
Joint optimization 1

Joint
SDN & NFV

Optimization

SDNRG @ IETF-93

Presented by:
• Yaakov (J)

Stein

Tel Aviv University team
• Boaz Patt-Shamir
• Guy Even

Research funded under the Neptune consortium

Joint optimization 2

Recap: rich communications services

Traditional communications services are pure connectivity services
 transport data from A to B

with constraints (e.g., minimum bandwidth, maximal delay)
with maximal efficiency (minimum cost, maximized revenue)

Modern communications services are richer
 combining connectivity and network functionalities

e.g., firewall, NAT, load balancing, CDN, parental control, ...

We deal with a service provider that
• maintains a network of communications and computational resources
• maintains an inventory of VNFs
• dynamically sets up and tears down services
• charges based on

– service requirements
– time between set-up and tear-down

The service provider employs an orchestrator to maximize profits
 (profit is the difference between revenue and expenses)

Joint optimization 3

Recap SDN/NFV Optimization
Problems

Given a network with distributed computational resources for VNFs
we distinguish three SDN/NFV optimization problems
• pure SDN path computation (no VNFs needed)
• pure NFV placement (routing performed separately)
• joint SDN/NFV path/placement

The first problem has many classic solutions (see the PCE literature)
The second problem (NFV placement) has been studied recently
The third problem is as yet unsolved

Joint optimization 4

On-line optimization

A batch (off-line) algorithm receives the list of all services to be set up
 and simultaneously finds all the allocations for a clean network

We require an on-line algorithm
 that services requests of unknown duration as they come in

We do not allow pre-emption or re-optimization of service already set-up

The on-line case is harder since we don’t know ahead of time
 whether it is worthwhile to use up resources for a given request
 and risk having to deny some later request that may be more profitable

Simple example
– first request requires 100% of a resource and pays x
– later requests require some of that resource and together pay y>>x

How do we know whether to accept or deny the first request ?
– if we accept, we lose y-x if later requests do arrive
– if we deny and later requests never arrive, we lose x

Joint optimization 5

Formal definition of the joint problem

Known
• full network topology graph

– link and node current resource loading information
• places where computational resources are available

– resource availability
• other SDN or NFV criteria and constraints

Service request definition
• traffic ingress and egress points
• service data-rate and delay requirements
• sequence of VNF(s) to be installed
 Note: we do not yet support partial ordering of VNFs other than by exhaustively testing every
possible order

– computational (including memory, storage, etc.) requirements
• service set-up or tear-down ?

Find
• the optimal path and VNF placement(s)

Joint optimization 6

The solution

Our solution combines two ideas:

1. use of Cartesian Graph Product

2. use of an ACCEPT/STANDBY mechanism

The first idea is a method of transforming the joint problem
 into a conventional path computation problem on a single network
graph

switch (network
resource)

server (compute
resource)

Joint optimization 7

Step 1 : Cartesian Product

PRODUCT GRAPH

The product graph is much larger than the original graph, but still
manageable

ingres
s

egress

Assume 2 VNFs : A and B

A

A
A

B

Bingres
s

egress

Joint optimization 8

Performance of competitive
algorithms

The standard on-line mechanism receives service requests, and returns
• ACCEPT + service routing and placement
• DENY

Given an on-line optimization problem
 we can quantify the (worst case) performance of an algorithm ALG as

follows

For each input 𝐼 define
– : profit of best possible solution

 one that knows the future, can pre-empt/reroute/load-balance, etc.
– : profit obtained by the algorithm

The algorithm’s competitive ratio is defined to be

This means that the algorithm’s profit is at least 1/C times the optimal
profit
Good competitive algorithms have small C ! (Beware of alternative
definitions!)

The AAP algorithm has competitive factor n= number of network nodes
 assuming
• small demands – no service request consumes the majority of any

resource
• requests are of known finite durations

•

Joint optimization 9

Step 2: ACCEPT/STANDBY response

In our problem, services may potentially indefinite duration
 leading to potentially dismal worst case performance

Simple example
– reject service request that would have indefinitely paid x per unit

time
– no further service requests are ever received

To avoid this problem, we never reject a request, instead we return
• ACCEPT + service routing and placement
• STANDBY – service request placed on hold until can be serviced
 note that the service request may be rescinded before it is ever serviced!

We still assume that no request consumes a sizeable amount of any
resource

The mechanism has a competitive ratio of
 where is the maximum number of VNFs in a service request
New ideas may improve this to

•

Joint optimization 10

Summary

By combining the two ideas

1. use of Cartesian Graph Product

2. use of an ACCEPT/STANDBY mechanism

 we obtain a tractable on-line joint SDN/NFV optimization algorithm

	Joint SDN & NFV Optimization SDNRG @ IETF-93
	Recap: rich communications services
	Recap SDN/NFV Optimization Problems
	On-line optimization
	Formal definition of the joint problem
	The solution
	Step 1 : Cartesian Product
	Performance of competitive algorithms
	Step 2: ACCEPT/STANDBY response
	Summary

