


Background

» OAuth PoP Security Architecture talks about
- Security threats
* Token manufacture/modification
* Token disclosure
* Token redirect
* Token reuse
- Possible ways to alleviate security threats
* Confidentiality protection

* Sender Constraint € Not written in POP Key Semantics.

* Key confirmation

» Client Authentication @ Resource Server out of scope of POP Key Semantics.

- But, we need it, do not we?




4. Sender Constraint Re re

» Include Client ID in the JWT payload
> Example:

{
"iss": "https://server.example.com”,
"sub": "joe@example.com”,
"azp": "https://client.example.org”,
"aud": "https://resource.example.org”,
"exp": "1361398824",
"nbf": "1360189224",

}

» Note that RS MUST authenticate the Client.



5. Client Authentication

1. The authorized presenter issues a HEAD or GET request to the resource server,

GET Aresource/1234 HTTP/1.0
Host @ server.example.com

2. The resource server returns a HTTP 401 response with WW-Authent icate header with "Named"”
scheme, which includes nonce.

HTTPA1.0 401 Unauthorized

Server: HTTPd/0.9

Date: Wed, 14 March 2015 09:26:53 GMT

W-4ut hent icate: Named nonce="dcd9807102dd% f0e8b1 1d0fE000f bOCO93™

3. The client creates JWS compact serialization over the nonce.

4. The client sends the request to the resource server, this time with Authorization: header with
Mamed scheme and access token and the JWS.

GET Aresource/1234 HTTPA1 .0
Host @ server.example.com
futhorizat ion: Named at="access.token.jwt™, s="jws.of .nonce™



6. Finding Client K

» 6.1. URI client ID

— When the Client ID is a URI, then the key can be found from the .
well-know/jwk URI.

» 6.2. pre-shared key tables

- Alternatively, the collection of the keys can be pre-shared among
the participants in advance as a key table that lists the client ID -
public key pair.

» 6.3. Via client metadata API of the authorization server

- Client Metadata can be exposed through a client metadata API at
the Authorization Server, which can be defined by the authorizati
on server in a way similar to OAuth 2.0 Token Introspection.



http://xml2rfc.ietf.org/cgi-bin/xml2rfc.cgi#rfc.section.6.1
http://xml2rfc.ietf.org/cgi-bin/xml2rfc.cgi#ucid
http://xml2rfc.ietf.org/cgi-bin/xml2rfc.cgi#rfc.section.6.2
http://xml2rfc.ietf.org/cgi-bin/xml2rfc.cgi#rfc.section.6.3
http://xml2rfc.ietf.org/cgi-bin/xml2rfc.cgi#metaapi
http://xml2rfc.ietf.org/cgi-bin/xml2rfc.cgi#TINTRO
http://xml2rfc.ietf.org/cgi-bin/xml2rfc.cgi#TINTRO

Questions

Should we merge into

» PoP Security Architecture draft?
- https://www.ietf.org/id/draft-ietf-oauth-pop-architecture-02.ixt

» Or to Proof-of-Possession Key Semantics for JSON Web Token
s (JWTs)?

- htips://tools.ietf.ora/html/draft-ietf-oauth-proof-of-possession-03

Or proceed as a separate document?
Or is it a bad idea that we should throw it away?


https://www.ietf.org/id/draft-ietf-oauth-pop-architecture-02.txt
https://www.ietf.org/id/draft-ietf-oauth-pop-architecture-02.txt
https://tools.ietf.org/html/draft-ietf-oauth-proof-of-possession-03
https://tools.ietf.org/html/draft-ietf-oauth-proof-of-possession-03

	Slide 1
	Background
	4. Sender Constraint Representation
	5. Client Authentication
	6. Finding Client Key
	Questions

