
Beyond Custom TLVs
Joe Hildebrand

Brian Trammell

Start: two types of types

• Storage types can be parsed generically
– uint64_t
– UTF8-encoded string
– Array of bytes
– Name/value map

• Semantic types drive behavior, always protocol-specific
– Source/destination address: 4/16 byte array? String?
– Hop count: unsigned integer

Today: Below layer 7
• Many protocols have custom Type, Length, Value formats
• “Type” often means both storage type *and* semantic type
• Custom parsing required
• Custom type system required
• Example: IPFIX sourceIPv4Address

– Storage type is a 32-bit integer IP address in network byte order
– Semantic type is “Source IPv4 Address”

Today: Applications use JSON

• No schema for parsing
• Storage types: bool, number, string, object, array, etc.
• Semantic types: key names in object, position in array, etc.
• Parse internal field structure in same pass
• Extensions as new keys in a key/value struct
• Ignore what you don’t understand

Why JSON might not be a good fit

• See RFC 7159, search for “interop”
– More edge cases than you think
– My favorite: 53-bit integers

• Parser more complicated than you expect
– Larger code size, more CPU
– Example: String un-escaping

• Binary data requires encoding (such as Base64)
• Larger wire size

https://tools.ietf.org/html/rfc7159

Why CBOR might be a better fit

• RFC 7049: binary encoding of JSON++
• Small wire size: often smaller than TLV
• Small code size (e.g. 880 bytes of ARM code)
• Lower CPU, latency to parse
• Fixes the known issues of JSON

(integers, floats, strings, etc.)
• Binary data first-class type
• Defined diagnostic rendering

0xa171736f75726365495076344164647265737344c0a8
0101

 a1 -- Map with 1 pairs
 71 -- Map[0].key: UTF-8 string length
17:
 736f… "sourceIPv4Address”
 44 -- Map[0].value: Byte string
length 4
 c0a80101 -- Bytes content: 192, 168, 1, 1

Diagnostic: {"sourceIPv4Address": h'c0a80101'}

https://tools.ietf.org/html/rfc7049

How to make CBOR even more suitable

• Profile out the pieces that you don’t need
• Allow parse failures if those features arrive
• Potential removals:

– Indefinite-length types
– Tagging (bignums, etc)
– Floats

Benefits to choosing a single approach

• One set of code
– Smaller
– Better code coverage
– Optimization more likely: e.g. hardware

• Potential security benefits – new syntax sometimes a source of
bugs

• Time to market
• Better diagnostic tooling

Suggested topics for discussion

• Could [routing, ops, etc.] protocols use a single approach like
this?

• What are the potential downsides?
• Is CBOR a potential encoding?
• Is there a protocol that could be used as an experiment?

	Slide 1
	Start: two types of types
	Today: Below layer 7
	Today: Applications use JSON
	Why JSON might not be a good fit
	Why CBOR might be a better fit
	How to make CBOR even more suitable
	Benefits to choosing a single approach
	Suggested topics for discussion

