OpenConfig Reply
draft-bjorklund-netmod-openconfig-reply-00

Jurgen Schonwalder, Jacobs University

Tuesday 21 July 2015 IETF 93 - NETMOD WG



OpenConfig Discussion Background

* OpenConfig proposals at IETF 92 (March 2015)

— draft-openconfig-netmod-model-structure-00

 Virtual Interim Meetings (June 2015)

— draft-openconfig-netmod-opstate-01

* Response to OpenConfig proposal (July 2015)
— draft-bjorklund-netmod-openconfig-reply-00



#1: "asynchronous” implementations

* OpenConfig proposal:

— All configuration nodes are duplicated in a
separate config false branch of the data tree, in
order to support "asynchronous”
implementations.

— The config true part of the tree is called "intended
configuration”, and is always modeled under a NP
container "config", and the duplicate part is called
"actual configuration”, and is always modeled
under a NP container "state".



#1: "asynchronous” implementations

* (Cons:

Data model duplication. This reduces the readability of the models,
uses additional memory in implementations, and adds to the
complexity of the overall solution.

Fragile solution, since it relies on a convention; if a module doesn't
follow this convention, that module cannot be used in a such a
system.

Adding semantics to node names instead of using YANG statements.

Relies on groupings and therefore the YANG constraints will be
applied to the config=false copy, even if the operational state does not
have the same restrictions as the config.

Mandatory for all platforms even if they are not synchronous.

Leafrefs will be broken - if a leafref has the "config" node in its path,
then the "state" version of the leafref still refers to the "config" node.



#1: "asynchronous” implementations

* Alternate proposal:

— We propose that the actual config is handled as a
separate conceptual datastore. In NETCONF, this
can be done by using get-config with a new
datastore name. Other protocols would do
something similar.



#1: "asynchronous” implementations

* Pros:

— This works without rewriting any modules already
published. It works with vendor models and models
from other SDOs that do not follow these
conventions.

— Doesn't cost anything for synchronous platforms.

e Cons:

— Needs a datastore, a concept that not all protocols
support.

— Note: A protocol does not have to expose datastores
in the same way as NETCONF in order to support this
concept.



2: relate config to state

* OpenConfig proposal:

— All data models always add two special NP
containers "config" and "state” which contains all
leafs, in order to have a simple and deterministic
way to related config to state.



2: relate config to state

e Cons:

— Too simplistic. Doesn't solve the problem that the
state may contain different instances than config.
Configuration data and operational instances are
really separate entities, and should be modeled as
such.

— Adds noise to the data model.

— Fragile solution, since it relies on a convention; if a
module doesn't follow this convention, that module
cannot be used in a such a system.

— Adds semantics to node names instead of using YANG
statements.



2: relate config to state

* Alternate proposal:

— Follow the solution used in RFC 7223 (branch at
the root, /interfaces and /interfaces-state)

— |t should be noted that in both the open config
proposal and the scheme from RFC 7223, there is
no formal way to know the relationship between
the configuration and its related operational state.
It might be worthwhile to try to define YANG
statements to solve this problem instead.



3: top-level node

* OpenConfig proposal:

— All data models intended for devices are rooted
under a top-level node called "device".

* Cons:

— Doesn't solve any problem. It just adds 7
characters to all paths. Whatever problem there
is today with "/FOO” will now be a problem with
"/device/FOQ".

— All existing models need to be rewritten, including
vendor models.



3: top-level node

* Alternate proposal:
— Use "/" as the top level.



Discussion

e How do we continue this discussion and
conclude it in a timely manner?



