Quantum safe hybrid ciphersuite for TLS

William Whyte, 2015-07-22

Problem

- Quantum computers make it trivial to break RSA, ECC, DH, ...
 - Current TLS traffic is susceptible to a harvest-then-decrypt attack from a passive attacker
- Would like to thwart this attacker --
 - Quantum-safe public key algorithms exist!
- One natural way is to define a quantum-safe ciphersuite, but...
 - Quantum-safe alternatives aren't widely accepted
 - Some parties may be required to use specific algorithms
 - No good quantum-safe signatures
 - Adding a single new key transport algorithm can cause a ciphersuite explosion
- Proposed solution:
 - Adds only one ciphersuite
 - Doesn't force you to put all your trust in something new
 - Defeats the attacker!

Proposal

- Create
 - Quantum-safe hybrid ciphersuite identifier (QSH)
 - Extensions for quantum-safe public key and ciphertext
- ClientHello includes
 - QSH identifier
 - "Classical" ciphersuite identifier(s)
 - Ephemeral public key for quantum-safe algorithm
- Server
 - Carries out handshake for preferred classical handshake
 - Encrypts fresh 256-bit secret with quantum-safe public key
- Pre-master secret is concatenation of PMS from classical handshake and quantum-safe secret (+ details)
- Similar approach being socialized within Tor, paper + proof that it doesn't make security worse

Some details

- Candidate algorithms
 - NTRUEncrypt
 - Patented, patents owned by my employer, Security Innovation
 - Patents usable under GPL
 - Standardized in IEEE, X9
 - Learning with Errors
 - McEliece (but v large keys)
- What classical ciphersuite should I use?
 - Ideally 256-bit level
 - Grover's quantum algorithm halves key lengths
 - But could work with a 128-bit classical ciphersuite
 - Grover's algorithm has huge constants!

- Internet draft posted for TLS 1.2 & 1.3
 - Working code
 - https:// www.wolfssl.com/wolfSSL/Blo g/Entries/2015/7/13_Quantum -Safe_wolfSSL.html
- Performance
 - 128-bit-equivalent NTRU:
 - Keys, ciphertexts = 4800 bits
 - Extra server load = 0.6 * curve25519 computation
 - 256-bit-equivalent NTRU
 - Keys, ciphertexts = 8100 bits
 - Extra server load = 1.4 * curve25519 computation

Discussion

• Pro:

- Provably does no harm assuming the implementations are correct
- Low performance overhead especially at server
- Allows rapid deployment of quantum-safety without having to bet the farm on it

• Con:

- Keys and ciphertexts are large
- Complicates the state machine
- ...?