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Transform

● Lapped transform
– N-point pre-filter removes correlation between blocks

– N-point DCT within blocks

– Decoder applies inverse (non-adaptive post-filter)
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Transforms

● draft-egge-netvc-tdlt-00
● Sizes: 4x4, 8x8, 16x16, 32x32 (64x64 in 

progress)
● Reversible

– iLT(fLT(x)) == x for all x

● Biorthogonal (not orthogonal)
– Not all basis functions have the same magnitude

– Slight correlation between coefficients



  

Overlapped Block Motion 
Compensation
● draft-terriberry-netvc-obmc
● Goal: MC prediction with no blocking artifacts
● Variable block size (unrelated to transform size)

– Unlike Dirac, larger blocks use larger blend window

– Currently restricted so adjacent blocks differ by at most one size to 
maintain continuity

● Possible to remove this restriction

● Subpel: separable 6-tap filters
– Windowed sinc

– 7-bit coefficients, no truncation/rounding between horizontal/vertical 
stages



  

OBMC → Prediction

● OBMC produces a prediction image for the 
whole frame
– PVQ requires a prediction in the frequency domain

– Just apply forward transforms to the prediction image

● Currently no explicit intra mode
– PVQ can choose to discard the prediction (noref)

– Our encoder still spends bits trying to improve it 
during motion search
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Displaced Frame Difference

● Motion Compensation
– Copy blocks from an already encoded frame (offset 

by a motion vector)

– Subtract from the current frame

– Code the residual

⊖ =

Input Reference frame Residual



9

Displaced Frame Difference

● Motion Compensation
– Copy blocks from an already encoded frame (offset 

by a motion vector)

– Subtract from the current frame

– Code the residual

⊖ =

Input Reference frame Residual



10

Perceptual Vector Quantization

● Separate “gain” (contrast) from “shape” (spectrum)
– Vector = Magnitude × Unit Vector (point on sphere)

● Potential advantages
– Better contrast preservation

– Better representation of coefficients

– Free “activity masking”
● Can throw away more information in regions of high contrast 

(relative error is smaller)
● The “gain” is what we need to know to do this!
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PVQ with a Prediction

● Subtracting and coding a residual loses energy 
preservation
– The “gain” no longer represents the contrast

● But we still want to use predictors
– They do a really good job of reducing what we need 

to code

– Hard to use prediction on the shape (on the surface 
of a hyper-sphere)

● Solution: transform the space to make it easier
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2-D Projection Example
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2-D Projection Example
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2-D Projection Example

● Input + Prediction
● Compute Householder 

Reflection
● Apply Reflection
● Compute & 

code angle
● Code other 
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What does this accomplish?

● Creates another “intuitive” parameter, θ
– “How much like the predictor are we?”

– θ = 0 → use predictor exactly

● Remaining N-1 dimensions are coded with VQ 
– We know their magnitude is gain*sin(θ)

● Instead of subtraction (translation), we’re 
scaling and reflecting
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Activity Masking

● Noise is more visible in low contrast areas
– Sensitivity ∝ gα
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Activity Masking

● Better resolution in low-contrast (gain) areas
● Compand gain with exponent β

β=1 β=1.5
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PVQ Bands

● DC coded separately with scalar quantization
– Intra uses “Haar DC” to get better resolution over 

large areas

● AC coefficients grouped into bands
– Gain, theta, etc., signaled separately for each band

– Layout ad-hoc for now

● Scan order in each band optimized for 
decreasing variance
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Band Structure
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To Predict or Not to Predict

● θ > π/2 → Prediction not helping
– Could code large θ’s, but doesn’t seem that useful

– Need to handle zero predictors anyway

● Current approach: code a “noref” flag
– Jointly coded with small gain and theta values
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H+V Intra Prediction (luma)

● Copy first row/column of neighbor to corresponding 
bands
– Only if size of corresponding blocks match

● Use noref to decide whether to use that as a 
predictor

● For the first band (first 15 AC coeffs), have to choose 
(only one noref flag)
– Copy from neighbor with highest energy

● No explicit intra mode signaled
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Chroma from Luma

● Use luma coeffs. as PVQ predictor for chroma
– For 4:2:0 4x4 chroma blocks, TF-merge 4x4 luma 

blocks and take the low quadrant

● No longer building a model from neighbors
– PVQ gains signal scaling

– noref flag can disable prediction

– Additional “flip” flag can reverse the whole predictor 
(coded on first non-noref band)

● No longer predicting chroma DC from luma
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Quantization

● Per-coefficient quantizers
– Interpolated up/down from 8x8 matrix

– Compensation for LT basis magnitudes in separate 
step

● Built-in activity masking
– Goal: better resolution in flat areas

– Low contrast → low energy (gain)

– Compand gain, choose resolution for θ and K based on 
quantized gain



27

Entropy Coding

● draft-terriberry-netvc-codingtools
● Non-binary arithmetic coding

– Theory: many overheads are per-symbol

– Reducing the number of symbols improves 
throughput/cycle

● Much simpler than encoding multiple symbols in 
parallel
– Decoder search in non-binary alphabet can still be 

parallelized (with SIMD or in hardware)
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Entropy Coding

● Multiply-free partition function
– Modified from Stuiver & Moffat 1998 design

– R → c + min(c, R – total)

– Requires total ≤ R < 2*total (shift up if not)

f
0
=8 f

1
=2 f

2
=1f

3
=1

total = 12 (scale by 2 to get 24 ≤ 32 < 48)

R = 32
0 3024 28 32

over-estimated under-estimated
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Entropy Coding: Properties

● 15-bit probabilities
● Alphabet sizes up to 16

– Want to keep as close to this as possible for maximum 
efficiency

● Several different adaptation strategies
– Traditional frequency counts

– Laplace encoder parameterized by expected value

– “Generic Coder” combines frequency counts at several 
scales with exponential “tails”
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Entropy Coder: Raw bits

● Appended to the end of the frame
● Coded from back to front

– Much simpler than CABAC bypass mode

– Same technique used in Opus

● Encoder writes to separate buffer, merged 
during Dirac-style carry propagation step
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TODO

● PVQ needs a fixed-point implementation
● No B-frames at all (in progress)
● Need 64x64 blocks for OBMC
● Need 64x64 transforms
● Lots of potential improvements in motion search
● Lots of ways to exploit PVQ we haven’t tried
● Generic coder should be replaced by more targeted probability 

modeling
● Deringing filter (have prototype, too slow)
● Etc.
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