packet/byte counters for defined flows
e sends packets not matching a defined flow

Symmetric messages

e hellos (startup)

e echoes (heartbeats, measure control path latency)
e experimental messages for extensions

SDN & NFV, OF & ForCES 53 .

OpenFlow message types

Symmetric messages Controller command messages Queue Configuration messages
0 HELLO 13 PACKET_OUT 22 QUEUE_GET_CONFIG_REQUEST
1 ERROR 14 FLOW_MOD 23 QUEUE_GET_CONFIG_REPLY
2 ECHO_REQUEST 15 GROUP_MOD
3 ECHO_REPLY 16 PORT_MOD Controller role change request
4 EXPERIMENTER 17 TABLE_MOD messages
24 ROLE_REQUEST

Switch configuration Multipart messages 25 ROLE_REPLY
5 FEATURES _REQUEST 18 MULTIPART_REQUEST
6 FEATURES_REPLY 19 MULTIPART_REPLY Asynchronous message Conﬁguraﬁon
7 GET_CONFIG_REQUEST 26 GET_ASYNC_REQUEST
8 GET_CONFIG_REPLY Barrier messages 27 GET_ASYNC_REPLY
9 SET_CONFIG 20 BARRIER_REQUEST 28 SET_ASYNC

21 BARRIER_REPLY
Asynchronous messages Meters and rate limiters configuration
10 PACKET_IN =10 29 METER_MOD

11 FLOW_REMOVED =11
12 PORT_STATUS =12

Interestingly, OF uses a protocol version and TLVs for extensibility

These are 2 generic control plane mechanisms,
of the type that SDN claims don’t exist ...
SDN & NFV, OF & ForCES 54 .

Session setup and maintenance

An OF switch may contain default flow entries to use
before connecting with a controller

The switch will boot into a special failure mode

An OF switch is usually pre-configured with the IP address of a controller

An OF switch may establish communication with multiple controllers in order
to improve reliability or scalability; the hand-over is managed by the controllers.

OF is best run over a secure connection (TLS/SSL),
but can be run over unprotected TCP

Hello messages are exchanged between switch and controller upon startup
hellos contain version number and optionally other data

Echo_Request and Echo_reply are used to verify connection liveliness
and optionally to measure its latency or bandwidth
Experimenter messages are for experimentation with new OF features

If a session is interrupted by connection failure

the OF switch continues operation with the current configuration
Upon re-establishing connection the controller may delete all flow entries .
SDN & NFV, OF & ForCES 55

Bootstrapping

How does the OF controller communicate with OF switches
before OF has set up the network ?

The OF specification explicitly avoids this question

e one may assume conventional IP forwarding to pre-exist

® one can use spanning tree algorithm with controller as root,
once switch discovers controller it sends topology information

How are flows initially configured ?

The specification allows two methods
e proactive (push) flows are set up without first receiving packets
e reactively (pull) flows are only set up after a packet has been received

A network may mix the two methods

Service Providers may prefer proactive configuration
while enterprises may prefer reactive

SDN & NFV, OF & ForCES 56 .

Barrier message

An OF switch does not explicitly acknowledge message receipt or execution

OF switches may arbitrarily reorder message execution
in order to maximize performance

When the order in which the switch executes messages is important
or an explicit acknowledgement is required
the controller can send a Barrier_Request message

Upon receiving a barrier request
the switch must finish processing all previously received messages
before executing any new messages

Once all old messages have been executed
the switch sends a Barrier_Reply message back to the controller

SDN & NFV, OF & ForCES 57 .

ForCES

SDN & NFV, OF & ForCES 58

ForCES History

FORwarding & Control Element Separation.

IETF working group

Established in 2001
Era of Network Processing Forum (NPF)

Need for open and standardized programmable

interfaces for off-the-shelf network processor devices'

Concluded in 2015
Set of:

Protocols

Model

Thttps://datatracker.ietf.org/doc/charter-ietf-forces/03/

ForCES History — Major milestones

Dot |RFC___|I/PS [Milestone

July 2001 Working group established
Dec 2003 RFC3654 | Requirements RFC

Apr 2004 RFC3746 I Framework RFC

Jul 2009 (RFC6053) 15" interoperability test
Mar 2010 RFC5810 PS ForCES Protocol

Mar 2010 RFC5811 PS SCTP-TML

Mar 2010 RFC5812 PS ForCES Model

Feb 2011 (RFC6984) 2" interoperability test
Jun 2013 RFC6956 PS LFB library (Data model)
May 2013 Re-chartered

Oct 2014 RFC7391 PS ForCES Protocol Extension
Nov 2014 RFC7408 PS ForCES Model Extension
Mar 2015 Working group concluded

ForCES terminology

The ForCES protocol is a master-slave protocol in which FEs are
slaves and CEs are masters. Includes both the management of the

communication channel and the control messages.

FE Model (RFC5812)

The FE model provides the basis to define the information elements
exchanged between the CE and the FE in the ForCES protocol.

The FE model is primarily an information model?, but includes

aspects of a data model.

https://tools.ietf.org/html/rfc3444

Conceptual view
o

o1 ForCES Protocol
Northbound Interface o Binary

; o Carrying information described
by model

I ForCES protocol . 0 FE Model

o1 Representation of resources

cific Interface

Network Device

ForCES juxtaposition on SDN (RFC7426)

Service Application Plane

Service Interface

n -—

o &

> S

o : 0

= Service o

o S o

o c

c 2 5

o 2z
Control Abstraction Layer (CAL) Management Abstraction Layer (MAL)

CP MP
Southbound OrCES Southbound
Interface

Interface ForCES
Model

Forwarding Plane

ForCES Framework (RFC3746)

Network Element (NE) 1 Network Element (NE)

Packet Processing Entity
Control Plane
[Constitutes of CEs & FEs
|
Control) i Multiple CEs to FEs for HA
Element (CE) — CEs/FEs Physical or Virtual
ForCES tocol o e
I o Ipro OCOI 1 NE components distributed
Forwarding Plane Local (within one box)
— g Geographical distributed (LAN/
Forwarding g) E) WAN /Internet)
Element (FE)

ForCES Framework (RFC3746)

-1 Managers (CE/FE)

ForCES Network Element

Bootstrap and subsidiary

. \ 2 Control Plane V¥
mechanisms. E
CE/FE discovery quqger é% CE N I TTTTTTTTRR D CE
Determine which CEs/FEs will T T
communicate. l /\ l
FE manager (part) in charter =
® Subsidiary mechanism?® Manager <= FE [€----—- > FE
. A A
Could be: '“\ I Forwarding Plane |A
= A protocol (proprietary/open) \; \;
E.g. ForCES3

m Simple text file

3https://www.ietf.org/id/draft-ietf-forces-Ifb-subsidiary-management-01.txt (to be published)

ForCES FE Model (RFC581 2)

66 |
1 ForCES FE Model

"I NEs composed of logically separate packet processing elements

"1 Model FEs using Logical Functional Blocks (LFBs).

1 Fine (or coarse as needed) grained operations
1 Hardware/Software

1 Physical /Virtual

"I FE — directed graph of LFB class instances
1 Graph can be dynamic if supported by implementation

"1 Includes both Capability & State Model
1 XML schema

1 Rules on how to describe LFB model libraries in XML.

Resource
(Implementation)

LFB Model (RFC5812)

Control
Element (CE)

I ForCES

\

>

Forwarding Element (FE)

Written in XML

Object-oriented approach
Model defines LFB Classes

Instantiate LFB Instances

Features

LFB Class Versioning
LFB Class Inheritance

Backwards/Forwards compatibility

Point of interoperability between
implementations
Similar to SNMP MIBs

ForCES Model — Core LFBs

Core LFBs (FE Management as a whole)

FEObject LFB (Class ID 1 — RFC5812)
Regards capabilities and state of FE e.g.:

Instantiated LFBs (Can be used to instantiate new LFBs runtime)
LFB Topology (Can be used to change topology runtime)
Supported LFBs

FEProtocol LFB (Class ID 2 — RFC5810)

Regards protocol functionality e.g.:
All CEs
Heartbeat policies

HA policies/capabilities

ForCES Model — LFBs (RFC581 2)

1 Logical Functional Block Class
Fine-grained or coarse grained per need.

Abstractions:
= Input / Output Ports

Frame Expected /Frame Produced
Packet
Metadata

Singleton/Group

m Components I From/To CE

m Capabilities

Components I: Packet' /Metadata’ k
Capabilities

Events

m Events

LFB Class

ForCES Model — LFB Library

(RFC5812)

o Sequence of top-level elements

o Optional list (ordered)
Description (Description)
Load (Imports)

Frame Definitions
Data Type Definitions
Metadata Type Definitions

LFB class Definition

| LFBLibrary é—

[E] attributes

| (o]

————————————

.........
.........

- constraints

I'———_l
loadType I

ForCES Model — Frames

-1 Frames or Packets Definitions expected/produced
from/at LFB ports

1 Example:

<frameDef>

<name>IPv4</name>

<synopsis>An IPv4 packet</synopsis>
</frameDef>

[name |
(frameDefsType E]—(—--—E—' frameDef E?_(* -
1.0

L- -!fdescription p

ForCES Model — DataTypes
(REC581 2)

1 Datatype definition
C-like base datatypes

® Atomic

char, uchar, byte[N]

String, String[N], octetstring[N] -1 derivedFrom |

(v)int16, (V)int32, (u)int64

float32, floaté4 - fpdescription |

Boolean typeRer
= Compound -mewe[:efﬁ_(*E_ stome

Struct " I—(typeDeclarationGroupjE]—(—/E}jEI—

Arrays
w Alias (Symbolic Links)
®m Augmentations i-{é_i_!?f%i_-i_t'}?;a]@?_";

Building blocks for custom-defined datatypes.

ForCES Model — Metadata

Metadata Type definition

Data produced by LFBs to assist other LFB’s processing
E.g. PHYPortID.

Atomic (RFC5812)/Compound (RFC7408) Data type
Metadata ID MUST be LFB library unique

[metadataDefsType E]—(—--—E—' metadataDef |;|—("“'J3— “metadata
1.® ---if escription !

ForCES Model — LFB Class

1 Define LFB classes

LFB Class ID Globally (NE) Unique (uint32)

Version

Derived From (inheritance)

(LFBClassDefsType [—~=- =

LFBClassDef [ﬁ]—

LFB Class Definition

Components

Capabilities

Events

1.@

[E] attributes

LFBClassID

~name

synopsis

version

e

' '
---------- ™"
"

..................

............

constraints

ForCES Model — Components

1 Operational Parameters visible to CE

1 Component ID

Unique per component level Bemoues]|
-1 Access control
Redd-only
Read-write
LFBC nents ——ee— componen —
(et G e . Fasscpiion
Read-reset 1.2 oot
{_optional
Trigger-only
Write-only | (=
-1 Datatype Reference | e |

= alias

{]

o

o
L Y &

ForCES Model — Capabilities

Limitations or Capabilities advertised by LFB

E.g. HA capabilities
E.g. Port number Limit

Similar to Components
ReCId _Only (LFBCapabilitiesType [~ |7 capabilityV[i;]—

Component ID unique

5] attributes |
componentiD

L Synopsis

..........

= alias

m

NBIE
AR

(1] 1]
EEEE*

ForCES Model — Events

1 Custom-defined
1 Base ID unique

1 Subscription-based

eventsType I;}—

1 Event Conditions

Created
Deleted

[E] attributes

Changed
LessThan
GreaterThan

BecomesEqualTo (Model Extension)

o1 Filters
Threshold
Hysterisis
Count

Interval (in milliseconds)

71 Event Reports (Component reported)

—(—-u—E—' eve ntv[a—

—(

'
'
L.
'
'

[E] attributes
N

|

eventPathType

—| eventTarget [%]—L(—--— feventPath Part

.—Fevent(:ondition |

................

E

A
1.»

ForCES Model — LFB Example

<dataTypeDefs>
<dataTypeDef>
<name>PacketCounter</name>
<synopsis>Counts Packets</synopsis>
<typeRef>uint32</typeRef>
</dataTypeDef>
</dataTypeDefs>
<LFBClassDefs>
<LFBClassDef LFBClassID="1000">
<name>Monitor</name>
<synopsis>A monitor LFB for packets</synopsis>
<version>1.0</version>
<components>
<component componentiD="1" access="read-only">
<name>GoodPackets</name>
<synopsis>Good packets</synopsis>
<typeRef>PacketCounter</typeRef>
</component>
<component componentlD="2" access="read-only">
<name>BadPackets</name>
<synopsis>Bad packets</synopsis>
<typeRef>PacketCounter</typeRef>
</component>
</components>
<capabilities>
<capability componentID="3">
<name>PacketCheck</name>
<synopsis>Type of checks</synopsis>

<struct>
<component componentID="1">
<name>CRC</name>
<synopsis>Checks for CRC</synopsis>
<typeRef>boolean</typeRef>
</component>
<component component|D="2">
<name>BadFrame</name>
<synopsis>Checks for bad frames</synopsis>
<typeRef>boolean</typeRef>
</component>
</struct>
</capability>
</capabilities>
<events baselD="4">
<event eventlD="1">
<name>CheckBadPackets</name>
<synopsis>Checks for bad packets</synopsis>
<eventTarget>
<eventField>BadPackets</eventField>
</eventTarget>
<eventGreaterThan>1000</eventGreaterThan>
<eventReports>
<eventReport>
<eventField>BadPackets</eventField>
</eventReport>
</eventReports>
</event>
</events>
</LFBClassDef>

ForCES Protocol (RFC5810)

CE

Protocol Layer
(ForCES protocol)

Transport Layer

(SCTP)

J]

Transport Layer

(SCTP)

Protocol Layer
(ForCES protocol)

FE

Protocol & Transport Layer

ForCES
Base ForCES semantics and encapsulation (RFC 5810)

Two phases:

Pre-association

Post-association

Transport depends on underlying media. One is
standardized (RFC 581 1) — others expected to be

Standardized TML: SCTP with strict priority schedule
High Priority (HP): Strictly reliable channel
Medium Priority (MP): Semi-reliable

Low Priority (LP): Unreliable channel

ForCES Protocol (cont.)

Simple Commands (Verbs) (Model elements are nouns)
Set/Get/Del
Set/Get Properties (for properties & events)

Message Acknowledgment

CE Always/Never/On Failure /On success

Protocol Layer Transactional capability (2 Phase Commit)

(ForCES protocol) Various Execution modes

Tran rt L r
ansport Laye Execute all or none

(SCTP) Execute till failure
HP1 MPI LP:[Execute on failure
Scalability
Transport Layer Batching
(SCTP) Command pipeline
Protocol Layer Security
(ForCES protocol) IPSec
FE Traffic Sensitive Heartbeating

High Availability
Hot/Cold Standby

ForCES Protocol — Addressing

Addressing scheme similar to SNMP MIBs (OIDs)

FEs in an NE uniquely distinguished by a 32-bit ID (FEID)
FEID within FE Protocol LFB (Assigned by FE Manager)

LFB Class IDs unique 32-bit ID (IANA assigned)
LFB Instance ID unique per FE

Components/Capabilities /Struct Components/Events have 32-
bit IDs

Arrays — Each row with a 32-bit row ID index
Supports Key content addressable

Path: Verb+ /FEID/LFB Class/LFB Instance/Path to component
E.g. GET /FE 3/Port/1/PoriTable/ifindex10
Wire: 7 /3/4/1/1/10

ForCES Protocol — Message

[)
Construction
Common
Header
Redirect LFBSelect ASResult ASTeardown
TLV TLV TLV TLV
Operation
TLV
PathData Optional
TLV KeylnfoTLV
PathData FullData SparseData
TLV Result TLV TLV TLV

Newest additions

Subsidiary mechanism LFB

LFB to handle management functions on FEs
Load /Unload new LFBs
Setup CE connectivity

InterFE LFB

LFB to chain functionality of LFBs across multiple FEs

N ,

Forwarding Element (FE) Forwarding Element (FE)

Usage Examples

Usage Examples (Data Center)

Usage examples (SDN/NFV)

SGi-LAN
(Internet)

Manager
Orchestrator
AL

=

GTPv2-C i

MME
(emulator)

GTPvU LFB

LL

Usage examples (Common model)

sl nlies

Network Manager
v vv vv v
1
1
1

ﬁrg Abstraction
ForCE3 Layer ForCES Layer \ ‘ ForCES Layer

ha'd

ForCE I Jer ForCES
123 ' | L83
181 LFB2 g
B3 UFB4

FcrCES lcyer

ForCES ForCES

Josiar1adAy

a41

A

A
ForCES (for | ForCES (for IOpen API (with ForCES
¥ configuration) ¥ management) semantics)

Summary & Conclusion

ForCES has a potential to be used where separation is
required.

Besides datapath management
Wired

Device management (Up/Down)
Change device functionality (if device is capable)

Wireless
Channel selection
SSID management
Adjust RF parameters
Access Control

LTE

Management of devices (from base stations to backbone) from a
central location

Thank you for listening

RFC 3746

NE RFC5813 REC5812
RFC6956
CE FE RFC7408
RFC5810
ForCES PL RFC7121 ForCES PL
RFC7391
SCTP TML RFC5811 SCTP TML
IPSec RFC5811 IPSec

ForCES RFC Roadmap

