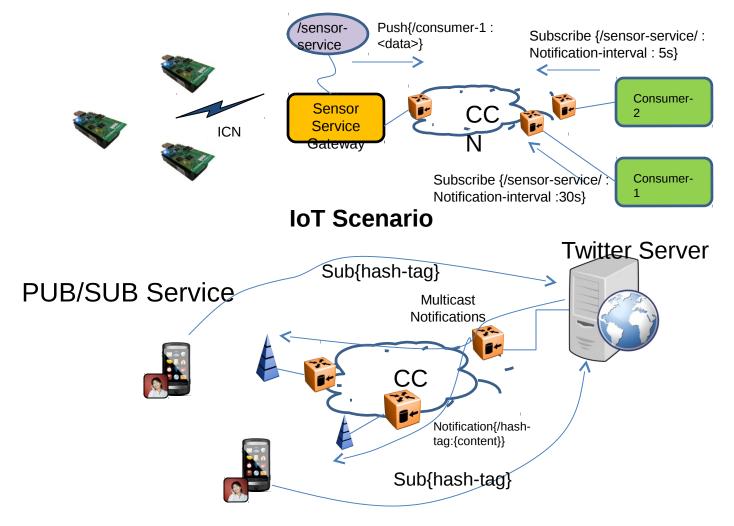
Support for Notifications in CCN ("draft-ravi-ccn-notification-00.txt") IETF/ICN-RG -93, Prague

Ravi Ravindran (ravi.ravindran@huawei.com) Asit Chakraborti(asit.chakraborti@huawei.com) Marc Mosko(marc.mosko@parc.com) Ignacio Solis(ignacio.solis@parc.com)

Need for Notification


• Notification provides asynchronous way to update listeners about a particular event related to:

- Periodic updates from a monitoring system
- Event triggers due to state change of a control system
- Command operations in actuating situations
- Discovery when nodes come online
- Control Plane Interaction due to state or context change
- •In such situations PUSH is more energy efficient than PULL or Probing.
- Notifications can be Unicast or Multicast
- Its use pervades many application such as in IoT and Social Networking
- •Notification traffic type varies from being mission critical to best effort.
 - Hence reliability can be at the level of application, transport, or the network layer
- The latency requirements can be very stringent, ~5ms [1] for certain

Systems. [1] Osseiran. A et al "Scenarios for 5G mobile and wireless communications: the vision of the METIS project", IEEE Communication Manaffrie, Systems, Remote Surgeries etc.

Notification Use Cases

• Subscribing to some sensor information

Social Networking

Current Support for Notifications in CCNx1.0

- Current support is by emulating PUSH though the Interest Pull API
- In CCNx1.0, the interest life time can be set to 0, to avoid state at the intermediate forwarders.
- Several Issues:
 - Depending on implementation, the Interests can be subjected to PIT/CS processing which incurs computing and latency cost.
 - Using Interest life time to indicate this important type of traffic class is not desirable.
 - How to differentiate between legit PULL with zero lifetime from PUSH ?
 - Differentiating among different types of PUSH traffic, e.g. mission critical PUSH versus Best-effort.
 - Forwarder should differentiate between routing policies applied to PUSH versus PULL.
 - Differentiating PUSH/PULL traffic aggregating under the same prefix in the forwarder.
 - E.g. PUSH forwarding requires simple multicast, without any strategy layer intervention.
 - In an PUSH emulation scenario : How to carry Content Objects in an Interest to take advantage of its features like cache lifetime, secure name-data binding?

Notification Proposal considering CCNx1.0

- Notification is identified with a new transport primitive in the fixed header.
- Here PacketType is set to TYPE_NOTIFICATION.
- Allows forwarder to apply special packet processing and routing/forwarding logic.
- When forwarder encounters this type of traffic, only FIB state in the forwarder should be used.
- New hop-by-hop fields relevant to Notifications.

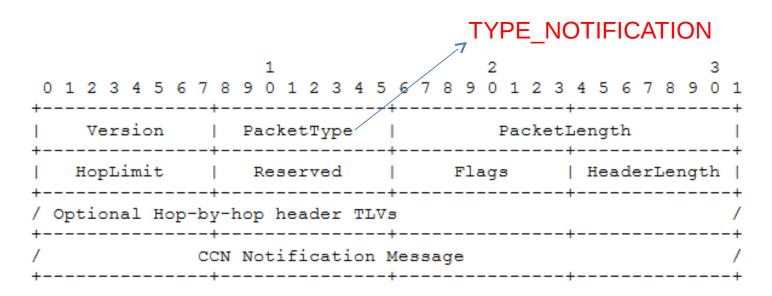


Figure 1: Notification fixed header

Notification Message Considering CCNx1.0

- CCN Notification message is a Content Object, which can optionally encapsulate another Content Object.
- Top level CO Name TLV used for forwarding.
- The **Message Payload Type** optionally includes a new T_ENCAP type payload which optionally encapsulates another CO.
 - This separates Routing Namespace from Content Producer Namespace
 - With only top CO, the Consumer/Producer agrees on the same namespace for routing and producing Content.
- The draft requires these Content Objects to be not cached in the network.

	01234567	1 8 9 0 1 2 3 4 5	2 678901234	3 5 6 7 8 9 0 1	
Four type • Data • Link • Manifest • Key	MessageType = Co	ontent Object	Messagel	ength	
	!	Name TLV	+-		-
	Optional MetaData TLVs		T_PAYLO		
	Message Payload	д Туре	Message	Type Length	ADTYPE_
	Optional Content Object			LEN T PAYLO	
-> T_ENCAP (New)	/ Optional CCNx	ValidationAlgori	thm TLV	/	AD TLV
	Optional CCNx ValidationPayload TLV (ValidationAlg required)				

Figure 2: CCN Notification Message

Security Implications

• Flow Balance

- Current model manages flow balance in the network with 1:1 relationship between an expressed Interest and returned CO.
- Unsolicited CO transmission over a CCN infrastructure violates this principal.
- Cannot throttle traffic at the edges which CCN enables using PIT.

Cache Poisoning

- No caching recommendation of this draft
- But it is open research to understand policy based caching implications of these notification objects to increase data availability

• Other issues:

- Require mechanisms to handle End-to-end Reliability, Flow and Congestion Control for Notifications.
 - "draft-ietf-core-observe-16" has several considerations on this regard in the context of CoAP protocol.
- Size of the allowed Content Object
 - Possibly impose restriction on the size of Notification, forwarder may drop beyond this size.

Conclusions

- The draft proposes a new Notification primitive for CCN.
- This allows forwarder to apply new processing logic to this new traffic type.
 - Avoiding PIT/CS processing
 - Notification specific Routing/Forwarding Policies
- The notification CO shouldn't be cached.
 - Should be investigated as a possible feature to increase data availability.
- CCN Notifications have implications on flow control, Caching, and end-to-end reliability which require more research.