Daala: Tools and Techniques IETF 93 (Prague)

Daala Inter Encoder

Daala Intra Encoder

Transform

- Lapped transform
 - N-point pre-filter removes correlation between blocks
 - N-point DCT within blocks
 - Decoder applies inverse (non-adaptive post-filter)

Transforms

- draft-egge-netvc-tdlt-00
- Sizes: 4x4, 8x8, 16x16, 32x32 (64x64 in progress)
- Reversible
 - iLT(fLT(x)) == x for all x
- Biorthogonal (not orthogonal)
 - Not all basis functions have the same magnitude
 - Slight correlation between coefficients

Overlapped Block Motion Compensation

- draft-terriberry-netvc-obmc
- Goal: MC prediction with no blocking artifacts
- Variable block size (unrelated to transform size)
 - Unlike Dirac, larger blocks use larger blend window
 - Currently restricted so adjacent blocks differ by at most one size to maintain continuity
 - Possible to remove this restriction
- Subpel: separable 6-tap filters
 - Windowed sinc
 - 7-bit coefficients, no truncation/rounding between horizontal/vertical stages

OBMC - Prediction

- OBMC produces a prediction image for the whole frame
 - PVQ requires a prediction in the frequency domain
 - Just apply forward transforms to the prediction image
- Currently no explicit intra mode
 - PVQ can choose to discard the prediction (noref)
 - Our encoder still spends bits trying to improve it during motion search

Displaced Frame Difference

- Motion Compensation
 - Copy blocks from an already encoded frame (offset by a motion vector)
 - Subtract from the current frame
 - Code the residual

Input

Reference frame

Residual

Displaca Frame Serence

- Motion ompensation
 - Comblocks from an already encode a fram (offset by motion vector)
 - Stract from the currer ame
 - C e the residual

Input

Residual

Perceptual Vector Quantization

- Separate "gain" (contrast) from "shape" (spectrum)
 - Vector = Magnitude × Unit Vector (point on sphere)
- Potential advantages
 - Better contrast preservation
 - Better representation of coefficients
 - Free "activity masking"
 - Can throw away more information in regions of high contrast (relative error is smaller)
 - The "gain" is what we need to know to do this!

PVQ with a Prediction

- Subtracting and coding a residual loses energy preservation
 - The "gain" no longer represents the contrast
- But we still want to use predictors
 - They do a *really* good job of reducing what we need to code
 - Hard to use prediction on the shape (on the surface of a hyper-sphere)
- Solution: transform the space to make it easier

• Input

• Input + Prediction

Input + Prediction

 Compute Householder Reflection

Prediction

Input + Prediction

 Compute Householder Reflection

Apply Reflection

Input + Prediction

 Compute Householder Reflection

Apply Reflection

Compute & code angle

Input + Prediction

 Compute Householder Reflection

Apply Reflection

- Compute & code angle
- Code other dimensions

What does this accomplish?

- Creates another "intuitive" parameter, θ
 - "How much like the predictor are we?"
 - $-\theta = 0$ → use predictor exactly
- Remaining N-1 dimensions are coded with VQ
 - We know their magnitude is gain*sin(θ)
- Instead of subtraction (translation), we're scaling and reflecting

Activity Masking

- Noise is more visible in low contrast areas
 - Sensitivity $\propto g^{\alpha}$

Activity Masking

- Better resolution in low-contrast (gain) areas
- Compand gain with exponent β

PVQ Bands

- DC coded separately with scalar quantization
 - Intra uses "Haar DC" to get better resolution over large areas
- AC coefficients grouped into bands
 - Gain, theta, etc., signaled separately for each band
 - Layout ad-hoc for now
- Scan order in each band optimized for decreasing variance

Band Structure

To Predict or Not to Predict

- $\theta > \pi/2 \rightarrow$ Prediction not helping
 - Could code large θ 's, but doesn't seem that useful
 - Need to handle zero predictors anyway
- Current approach: code a "noref" flag
 - Jointly coded with small gain and theta values

H+V Intra Prediction (luma)

- Copy first row/column of neighbor to corresponding bands
 - Only if size of corresponding blocks match
- Use noref to decide whether to use that as a predictor
- For the first band (first 15 AC coeffs), have to choose (only one noref flag)
 - Copy from neighbor with highest energy
- No explicit intra mode signaled

Chroma from Luma

- Use luma coeffs. as PVQ predictor for chroma
 - For 4:2:0 4x4 chroma blocks, TF-merge 4x4 luma blocks and take the low quadrant
- No longer building a model from neighbors
 - PVQ gains signal scaling
 - noref flag can disable prediction
 - Additional "flip" flag can reverse the whole predictor (coded on first non-noref band)
- No longer predicting chroma DC from luma

Quantization

- Per-coefficient quantizers
 - Interpolated up/down from 8x8 matrix
 - Compensation for LT basis magnitudes in separate step
- Built-in activity masking
 - Goal: better resolution in flat areas
 - Low contrast → low energy (gain)
 - Compand gain, choose resolution for θ and K based on quantized gain

Entropy Coding

- draft-terriberry-netvc-codingtools
- Non-binary arithmetic coding
 - Theory: many overheads are *per-symbol*
 - Reducing the number of symbols improves throughput/cycle
- Much simpler than encoding multiple symbols in parallel
 - Decoder search in non-binary alphabet can still be parallelized (with SIMD or in hardware)

Entropy Coding

- Multiply-free partition function
 - Modified from Stuiver & Moffat 1998 design
 - $-R \rightarrow c + \min(c, R total)$
 - Requires total ≤ R < 2*total (shift up if not)

Entropy Coding: Properties

- 15-bit probabilities
- Alphabet sizes up to 16
 - Want to keep as close to this as possible for maximum efficiency
- Several different adaptation strategies
 - Traditional frequency counts
 - Laplace encoder parameterized by expected value
 - "Generic Coder" combines frequency counts at several scales with exponential "tails"

Entropy Coder: Raw bits

- Appended to the end of the frame
- Coded from back to front
 - Much simpler than CABAC bypass mode
 - Same technique used in Opus
- Encoder writes to separate buffer, merged during Dirac-style carry propagation step

TODO

- PVQ needs a fixed-point implementation
- No B-frames at all (in progress)
- Need 64x64 blocks for OBMC
- Need 64x64 transforms
- Lots of potential improvements in motion search
- Lots of ways to exploit PVQ we haven't tried
- Generic coder should be replaced by more targeted probability modeling
- Deringing filter (have prototype, too slow)
- Etc.