

Daala: Tools and Techniques
IETF 93 (Prague)

Daala Inter Encoder

Reference
Frames

Prediction
Frame

Input
Frame

Input
Coefficients

Prediction
Coefficients

OBMC
Forward

Transform

Forward
Transform

DCs and
PVQ data

PVQ

Decoded
Image

Dequant +
Inverse Transform

Bitstream

Entropy
Coding

Daala Intra Encoder

Input
Frame

Input
CoefficientsForward

Transform

DCs and
PVQ data

Haar DC,
PVQ

Decoded
Image

Dequant +
Inverse Transform

Bitstream

Prediction
Coefficients

H+V Intra Prediction

Chroma from Luma

Entropy
Coding

Transform

● Lapped transform
– N-point pre-filter removes correlation between blocks

– N-point DCT within blocks

– Decoder applies inverse (non-adaptive post-filter)

P

DCT

DCT

P

P

DCT

DCT

IDCT

IDCT

IDCT

IDCT

P-1

P-1

P-1

Prefilter Postfilter

Transforms

● draft-egge-netvc-tdlt-00
● Sizes: 4x4, 8x8, 16x16, 32x32 (64x64 in

progress)
● Reversible

– iLT(fLT(x)) == x for all x

● Biorthogonal (not orthogonal)
– Not all basis functions have the same magnitude

– Slight correlation between coefficients

Overlapped Block Motion
Compensation
● draft-terriberry-netvc-obmc
● Goal: MC prediction with no blocking artifacts
● Variable block size (unrelated to transform size)

– Unlike Dirac, larger blocks use larger blend window

– Currently restricted so adjacent blocks differ by at most one size to
maintain continuity

● Possible to remove this restriction

● Subpel: separable 6-tap filters
– Windowed sinc

– 7-bit coefficients, no truncation/rounding between horizontal/vertical
stages

OBMC → Prediction

● OBMC produces a prediction image for the
whole frame
– PVQ requires a prediction in the frequency domain

– Just apply forward transforms to the prediction image

● Currently no explicit intra mode
– PVQ can choose to discard the prediction (noref)

– Our encoder still spends bits trying to improve it
during motion search

8

Displaced Frame Difference

● Motion Compensation
– Copy blocks from an already encoded frame (offset

by a motion vector)

– Subtract from the current frame

– Code the residual

⊖ =

Input Reference frame Residual

9

Displaced Frame Difference

● Motion Compensation
– Copy blocks from an already encoded frame (offset

by a motion vector)

– Subtract from the current frame

– Code the residual

⊖ =

Input Reference frame Residual

10

Perceptual Vector Quantization

● Separate “gain” (contrast) from “shape” (spectrum)
– Vector = Magnitude × Unit Vector (point on sphere)

● Potential advantages
– Better contrast preservation

– Better representation of coefficients

– Free “activity masking”
● Can throw away more information in regions of high contrast

(relative error is smaller)
● The “gain” is what we need to know to do this!

11

PVQ with a Prediction

● Subtracting and coding a residual loses energy
preservation
– The “gain” no longer represents the contrast

● But we still want to use predictors
– They do a really good job of reducing what we need

to code

– Hard to use prediction on the shape (on the surface
of a hyper-sphere)

● Solution: transform the space to make it easier

12

2-D Projection Example

Input

● Input

13

2-D Projection Example

Prediction

Input

● Input + Prediction

14

2-D Projection Example

Prediction

Input

● Input + Prediction
● Compute Householder

Reflection

15

2-D Projection Example

Prediction

Input

● Input + Prediction
● Compute Householder

Reflection
● Apply Reflection

16

2-D Projection Example

θ

Prediction

Input

● Input + Prediction
● Compute Householder

Reflection
● Apply Reflection
● Compute &

code angle

17

2-D Projection Example

● Input + Prediction
● Compute Householder

Reflection
● Apply Reflection
● Compute &

code angle
● Code other

dimensions

Prediction

Input

θ

18

What does this accomplish?

● Creates another “intuitive” parameter, θ
– “How much like the predictor are we?”

– θ = 0 → use predictor exactly

● Remaining N-1 dimensions are coded with VQ
– We know their magnitude is gain*sin(θ)

● Instead of subtraction (translation), we’re
scaling and reflecting

19

Activity Masking

● Noise is more visible in low contrast areas
– Sensitivity ∝ gα

20

Activity Masking

● Better resolution in low-contrast (gain) areas
● Compand gain with exponent β

β=1 β=1.5

21

PVQ Bands

● DC coded separately with scalar quantization
– Intra uses “Haar DC” to get better resolution over

large areas

● AC coefficients grouped into bands
– Gain, theta, etc., signaled separately for each band

– Layout ad-hoc for now

● Scan order in each band optimized for
decreasing variance

22

Band Structure

23

To Predict or Not to Predict

● θ > π/2 → Prediction not helping
– Could code large θ’s, but doesn’t seem that useful

– Need to handle zero predictors anyway

● Current approach: code a “noref” flag
– Jointly coded with small gain and theta values

24

H+V Intra Prediction (luma)

● Copy first row/column of neighbor to corresponding
bands
– Only if size of corresponding blocks match

● Use noref to decide whether to use that as a
predictor

● For the first band (first 15 AC coeffs), have to choose
(only one noref flag)
– Copy from neighbor with highest energy

● No explicit intra mode signaled

25

Chroma from Luma

● Use luma coeffs. as PVQ predictor for chroma
– For 4:2:0 4x4 chroma blocks, TF-merge 4x4 luma

blocks and take the low quadrant

● No longer building a model from neighbors
– PVQ gains signal scaling

– noref flag can disable prediction

– Additional “flip” flag can reverse the whole predictor
(coded on first non-noref band)

● No longer predicting chroma DC from luma

26

Quantization

● Per-coefficient quantizers
– Interpolated up/down from 8x8 matrix

– Compensation for LT basis magnitudes in separate
step

● Built-in activity masking
– Goal: better resolution in flat areas

– Low contrast → low energy (gain)

– Compand gain, choose resolution for θ and K based on
quantized gain

27

Entropy Coding

● draft-terriberry-netvc-codingtools
● Non-binary arithmetic coding

– Theory: many overheads are per-symbol

– Reducing the number of symbols improves
throughput/cycle

● Much simpler than encoding multiple symbols in
parallel
– Decoder search in non-binary alphabet can still be

parallelized (with SIMD or in hardware)

28

Entropy Coding

● Multiply-free partition function
– Modified from Stuiver & Moffat 1998 design

– R → c + min(c, R – total)

– Requires total ≤ R < 2*total (shift up if not)

f
0
=8 f

1
=2 f

2
=1f

3
=1

total = 12 (scale by 2 to get 24 ≤ 32 < 48)

R = 32
0 3024 28 32

over-estimated under-estimated

29

Entropy Coding: Properties

● 15-bit probabilities
● Alphabet sizes up to 16

– Want to keep as close to this as possible for maximum
efficiency

● Several different adaptation strategies
– Traditional frequency counts

– Laplace encoder parameterized by expected value

– “Generic Coder” combines frequency counts at several
scales with exponential “tails”

30

Entropy Coder: Raw bits

● Appended to the end of the frame
● Coded from back to front

– Much simpler than CABAC bypass mode

– Same technique used in Opus

● Encoder writes to separate buffer, merged
during Dirac-style carry propagation step

31

TODO

● PVQ needs a fixed-point implementation
● No B-frames at all (in progress)
● Need 64x64 blocks for OBMC
● Need 64x64 transforms
● Lots of potential improvements in motion search
● Lots of ways to exploit PVQ we haven’t tried
● Generic coder should be replaced by more targeted probability

modeling
● Deringing filter (have prototype, too slow)
● Etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

