
TLS 1.3 Status

Eric Rescorla

Mozilla

ekr@rtfm.com

IETF 93 TLS 1

Overview of Changes Since IETF 92 (Major)

• Integrate DH-based handshake (per WG discussion in Dallas)

• Add initial cut at 0-RTT support

• HKDF-based key derivation (per WG discussion in Dallas)

• Moved ClientKeyShare into an extension

• Added support for PSK

• Removed resumption and merged ticket support with PSK

IETF 93 TLS 2

Overview of Changes Since IETF 92 (Minor)

• Prohibit RC4 negotiation

• Froze record-layer header

• Context field for signatures

• Replaced explicit IV with sequence number + mask

IETF 93 TLS 3

Open Issues Preview

• Indicating known configurations

• 0-RTT w/ PSK

• Interaction of 0-RTT and authentication

• 0-RTT rejection handling

• PSK resumption restrictions

• Traffic key generation

IETF 93 TLS 4

DH-Based Handshake (Review)

• Server has a semi-static DH key (just like 1-RTT)

• Probably really has long-term signing key

– Used to sign the semi-static key

– Agreement at previous IETFs to use online-only signing

• Common key exchange computations between all modes

IETF 93 TLS 5

Key Computation Inputs

Key Exchange Static Secret (SS) Ephemeral Secret (ES)

------------ ------------------ ---------------------

(EC)DHE Client ephemeral Client ephemeral

(full handshake) w/ server ephemeral w/ server ephemeral

(EC)DHE Client ephemeral Client ephemeral

(w/ known_configuration) w/ Known Key w/ server ephemeral

PSK Pre-Shared Key Pre-shared key

PSK + (EC)DHE Pre-Shared Key Client ephemeral

IETF 93 TLS 6

Key Computations

Ephemeral
Secret

Static
Secret

xES xSS

Master
Secret

Finished
Secret

Early
Traffic
Keys

Handshake
Traffic Keys

Exporter
Secret

Resumption
Secret

Application
Traffic
Keys

IETF 93 TLS 7

Two New Mechanisms

• Server configurations and known configuration

– Server publishes a configuration to the client in handshake n

– Client reuses that configuration in handshake n+ 1

• Early data indication

– Client indicates that he wants to do 0-RTT (client auth, data,

both)

– Server accepts or rejects

IETF 93 TLS 8

Example: Initial Handshake

ClientHello

+ ClientKeyShare -------->

ServerHello

ServerKeyShare*

{EncryptedExtensions}

{ServerConfiguration*} <- SEE HERE

{Certificate*}

{CertificateRequest*}

{CertificateVerify*}

<-------- {Finished}

{Certificate*}

{CertificateVerify*}

{Finished} -------->

[Application Data] <-------> [Application Data]

IETF 93 TLS 9

Known Configuration

struct {

opaque configuration_id<1..2^16-1>;

uint32 expiration_date;

NamedGroup group;

opaque server_key<1..2^16-1>;

Boolean early_data_allowed;

} ServerConfiguration;

• The client’s reuse of the configuration implicitly resurrects the

previous state (See open issues)

IETF 93 TLS 10

Example: 0-RTT Handshake (w/o new configuration)

ClientHello

+ ClientKeyShare

+ KnownConfiguration

+ EarlyDataIndication

(Certificate*)

(CertificateVerify*)

(Application Data) -------->

ServerHello

+ KnownConfiguration

+ EarlyDataIndication

ServerKeyShare

<-------- {Finished}

{Finished} -------->

[Application Data] <-------> [Application Data]

IETF 93 TLS 11

Early Data Indication

enum { early_handshake(1), early_data(2),

early_handshake_and_data(3), (255) } EarlyDataType;

struct {

select (Role) {

case client:

opaque context<0..255>;

EarlyDataType type;

case server:

struct {};

}

} EarlyDataIndication;

IETF 93 TLS 12

What do failed 0-RTT handshakes look like?

• Server doesn’t respond with an EarlyDataIndication

– System falls back to 1-RTT

– All of the early data is just ignored

• This is kind of clunky

– Early handshake messages have a different content type

– What about encrypted content types

• Analysis needed that ignoring early data is OK

– ... currently underway

IETF 93 TLS 13

Managing semi-static keys (I)

• Need two keys

– Ephemeral (for PFS)

– Semi-static (cached server 1-RTT, 0-RTT)

• Various options for making these work together

– Always use a single semi-static key – suboptimal performance

– Have the server supply a separate key – odd when you refresh

keys

IETF 93 TLS 14

Managing semi-static keys (II)

• Current draft state

– First handshake looks like draft-06

∗ Can supply a ServerConfiguration

– Subsequent handshakes can reuse ServerConfiguration

∗ But need to sign if they want to provide one

• More modes than we would really like (but best perf profile)

IETF 93 TLS 15

Example: 0-RTT Handshake w/ new configuration

ClientHello

+ ClientKeyShare

+ KnownConfiguration

+ EarlyDataIndication

(Certificate*)

(CertificateVerify*)

(Application Data) -------->

ServerHello

+ KnownConfiguration

+ EarlyDataIndication

ServerKeyShare

{ServerConfiguration*} <- SEE HERE

{Certificate*} <- SEE HERE

{CertificateVerify*} <- SEE HERE

<-------- {Finished}

{Finished} -------->

[Application Data] <-------> [Application Data]

IETF 93 TLS 16

Pre-Shared Keys

• TLS 1.2 had PSK

– But we kind of broke it

• draft-07 brings it back

– But I did get rid of identity hint...

IETF 93 TLS 17

Example: Pure PSK Handshake

ClientHello

+ ClientKeyShare,

PreSharedKeyExtension -------->

ServerHello

+PreSharedKeyExtension

<-------- {Finished}

{Certificate*}

{Finished} -------->

[Application Data] <-------> [Application Data]

• Can also do this with DHE-PSK

IETF 93 TLS 18

PreSharedKey Extension

opaque psk_identity<0..2^16-1>;

struct {

select (Role) {

case client:

psk_identity identities<0..2^16-1>;

case server:

psk_identity identity;

} PreSharedKeyExtension;

IETF 93 TLS 19

PSK For Resumption

• Resumption and PSK are very similar

– Let’s make them identical

• Basic idea

– Server gives client a PSK label

– PSK is derived from initial handshake (resumption master

secret)

IETF 93 TLS 20

Example: Establishing a PSK for resumption

ClientHello

+ ClientKeyShare -------->

ServerHello

ServerKeyShare

{EncryptedExtensions}

{ServerConfiguration*}

{Certificate*}

{CertificateRequest*}

{CertificateVerify*}

<-------- {Finished}

{Certificate*}

{CertificateVerify*}

{Finished} -------->

<-------- [NewSessionTicket] <- SEE HERE

[Application Data] <-------> [Application Data]

IETF 93 TLS 21

ClientKeyShare Extension

• This used to be a separate message

– That just made life complicated

• It’s now an extension

• Nothing else has changed

IETF 93 TLS 22

Indicating Known Configurations

• Current design has client just indicate configuration ID

– This means that the server needs to memorize each crypto

configuration (ugh)

• Proposed redesign

– Client indicates configuration ID and cryptographic

configuration

∗ Cipher suites and cryptographic extensions

∗ MUST replicate the server’s selection from a previous

handshake

– Server verifies client’s ClientHello

∗ Checks that configuration ID is valid

∗ Verifies that client’s parameters are what it would negotiate

IETF 93 TLS 23

Strawman

struct {

select (Role) {

case client:

opaque identifier<0..2^16-1>;

CipherSuite cipher_suite; <- SEE HERE

Extension extensions<0..2^16-1>; <- SEE HERE

case server:

struct {};

}

} KnownConfigurationExtension

IETF 93 TLS 24

Analysis

• Pros

– Server doesn’t need to keep per-connection state

– Neatly solves PSK (and any other key negotiation mechanism)

– Explicit state is explicit

• Cons

– Server has to compare client’s offer

– Very modest wire bloat

• Note: we could have the server not echo the parameters in

ServerHello

– But I’d rather keep things consistent

IETF 93 TLS 25

0-RTT Rejection Handling (I)

• Currently it’s all or nothing

– Server can’t accept 0-RTT client auth but not 0-RTT data

– ... maybe it should be able to express its preferences in

ServerConfiguration

• This seems easiest

• Proposed resolution: Server gets to indicate what it wants in

ServerConfiguration

IETF 93 TLS 26

0-RTT Rejection Handling (II)

• How do you distinguish client’s early data (which you want to

discard) from the client’s second flight (which you want to

process)

• Current algorithm uses content type

– Early handshake data has early_handshake

– Early data has application_data type

– The next thing you want to process has handshake type

– Just skip to the next handshake message

• This isn’t maximally elegant

– And will fail with encrypted content types (there you need trial

decryption)

– Other ideas welcome

IETF 93 TLS 27

0-RTT Rejection Handling (III)

• What is included in handshake hash?

– Handshake hash generally includes plaintext

– ... but in rejection cases, you probably don’t have decryption

cases

• Present draft just ignores this data with rejection

• Alternative: include ciphertext

• Proposal: keep with current version pending analysis

IETF 93 TLS 28

0-RTT and Authentication

• There isn’t any per-connection data from the server to sign

– Client provides all the freshness∗

• What context does the client have to sign?

– It should include server identity

handshake_hash = Hash(

Hash(handshake_messages) ||

Hash(configuration)

)

configuration = ServerConfiguration || Certificate

∗Insert caveats about issues with 0-RTT anti-replay

IETF 93 TLS 29

PSK Resumption Restrictions?

• Resumption required that you use the same ciphers

– But if you make resumption PSK then you could in principle

negotiate a new cipher

• Should we require servers to pick the same symmetric cipher?

• This would be somewhat easier if we had a la carte negotiation

IETF 93 TLS 30

AEAD IV

• TLS 1.2 (well, GCM) uses a partially explicit IV

– This chews up bandwidth

• Consensus to remove explicit IV

– And reuse sequence number

– Brian Smith raised concerns about every connection using the

same nonce sequence

IETF 93 TLS 31

draft-07 design for AEAD IV

• iv length = max(8, N MAX)

• Generate per-session mask of length iv length

• Left-pad RSN with 0s to iv length

• XOR RSN with mask to produce per-record nonce

IETF 93 TLS 32

Traffic Key Generation

• Presently we generate a key_block

• ... and then slice and dice

• Generating independent keys with a context input would be more

HSM-friendly

• Expected context

– Key length

– Usage

– Algorithm (ugh)

• Should we do this?

IETF 93 TLS 33

This slide intentionally left blank

IETF 93 TLS 34

Report from Rump Study Group:

Signatures with Known Configuration (I)

• Option 1: Server only signs when it provides a known configuration

– Pros: optimal performance

– Cons: More complexity and optionality

• Option 2: Server always signs

– Pros: simplicity, continous guarantee of control of signing key

– Cons: 0-RTT requires one extra (EC)DH versus base 1-RTT

case, no signature amortization

IETF 93 TLS 35

Report from Rump Study Group:

Signatures with Known Configuration (II)

• Proposed resolution: server server always signs

– This allows us to merge KnownConfiguration and

EarlyDataIndication

– Since the only point of KnownConfiguration is 0-RTT

• What about signature amortization?

– Adopt Hugo’s suggestion of offline signatures gated on a cert

extension

– This also will enable delegation use cases

– We can work on this in parallel to TLS 1.3

IETF 93 TLS 36

Report from Rump Study Group:

0-RTT Failure Recovery (I)

• Problem recap: if client does 0-RTT with an unknown config,

server can’t decrypt the rest of the first flight

– ... but still needs to skip ahead

• Current draft uses a different content type

– But this doesn’t work with content type decryption

– Though it might be independently valuable

• Trial decryption seems obvious

– But Jim Schaad asked what about attack?

IETF 93 TLS 37

Report from Rump Study Group:

0-RTT Failure Recovery (II)

• With trial decryption, what happens if client and server have a

1-RTT failure

– Server will then discard client Finished and wait for something

that never comes

• Conclusion: this isn’t an issue

– Never happens in normal cases

– The client should fail on the server Finished anyway

– The server just ends up stalled

∗ ... and that’s easy for the attacker to force you into anyway

• Proposed resolution: trial decryption with adopt content type

encryption

– Need to independently study impact of content type on analysis

IETF 93 TLS 38

A La Carte Cipher Suites: Background

• TLS uses suites

– Negotiated items: signature, key exchange, AEAD, hash (for

KDF)

– Some other protocols have used a la carte

• Arguments here are well-known

– Combinatoric explosion vs.

– Not all configurations are sensible (e.g., Suite B).

• Except TLS isn’t totally suite-based any more

– Signature algorithms extensions

– Named groups/FFDHE extension

IETF 93 TLS 39

A La Carte Cipher Suites: Options

• Leave as-is

• Negotiate just key exchange, AEAD, hash via suites

– Use signature algorithms extension for signature

• Negotiate just AEAD, hash via suites

– Use NamedGroups or something else for key exchange

– ... wedging in PSK might be hard

• Hybrid (Dave Garrett’s proposal)

– Negotiate symmetric/asymmetric key exchange, AEAD, hash

via suites

• Define all-new suites

IETF 93 TLS 40

