
Time Domain Lapped Transforms for Video Coding

draft-egge-netvc-tdlt-00

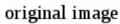
Nathan Egge

IETF 93 – Prague 2015 July 22

- Originally proposed for video in 1989 by Malvar [1].
- n-point prefilter applied along block boundaries
 - Removes spatial correlation between blocks
 - Improves coding performance of *n*-point DCT
- Decoder applies n-point postfilter (exact inverse)
 - Quantization error spread over adjacent blocks

[1] Malvar, H. and D. Staelin, "The LOT: Transform Coding Without Blocking Effects", *IEEE Transactions on Acoustics, Speech, and Signal Processing*, April 1989

Prefilter makes the image "blocky"



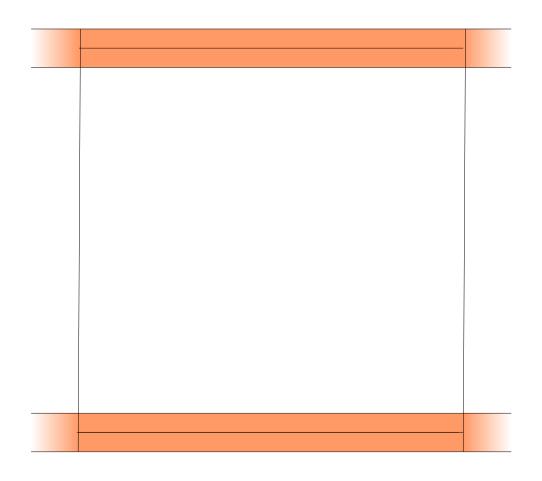
Postfilter "smoothes" blocking artifacts

DCT

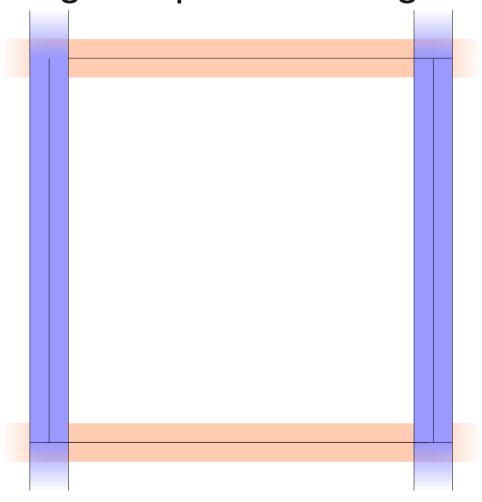
lapped transform

Pros:

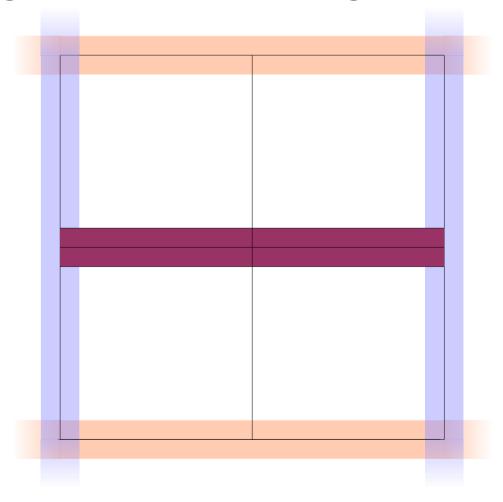
- Larger spatial support means higher compression performance (improved coding gain)
- Non-adaptive, in-loop postfilter

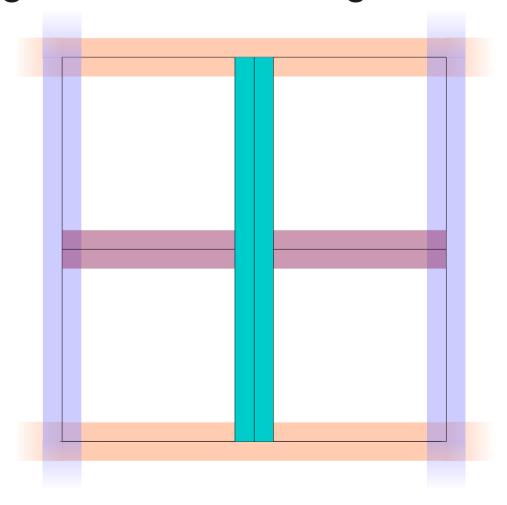

subset-1	4x4	8x8	16x16
KLT	12.47 dB	13.62 dB	14.12 dB
DCT	12.42 dB	13.55 dB	14.05 dB
LT-KLT	13.35 dB	14.13 dB	14.40 dB
LT-DCT	13.33 dB	14.12 dB	14.40 dB

Cons:


- Increased ringing on edges
- Proven coding techniques no longer work: spatial intra-prediction, intra blocks in inter frames, etc.

- Sizes: 4x4, 8x8, 16x16 and 32x32 (64x64 in progress)
- Lapping
 - Luma blocks larger than 4x4 use 8-point lapping on all edges
 - When splitting an 8x8 down to 4x4:
 - 8-point lapping applied to "exterior" (8x8) edges
 - 4-point lapping applied to "interior" edges
 - 4:2:0 chroma uses 4-point lapping on all edges
- Lapping size does not depend on neighbors' block size
 - Allows for efficient (exhaustive) block size decision


• Filter top/bottom superblock edges


• Filter left/right superblock edges

• Splitting: Filter interior edges

• Splitting: Filter interior edges

Lapped Transform Properties

- Reversible
 - iLT(fLT(x)) == x for all x
- Biorthogonal (not orthogonal)
 - Not all basis functions have the same magnitude
- Dynamic range expansion
 - Core DCT is orthonormal (minimum possible)
 - Pre/post-filters add a few more bits
- Pre-scaling
 - Lossy input scaled by 16 to reduce impact of rounding
 - 16x16 and above no longer fit in 16 bits

Questions?