Overview of RIPE Atlas

Robert Kisteleki

What is RIPE Atlas

You already know what it is :-)

Capabilities

- Already supported measurement types:
 - ping
 - traceroute (ICMP/UDP/TCP)
 - DNS
 - NTP
 - SSL/TLS certificate checks
- In the making:
 - HTTP towards (RIPE Atlas) anchors, later perhaps HTTPS too
 - SSL/TLS version / cipher tests
 - WiFi (opt-in, above tests using a wifi connection)

Technicalities

- We work with dedicated hardware devices
 - Deployed mostly in homes, so they must be small
 - They are small, so they have limited capabilities
- In particular:
 - v1 is a Lantronix XPortPro, 8MB RAM, 16MB flash
 - v2 is a Lantronix XPortPro, 16MB RAM, 16MB flash
 - v3 is a TP-Link MR3020, 32MB RAM, 4MB flash + 4GB USB
 - anchors are Soekris Net6501-70, rack mountable
- Small devices are getting more powerful over time, but we need to support the existing nodes too

Technicalities

- We need to deal with resource constraints:
 - The measurement code has to be extremely efficient
 - (In addition we also need to deal with instrumentation...)
- Some insights into the measurement code
 - model is no-fork; that is code is started once, it picks up and executes measurements tasks while running
 - we use lib event for this, with a few processes
 - implementing complex protocols is hard
 - implementing exotic protocols is even harder :-)
 - implementing experimental protocols have high risks

Technicalities

- Probes are headless, we need to deal with that
 - (especially tricky to do field-upgrades)
 - any new code must play very friendly with the model
- Anchors / VMs are a bit easier
 - but still cannot run completely different code for the benefit of uniform measurements
 - may be possible to run "extensions" but must be very careful on interfacing and integration
 - resource use is key to avoid interference with other measurements
 - these are in the core, so "HOPS testing" for checking home NAT boxes is tough
- Bottom line: supporting to new protocols is tough...

Usefulness for HOPS

- Current potential for HOPS
 - Atlas' power is in the numbers and deployment diversity, not in protocol variety
 - 3032 (5.95%) IPv4 ASNs covered
 - 1131 (11.499%) IPv6 ASNs covered
 - 172 countries covered
 - traceroute with varying packet sizes and other options
 - PMTU, paris ID, ...
 - TCP traceroutes (for middlebox detection?)
 - measurement code works well naively with NATs, no UPnP or other dark magic are used
 - can detect differences between TCP/UDP behaviour related to NATs