
ACE Working Group S. Gerdes
Internet-Draft O. Bergmann
Intended status: Standards Track C. Bormann
Expires: April 21, 2016 Universitaet Bremen TZI
 October 19, 2015

 Delegated CoAP Authentication and Authorization Framework (DCAF)
 draft-gerdes-ace-dcaf-authorize-04

Abstract

 This specification defines a protocol for delegating client
 authentication and authorization in a constrained environment for
 establishing a Datagram Transport Layer Security (DTLS) channel
 between resource-constrained nodes. The protocol relies on DTLS to
 transfer authorization information and shared secrets for symmetric
 cryptography between entities in a constrained network. A resource-
 constrained node can use this protocol to delegate authentication of
 communication peers and management of authorization information to a
 trusted host with less severe limitations regarding processing power
 and memory.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Gerdes, et al. Expires April 21, 2016 [Page 1]

Internet-Draft DCAF October 2015

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Features . 4
 1.2. Terminology . 4
 1.2.1. Actors . 4
 1.2.2. Other Terms . 5
 2. System Overview . 6
 3. Protocol . 7
 3.1. Overview . 7
 3.2. Unauthorized Resource Request Message 8
 3.3. SAM Information Message 9
 3.3.1. Piggybacked Protected Content 10
 3.4. Access Request . 11
 3.5. Ticket Request Message 12
 3.6. Ticket Grant Message 13
 3.7. Ticket Transfer Message 15
 3.8. DTLS Channel Setup Between C and S 16
 3.9. Authorized Resource Request Message 17
 3.10. Dynamic Update of Authorization Information 18
 3.10.1. Handling of Ticket Transfer Messages 19
 4. Ticket . 20
 4.1. Face . 20
 4.2. Client Information 21
 4.3. Revocation . 22
 4.4. Lifetime . 22
 4.4.1. Revocation Messages 22
 5. Payload Format and Encoding (application/dcaf+cbor) 23
 5.1. Examples . 26
 6. DTLS PSK Generation Methods 28
 6.1. DTLS PSK Transfer . 28
 6.2. Distributed Key Derivation 28
 7. Authorization Configuration 29
 8. Trust Relationships . 29
 9. Listing Authorization Manager Information in a Resource
 Directory . 30
 9.1. The "auth-request" Link Relation 31
 10. Examples . 31
 10.1. Access Granted . 31
 10.2. Access Denied . 33
 10.3. Access Restricted 34

Gerdes, et al. Expires April 21, 2016 [Page 2]

Internet-Draft DCAF October 2015

 10.4. Implicit Authorization 35
 11. Specific Usage Scenarios 36
 11.1. Combined Authorization Manager and Client 36
 11.1.1. Creating the Ticket Request Message 36
 11.1.2. Processing the Ticket Grant Message 37
 11.2. Combined Client Authorization Manager and Server
 Authorization Manager 37
 11.2.1. Processing the Access Request Message 38
 11.2.2. Creating the Ticket Transfer Message 38
 11.3. Combined Server Authorization Manager and Server 38
 12. Security Considerations 39
 13. IANA Considerations . 39
 13.1. DTLS PSK Key Generation Methods 40
 13.2. dcaf+cbor Media Type Registration 40
 13.3. CoAP Content Format Registration 41
 14. Acknowledgements . 41
 15. References . 42
 15.1. Normative References 42
 15.2. Informative References 43
 Appendix A. CDDL Specification 44
 Authors’ Addresses . 45

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] is a transfer
 protocol similar to HTTP which is designed for the special
 requirements of constrained environments. A serious problem with
 constrained devices is the realization of secure communication. The
 devices only have limited system resources such as memory, stable
 storage (such as disk space) and transmission capacity and often lack
 input/output devices such as keyboards or displays. Therefore, they
 are not readily capable of using common protocols. Especially
 authentication mechanisms are difficult to realize, because the lack
 of stable storage severely limits the number of keys the system can
 store. Moreover, CoAP has no mechanism for authorization.

 [I-D.ietf-ace-actors] describes an architecture that is designed to
 help constrained nodes with authorization-related tasks by
 introducing less-constrained nodes. These Authorization Managers
 perform complex security tasks for their nodes such as managing keys
 for numerous devices, and enable the constrained nodes to enforce the
 authorization policies of their principals.

 DCAF uses access tokens to implement this architecture. A device
 that wants to access an item of interest on a constrained node first
 has to gain permission in the form of a token from the node’s
 Authorization Manager.

Gerdes, et al. Expires April 21, 2016 [Page 3]

Internet-Draft DCAF October 2015

 As fine-grained authorization is not always needed on constrained
 devices, DCAF supports an implicit authorization mode where no
 authorization information is exchanged.

 The main goals of DCAF are the setup of a Datagram Transport Layer
 Security (DTLS) [RFC6347] channel with symmetric pre-shared keys
 (PSK) [RFC4279] between two nodes and to securely transmit
 authorization tickets.

1.1. Features

 o Utilize DTLS communication with pre-shared keys.

 o Authenticated exchange of authorization information.

 o Simplified authentication on constrained nodes by handing the more
 sophisticated authentication over to less-constrained devices.

 o Support of secure constrained device to constrained device
 communication.

 o Authorization policies of the principals of both participating
 parties are ensured.

 o Simplified authorization mechanism for cases where implicit
 authorization is sufficient.

 o Using only symmetric encryption on constrained nodes.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Readers are expected to be familiar with the terms and concepts
 defined in [I-D.ietf-ace-actors].

1.2.1. Actors

 Server (S): An endpoint that hosts and represents a CoAP resource.

 Client (C): An endpoint that attempts to access a CoAP resource on
 the Server.

 Server Authorization Manager (SAM): An entity that prepares and
 endorses authentication and authorization data for a Server.

Gerdes, et al. Expires April 21, 2016 [Page 4]

Internet-Draft DCAF October 2015

 Client Authorization Manager (CAM): An entity that prepares and
 endorses authentication and authorization data for a Client.

 Authorization Manager (AM): An entity that is either a SAM or a CAM.

 Client Overseeing Principal (COP): The principal that is in charge
 of the Client and controls permissions concerning authorized
 representations of a CoAP resource.

 Resource Overseeing Principal (ROP): The principal that is in charge
 of the CoAP resource and controls its access permissions.

1.2.2. Other Terms

 Resource (R): A CoAP resource.

 Authorization information: Contains all information needed by S to
 decide if C is privileged to access a resource in a specific way.

 Authentication information: Contains all information needed by S to
 decide if the entity in possession of a certain key is verified by
 SAM.

 Access information: Contains authentication information and, if
 necessary, authorization information.

 Access ticket: Contains the authentication and, if necessary, the
 authorization information needed to access a resource. A Ticket
 consists of the Ticket Face and the Client Information. The
 access ticket is a representation of the access information.

 Ticket Face: The part of the ticket which is generated for the
 Server. It contains the authorization information and all
 information needed by the Server to verify that it was granted by
 SAM.

 Client Information (CI): The part of the ticket which is generated
 for the Client. It contains the Verifier and optionally may
 contain authorization information that represent COP’s
 authorization policies for C.

 Client Authorization Information (CAI): A data structure that
 describes the C’s permissions for S according to CAM, e.g., which
 actions C is allowed to perform on an R of S.

 Server Authorization Information (SAI): A data structure that
 describes C’s permissions for S according to SAM, e.g., which
 actions C is allowed to perform on an R of S.

Gerdes, et al. Expires April 21, 2016 [Page 5]

Internet-Draft DCAF October 2015

 Verifier: The secret (e.g. a 128-bit PSK) shared between C and S.
 It enables C to validate that it is communicating with a certain S
 and vice versa.

 Explicit authorization: SAM informs the S in detail which privileges
 are granted to the Client.

 Implicit authorization: SAM authenticates the Client for the Server
 without specifying the privileges in detail. This can be used for
 flat or unrestricted authorization (cf section 4 of
 [I-D.ietf-ace-actors]).

2. System Overview

 Within the DCAF Architecture each Server (S) has a Server
 Authorization Manger (SAM) which conducts the authentication and
 authorization for S. S and SAM share a symmetric key which has to be
 exchanged initially to provide for a secure channel. The mechanism
 used for this is not in the scope of this document.

 To gain access to a specific resource on a S, a Client (C) has to
 request an access ticket from the SAM serving S either directly or,
 if it is a constrained device, using its Client Authorization Manager
 (CAM). In the following, we always discuss the CAM role separately,
 even if that is co-located within a (more powerful) C (see section
 Section 11 for details about co-located actors).

 CAM decides if S is an authorized source for R according to the
 policies set by COP and in this case transmits the request to SAM.
 If SAM decides that C is allowed to access the resource according to
 the policies set by ROP, it generates a DTLS pre-shared key (PSK) for
 the communication between C and S and wraps it into an access ticket.
 For explicit access control, SAM adds the detailed access permissions
 to the ticket in a way that CAM and S can interpret. CAM checks if
 the permissions in the access ticket comply with COP’s authorization
 policies for C, and if this is the case sends it to C. After C
 presented the ticket to S, C and S can communicate securely.

 To be able to provide for the authentication and authorization
 services, an Authorization Manager has to fulfill several
 requirements:

 o AM must have enough stable storage (such as disk space) to store
 the necessary number of credentials (matching the number of
 Clients and Servers).

 o AM must possess means for user interaction, for example directly
 or indirectly connected input/output devices such as keyboard and

Gerdes, et al. Expires April 21, 2016 [Page 6]

Internet-Draft DCAF October 2015

 display, to allow for configuration of authorization information
 by the respective Principal.

 o AM must have enough processing power to handle the authorization
 requests for all constrained devices it is responsible for.

3. Protocol

 The DCAF protocol comprises three parts:

 1. transfer of authentication and, if necessary, authorization
 information between C and S;

 2. transfer of access requests and the respective ticket transfer
 between C and CAM; and

 3. transfer of ticket requests and the respective ticket grants
 between SAM and CAM.

3.1. Overview

 In Figure 1, a DCAF protocol flow is depicted (messages in square
 brackets are optional):

 CAM C S SAM
 | <== DTLS chan. ==> | | <== DTLS chan. ==> |
 | | [Resource Req.-->] | |
 | | | |
 | | [<-- SAM Info.] | |
 | | | |
 | <-- Access Req. | | |
 | | | |
 | <==== TLS/DTLS channel (CAM/SAM Mutual Authentication) ====> |
 | | | |
 | Ticket Request --> |
 | | | |
 | <-- Ticket Grant |
 | | | |
 | Ticket Transf. --> | | |
 | | | |
 | | <== DTLS chan. ==> | |
 | | Auth. Res. Req. -> | |

 Figure 1: Protocol Overview

Gerdes, et al. Expires April 21, 2016 [Page 7]

Internet-Draft DCAF October 2015

 To determine the SAM in charge of a resource hosted at the S, C MAY
 send an initial Unauthorized Resource Request message to S. S then
 denies the request and sends the address of its SAM back to C.

 Instead of the initial Unauthorized Resource Request message, C MAY
 look up the desired resource in a resource directory (cf.
 [I-D.ietf-core-resource-directory]) that lists S’s resources as
 discussed in Section 9.

 Once C knows SAM’s address, it can send a request for authorization
 to SAM using its own CAM. CAM and SAM authenticate each other and
 each determine if the request is to be authorized. If it is, SAM
 generates an access ticket for C. The ticket contains keying
 material for the establishment of a secure channel and, if necessary,
 a representation of the permissions C has for the resource. C keeps
 one part of the access ticket and presents the other part to S to
 prove its right to access. With their respective parts of the
 ticket, C and S are able to establish a secure channel.

 The following sections specify how CoAP is used to interchange
 access-related data between S and SAM so that SAM can provide C and S
 with sufficient information to establish a secure channel, and
 simultaneously convey authorization information specific for this
 communication relationship to S.

 Note: Special implementation considerations apply when one single
 entity takes the role of more than one actors. Section 11 gives
 additional advice on some of these usage scenarios.

 This document uses Concise Binary Object Representation (CBOR,
 [RFC7049]) to express authorization information as set of attributes
 passed in CoAP payloads. Notation and encoding options are discussed
 in Section 5. A formal specification of the DCAF message format is
 given in Appendix A.

3.2. Unauthorized Resource Request Message

 The optional Unauthorized Resource Request message is a request for a
 resource hosted by S for which no proper authorization is granted. S
 MUST treat any CoAP request as Unauthorized Resource Request message
 when any of the following holds:

 o The request has been received on an unprotected channel.

 o S has no valid access ticket for the sender of the request
 regarding the requested action on that resource.

Gerdes, et al. Expires April 21, 2016 [Page 8]

Internet-Draft DCAF October 2015

 o S has a valid access ticket for the sender of the request, but
 this does not allow the requested action on the requested
 resource.

 Note: These conditions ensure that S can handle requests autonomously
 once access was granted and a secure channel has been established
 between C and S.

 Unauthorized Resource Request messages MUST be denied with a client
 error response. In this response, the Server MUST provide proper SAM
 Information to enable the Client to request an access ticket from S’s
 SAM as described in Section 3.3.

 The response code MUST be 4.01 (Unauthorized) in case the sender of
 the Unauthorized Resource Request message is not authenticated, or if
 S has no valid access ticket for C. If S has an access ticket for C
 but not for the resource that C has requested, S MUST reject the
 request with a 4.03 (Forbidden). If S has an access ticket for C but
 it does not cover the action C requested on the resource, S MUST
 reject the request with a 4.05 (Method Not Allowed).

 Note: The use of the response codes 4.03 and 4.05 is intended to
 prevent infinite loops where a dumb Client optimistically tries to
 access a requested resource with any access token received from
 the SAM. As malicious clients could pretend to be C to determine
 C’s privileges, these detailed response codes must be used only
 when a certain level of security is already available which can be
 achieved only when the Client is authenticated.

3.3. SAM Information Message

 The SAM Information Message is sent by S as a response to an
 Unauthorized Resource Request message (see Section 3.2) to point the
 sender of the Unauthorized Resource Request message to S’s SAM. The
 SAM information is a set of attributes containing an absolute URI
 (see Section 4.3 of [RFC3986]) that specifies the SAM in charge of S.

 An optional field A lists the different content formats that are
 supported by S.

 The message MAY also contain a timestamp generated by S.

 Figure 2 shows an example for an SAM Information message payload
 using CBOR diagnostic notation. (Refer to Section 5 for a detailed
 description of the available attributes and their semantics.)

Gerdes, et al. Expires April 21, 2016 [Page 9]

Internet-Draft DCAF October 2015

 4.01 Unauthorized
 Content-Format: application/dcaf+cbor
 {SAM: "coaps://sam.example.com/authorize", TS: 168537,
 A: [TBD1, ct_cose_msg] }

 Figure 2: SAM Information Payload Example

 In this example, the attribute SAM points the receiver of this
 message to the URI "coaps://sam.example.com/authorize" to request
 access permissions. The originator of the SAM Information payload
 (i.e. S) uses a local clock that is loosely synchronized with a time
 scale common between S and SAM (e.g., wall clock time). Therefore,
 it has included a time stamp on its own time scale that is used as a
 nonce for replay attack prevention. Refer to Section 4.1 for more
 details concerning the usage of time stamps to ensure freshness of
 access tickets.

 The content formats accepted by S are TBD1 (identifying ’application/
 dcaf+cbor’ as defined in this document), and ’application/cose+cbor’
 defined in [I-D.ietf-cose-msg].

 Editorial note: ct_cose_msg is to be replaced with the numeric value
 assigned for ’application/cose+cbor’.

 The examples in this document are written in CBOR diagnostic notation
 to improve readability. Figure 3 illustrates the binary encoding of
 the message payload shown in Figure 2.

 a2 # map(2)
 00 # unsigned(0) (=SAM)
 78 21 # text(33)
 636f6170733a2f2f73616d2e6578
 616d706c652e636f6d2f617574686f72
 697a65 # "coaps://sam.example.com/authorize"
 05 # unsigned(5) (=TS)
 1a 00029259 # unsigned(168537)
 0a # unsigned(10) (=A)
 82 # array(2)
 19 03e6 # unsigned(998) (=dcaf+cbor)
 19 03e7 # unsigned(999) (=cose+cbor)

 Figure 3: SAM Information Payload Example encoded in CBOR

3.3.1. Piggybacked Protected Content

 For some use cases (such as sleepy nodes) it might be necessary to
 store sensor data on a server that might not belong to the same
 security domain. A client can retrieve the data from that server.

Gerdes, et al. Expires April 21, 2016 [Page 10]

Internet-Draft DCAF October 2015

 To be able to achieve the security objectives of the principles the
 data must be protected properly.

 The server that hosts the stored data may respond to GET requests for
 this particular resource with a SAM Information message that contains
 the protected data as piggybacked content. As the server may
 frequently publish updates to the stored data, the URI of the
 authorization manager responsible for the protected data MAY be
 omitted and must be retrieved from a resource directory.

 Once a requesting client has received the SAM Information Message
 with piggybacked content, it needs to request authorization for
 accessing the protected data. To do so, it constructs an Access
 Request as defined in Section 3.4. If access to the protected data
 is granted, the requesting client will be provided with cryptographic
 material to verify the integrity and authenticity of the piggybacked
 content and decrypt the protected data in case it is encrypted.

3.4. Access Request

 To retrieve an access ticket for the resource that C wants to access,
 C sends an Access Request to its CAM. The Access Request is
 constructed as follows:

 1. The request method is POST.

 2. The request URI is set as described below.

 3. The message payload contains a data structure that describes the
 action and resource for which C requests an access ticket.

 The request URI identifies a resource at CAM for handling
 authorization requests from C. The URI SHOULD be announced by CAM in
 its resource directory as described in Section 9.

 Note: Where capacity limitations of C do not allow for resource
 directory lookups, the request URI in Access Requests could be
 hard-coded during provisioning or set in a specific device
 configuration profile.

 The message payload is constructed from the SAM information that S
 has returned in its SAM Information message (see Section 3.3) and
 information that C provides to describe its intended request(s). The
 Access Request MUST contain the following attributes:

 1. Contact information for the SAM to use.

 2. An absolute URI of the resource that C wants to access.

Gerdes, et al. Expires April 21, 2016 [Page 11]

Internet-Draft DCAF October 2015

 3. The actions that C wants to perform on the resource.

 4. Any time stamp generated by S.

 An example Access Request from C to CAM is depicted in Figure 4.
 (Refer to Section 5 for a detailed description of the available
 attributes and their semantics.)

 POST client-authorize
 Content-Format: application/dcaf+cbor
 {
 SAM: "coaps://sam.example.com/authorize",
 SAI: ["coaps://temp451.example.com/s/tempC", 5],
 TS: 168537
 }

 Figure 4: Access Request Message Example

 The example shows an Access Request message payload for the resource
 "/s/tempC" on the Server "temp451.example.com". Requested operations
 in attribute SAI are GET and PUT.

 The attributes SAM (that denotes the Server Authorization Manager to
 use) and TS (a nonce generated by S) are taken from the SAM
 Information message from S.

 The response to an Authorization Request is delivered by CAM back to
 C in a Ticket Transfer message.

3.5. Ticket Request Message

 When CAM receives an Access Request message from C and COP specified
 authorization policies for C, CAM MUST check if the requested actions
 are allowed according to these policies. If all requested actions
 are forbidden, CAM MUST send a 4.03 response.

 If no authorization policies were specified or some or all of the
 requested actions are allowed according to the authorization
 policies, CAM either returns a cached response or attempts to create
 a Ticket Request message. The Ticket Request message MAY contain all
 actions requested by C since CAM will add CAI in the Ticket Transfer
 Message if COP specified authorization policies (see Section 3.7).

 CAM MAY return a cached response if it is known to be fresh according
 to Max-Age. CAM SHOULD NOT return a cached response if it expires in
 less than a minute.

Gerdes, et al. Expires April 21, 2016 [Page 12]

Internet-Draft DCAF October 2015

 If CAM does not send a cached response, it checks whether the request
 payload is of type "application/dcaf+cbor" and contains at least the
 fields SAM and SAI. CAM MUST respond with 4.00 (Bad Request) if the
 type is "application/dcaf+cbor" and any of these fields is missing or
 does not conform to the format described in Section 5.

 If the payload is correct, CAM creates a Ticket Request message from
 the Access Request received from C as follows:

 1. The destination of the Ticket Request message is derived from the
 "SAM" field that is specified in the Access Request message
 payload (for example, if the Access Request contained ’SAM:
 "coaps://sam.example.com/authz"’, the destination of the Ticket
 Request message is sam.example.com).

 2. The request method is POST.

 3. The request URI is constructed from the SAM field received in the
 Access Request message payload.

 4. The payload is copied from the Access Request sent by C.

 To send the Ticket Request message to SAM a secure channel between
 CAM and SAM MUST be used. Depending on the URI scheme used in the
 SAM field of the Access Request message payload (the less-constrained
 devices CAM and SAM do not necessarily use CoAP to communicate with
 each other), this could be, e.g., a DTLS channel (for "coaps") or a
 TLS connection (for "https"). CAM and SAM MUST be able to mutually
 authenticate each other, e.g. based on a public key infrastructure.
 (Refer to Section 8 for a detailed discussion of the trust
 relationship between Client Authorization Managers and Server
 Authorization Managers.)

3.6. Ticket Grant Message

 When SAM has received a Ticket Request message it has to evaluate the
 access request information contained therein. First, it checks
 whether the request payload is of type "application/dcaf+cbor" and
 contains at least the fields SAM and SAI. SAM MUST respond with 4.00
 (Bad Request) for CoAP (or 400 for HTTP) if the type is "application/
 dcaf+cbor" and any of these fields is missing or does not conform to
 the format described in Section 5.

 SAM decides whether or not access is granted to the requested
 resource and then creates a Ticket Grant message that reflects the
 result. To grant access to the requested resource, SAM creates an
 access ticket comprised of a Face and the Client Information as
 described in Section 4.

Gerdes, et al. Expires April 21, 2016 [Page 13]

Internet-Draft DCAF October 2015

 The Ticket Grant message then is constructed as a success response
 indicating attached content, i.e. 2.05 for CoAP, or 200 for HTTP,
 respectively. The payload of the Ticket Grant message is a data
 structure that contains the result of the access request. When
 access is granted, the data structure contains the Ticket Face and
 the Client Information. Face contains the SAI and the Session Key
 Generation Method. The CI at this point only consists of the
 Verifier.

 The Ticket Grant message MAY provide cache-control options to enable
 intermediaries to cache the response. The message MAY be cached
 according to the rules defined in [RFC7252] to facilitate ticket
 retrieval when C has crashed and wants to recover the DTLS session
 with S.

 SAM SHOULD set Max-Age according to the ticket lifetime in its
 response (Ticket Grant Message).

 Figure 5 shows an example Ticket Grant message using CoAP. The Face/
 Verifier information is transferred as a CBOR data structure as
 specified in Section 5. The Max-Age option tells the receiving CAM
 how long this ticket will be valid.

 2.05 Content
 Content-Format: application/dcaf+cbor
 Max-Age: 86400
 { F: {
 SAI: ["/s/tempC", 7],
 TS: 0("2013-07-10T10:04:12.391"),
 L: 86400,
 G: hmac_sha256
 },
 V: h’f89947160c73601c7a65cb5e08812026
 6d0f0565160e3ff7d3907441cdf44cc9’
 }

 Figure 5: Example Ticket Grant Message

 A Ticket Grant message that declines any operation on the requested
 resource is illustrated in Figure 6. As no ticket needs to be
 issued, an empty payload is included with the response.

 2.05 Content
 Content-Format: application/dcaf+cbor

 Figure 6: Example Ticket Grant Message With Reject

Gerdes, et al. Expires April 21, 2016 [Page 14]

Internet-Draft DCAF October 2015

3.7. Ticket Transfer Message

 A Ticket Transfer message delivers the access information sent by SAM
 in a Ticket Grant message to the requesting client C. The Ticket
 Transfer message is the response to the Access Request message sent
 from C to CAM and includes the ticket data from SAM contained in the
 Ticket Grant message.

 The Authorization Information provided by SAM in the Ticket Grant
 Message may grant more permissions than C has requested. The
 authorization policies of COP and ROP may differ: COP might want
 restrict the resources C is allowed to access, and the actions that C
 is allowed to perform on the resource.

 If COP defined authorization policies that concern the requested
 actions, CAM MUST add Authorization Information for C (CAI) to the CI
 that reflect those policies. Since C and CAM use a DTLS channel for
 communication, the autorization information does not need to be
 encrypted.

 CAM includes the Face and the CI containing the verifier sent by SAM
 in the Ticket Transfer message. However, CAM MUST NOT include
 additional information SAM provided in CI. In particular, CAM MUST
 NOT include any CAI information provided by SAM, since CAI represents
 COP’s authorization policies that MUST NOT be provided by SAM.

 Figure 7 shows an example Ticket Transfer message that conveys the
 permissions for actions GET, POST, PUT (but not DELETE) on the
 resource "/s/tempC" in field SAI. As CAM only wants to permit
 outbound GET requests, it restricts C’s permissions in the field CAI
 accordingly.

Gerdes, et al. Expires April 21, 2016 [Page 15]

Internet-Draft DCAF October 2015

 2.05 Content
 Content-Format: application/dcaf+cbor
 Max-Age: 86400
 { F: {
 SAI: ["/s/tempC", 7],
 TS: 0("2013-07-10T10:04:12.391"),
 L: 86400,
 G: hmac_sha256
 },
 V: h’f89947160c73601c7a65cb5e08812026
 6d0f0565160e3ff7d3907441cdf44cc9’
 CAI: ["/s/tempC", 1],
 TS: 0("2013-07-10T10:04:12.855"),
 L: 86400
 }

 Figure 7: Example Ticket Transfer Message

3.8. DTLS Channel Setup Between C and S

 When C receives a Ticket Transfer message, it checks if the payload
 contains a face and a Client Information. With this information C
 can initiate establishment of a new DTLS channel with S. To use DTLS
 with pre-shared keys, C follows the PSK key exchange algorithm
 specified in Section 2 of [RFC4279], with the following additional
 requirements:

 1. C sets the psk_identity field of the ClientKeyExchange message to
 the ticket Face received in the Ticket Transfer message.

 2. C uses the ticket Verifier as PSK when constructing the premaster
 secret.

 Note1: As S cannot provide C with a meaningful PSK identity hint in
 response to C’s ClientHello message, S SHOULD NOT send a
 ServerKeyExchange message.

 Note2: According to [RFC7252], CoAP implementations MUST support the
 ciphersuite TLS_PSK_WITH_AES_128_CCM_8 [RFC6655]. C is therefore
 expected to offer at least this ciphersuite to S.

 Note3: The ticket is constructed by SAM such that S can derive the
 authorization information as well as the PSK (refer to Section 6 for
 details).

Gerdes, et al. Expires April 21, 2016 [Page 16]

Internet-Draft DCAF October 2015

3.9. Authorized Resource Request Message

 If the Client Information in the Ticket Transfer message contains
 CAI, C MUST ensure that it only sends requests that according to them
 are allowed. C therefore MUST check CAI, L and TS before every
 request. If CAI is no longer valid according to L, C MUST terminate
 the DTLS connection with S and re-request the CAI from CAM using an
 Access Request Message.

 On the Server side, successful establishment of the DTLS channel
 between C and S ties the SAM authorization information contained in
 the psk_identity field to this channel. Any request that S receives
 on this channel is checked against these authorization rules.
 Incoming CoAP requests that are not Authorized Resource Requests MUST
 be rejected by S with 4.01 response as described in Section 3.2.

 S SHOULD treat an incoming CoAP request as Authorized Resource
 Request if the following holds:

 1. The message was received on a secure channel that has been
 established using the procedure defined in Section 3.8.

 2. The authorization information tied to the secure channel is
 valid.

 3. The request is destined for S.

 4. The resource URI specified in the request is covered by the
 authorization information.

 5. The request method is an authorized action on the resource with
 respect to the authorization information.

 Note that the authorization information is not restricted to a single
 resource URI. For example, role-based authorization can be used to
 authorize a collection of semantically connected resources
 simultaneously. Implicit authorization also provides access rights
 to authenticated clients for all actions on all resources that S
 offers. As a result, C can use the same DTLS channel not only for
 subsequent requests for the same resource (e.g. for block-wise
 transfer as defined in [I-D.ietf-core-block] or refreshing observe-
 relationships [RFC7641]) but also for requests to distinct resources.

 Incoming CoAP requests received on a secure channel according to the
 procedure defined in Section 3.8 MUST be rejected

Gerdes, et al. Expires April 21, 2016 [Page 17]

Internet-Draft DCAF October 2015

 1. with response code 4.03 (Forbidden) when the resource URI
 specified in the request is not covered by the authorization
 information, and

 2. with response code 4.05 (Method Not Allowed) when the resource
 URI specified in the request covered by the authorization
 information but not the requested action.

 Since SAM may limit the set of requested actions in its Ticket Grant
 message, C cannot know a priori if an Authorized Resource Request
 will succeed. If C repeatedly gets SAM Information messages as
 response to its requests, it SHOULD NOT send new Access Requests to
 CAM.

3.10. Dynamic Update of Authorization Information

 Once a security association exists between a Client and a Resource
 Server, the Client can update the Authorization Information stored at
 the Server at any time. To do so, the Client creates a new Access
 Request for the intended action on the respective resource and sends
 this request to its CAM which checks and relays this request to the
 Server’s SAM as described in Section 3.4.

 Note: Requesting a new Access Ticket also can be a Client’s reaction
 on a 4.03 or 4.05 error that it has received in response to an
 Authorized Resource Request.

 Figure 8 depicts the message flow where C requests a new Access
 Tickets after a security association between C and S has been
 established using this protocol.

Gerdes, et al. Expires April 21, 2016 [Page 18]

Internet-Draft DCAF October 2015

 CAM C S SAM
 | <== DTLS chan. ==> | <== DTLS chan. ==> | <== DTLS chan. ==> |
 | | | |
 | | [Unauth. R. Req->] | |
 | |[<- 4.0x+SAM Info.] | |
 | | | |
 | <-- Access Req. | | |
 | | | |
 | <==== TLS/DTLS channel (CAM/SAM Mutual Authentication) ====> |
 | | | |
 | Ticket Request --> |
 | | | |
 | <-- Ticket Grant |
 | | | |
 | Ticket Transf. --> | | |
 | | | |
 | | <== Update SAI ==> | |

 Figure 8: Overview of Dynamic Update Operation

 Processing the Ticket Request is done at the SAM as specified in
 Section 3.6, i.e. the SAM checks whether or not the requested
 operation is permitted by the Resource Principal’s policy, and then
 return a Ticket Grant message with the result of this check. If
 access is granted, the Ticket Grant message contains an Access Ticket
 comprised of a public Ticket Face and a private Ticket Verifier.
 This authorization payload is relayed by CAM to the Client in a
 Ticket Transfer Message as defined in Section 3.7.

 The major difference between dynamic update of Authorization
 Information and the initial handshake is the handling of a Ticket
 Transfer message by the Client that is described in Section 3.10.1.

3.10.1. Handling of Ticket Transfer Messages

 If the security association with S still exists and S has indicated
 support for session renegotiation according to [RFC5746], the ticket
 Face SHOULD be used to renegotiate the existing DTLS session. In
 this case, the ticket Face is used as psk_identity as defined in
 Section 3.8. Otherwise, the Client MUST perform a new DTLS handshake
 according to Section 3.8 that replaces the existing DTLS session.

 After successful completion of the DTLS handshake S updates the
 existing SAM Authorization Information for C according to the
 contents of the ticket Face.

Gerdes, et al. Expires April 21, 2016 [Page 19]

Internet-Draft DCAF October 2015

 Note: No mutual authentication between C and S is required for
 dynamic updates when a DTLS channel exists that has been
 established as defined in Section 3.8. S only needs to verify the
 authenticity and integrity of the ticket Face issued by SAM which
 is achieved by having performed a successful DTLS handshake with
 the ticket Face as psk_identity. This could even be done within
 the existing DTLS session by tunneling a CoDTLS
 [I-D.schmertmann-dice-codtls] handshake.

4. Ticket

 Access tokens in DCAF are tickets that consist of two parts, namely
 the Face and the Client Information (CI). SAM generates the ticket
 Face for S and the verifier that corresponds to the ticket Face for
 C. The verifier is included in the CI.

 The Ticket is transmitted over CAM to C. C keeps the CI and sends
 the Face to S. CAM can add Client authorization information (CAI)
 for C to the CI if necessary.

 S uses the information in the ticket Face to validate that it was
 generated by SAM and to authenticate and authorize the client. No
 additional information about the Client is needed, S keeps the Ticket
 Face as long as it is valid.

 C uses the verifier to authenticate S. If CAM specified CAI, the
 client uses it to authorize the server.

 The ticket is not required to contain a client or a server
 identifier. The ticket Face MAY contain an SAI identifier for
 revocation. The CI MAY contain a CAI identifier for revocation.

4.1. Face

 Face is the part of the ticket that is generated by SAM for S. Face
 MUST contain all information needed for authorized access to a
 resource:

 o SAM Authorization Information (SAI)

 o A nonce

 Optionally, Face MAY also contain:

 o A lifetime (optional)

 o A DTLS pre-shared key (optional)

Gerdes, et al. Expires April 21, 2016 [Page 20]

Internet-Draft DCAF October 2015

 o A SAI identifier (optional)

 S MUST verify the integrity of Face, i.e. the information contained
 in Face stems from SAM and was not manipulated by anyone else. The
 integrity of Face can be ensured by various means. Face may be
 encrypted by SAM with a key it shares with S. Alternatively, S can
 use a mechanism to generate the DTLS PSK which includes Face. S
 generates the key from the Face it received. The correct key can
 only be calculated with the correct Face (refer to Section 6 for
 details).

 Face MUST contain a nonce to verify that the contained information is
 fresh. As constrained devices may not have a clock, nonces MAY be
 generated using the clock ticks since the last reboot. To circumvent
 synchronization problems the timestamp MAY be generated by S and
 included in the first SAM Information message. Alternatively, SAM
 MAY generate the timestamp for the nonce. In this case, SAM and S
 MUST use a time synchronization mechanism to make sure that S
 interprets the timestamp correctly.

 Face MAY contain an SAI identifier that uniquely identifies the SAI
 for S and SAM and can be used for revocation.

 Face MAY be encrypted. If Face contains a DTLS PSK, the whole
 content of Face MUST be encrypted.

 The ticket Face does not need to contain a client identifier.

4.2. Client Information

 The CI part of the ticket is generated for C. It contains

 o The Verifier generated by SAM

 CI MAY additionally contain:

 o CAI generated by CAM

 o A nonce generated by CAM

 o A lifetime generated by CAM

 o A SAI identifier generated by CAM

 CI MUST contain the verifier, i.e. the DTLS PSK for C. The Verifier
 MUST NOT be transmitted over unprotected channels.

Gerdes, et al. Expires April 21, 2016 [Page 21]

Internet-Draft DCAF October 2015

 Additionally, CI MAY contain CAI to provide the COP’s authorization
 policies to C. If the CI contains CAI, CAM MUST add a nonce that
 enables C to validate that the information is fresh. CAM MAY use a
 timestamp as the nonce (see Section 4.1). CAM SHOULD add a lifetime
 to CI to limit the lifetime of the CAI. CAM MAY additionally add a
 CAI identifier to CI for revocating the CAI. The CAI identifier MUST
 uniquely identify the CAI for C and CAM.

4.3. Revocation

 The existence of access tickets SHOULD be limited in time to avoid
 stale tickets that waste resources on S and C. This can be achieved
 either by explicit Revocation Messages to invalidate a ticket or
 implicitly by attaching a lifetime to the ticket.

 The SAI in the ticket Face and the CAI in the CI need to be protected
 separately. CAM decides about the validity of the CAI while SAM is
 in charge of the validity of SAI. To be able to revoke the CAI, CAM
 SHOULD include a CAI identifier in the CI. SAM SHOULD include a SAI
 identifier in FACE to be able to revocate the SAI.

4.4. Lifetime

 SAI and CAI MAY each have lifetime. SAM is responsible for defining
 the SAI lifetime, CAM is responsible for the CAI lifetime. If SAM
 sets a lifetime for SAI, SAM and S MUST use a time synchronization
 method to ensure that S is able to interpret the lifetime correctly.
 S SHOULD end the DTLS connection to C if the lifetime of a ticket has
 run out and it MUST NOT accept new requests. S MUST NOT accept
 tickets with an invalid lifetime.

 If CAM provides CAI in the CI part of the ticket, CAM MAY add a
 lifetime for this CAI. If CI contains a lifetime, CAM and C MUST use
 a time synchronization method to ensure that C is able to interpret
 the lifetime correctly. C SHOULD end the DTLS connection to S and
 MUST NOT send new requests if the CAI in the ticket is no longer
 valid. C MUST NOT accept tickets with an invalid lifetime.

 Note: Defining reasonable ticket lifetimes is difficult to
 accomplish. How long a client needs to access a resource depends
 heavily on the application scenario and may be difficult to decide
 for SAM.

4.4.1. Revocation Messages

 SAM MAY revoke tickets by sending a ticket revocation message to S.
 If S receives a ticket revocation message, it MUST end the DTLS
 connection to C and MUST NOT accept any further requests from C.

Gerdes, et al. Expires April 21, 2016 [Page 22]

Internet-Draft DCAF October 2015

 If ticket revocation messages are used, S MUST check regularly if SAM
 is still available. If S cannot contact SAM, it MUST end all DTLS
 connections and reject any further requests from C.

 Likewise, CAM MAY revoke tickets by sending a ticket revocation
 message to C. If C receives a CAI revocation message, it MUST end
 the DTLS connection to S and MUST NOT send any further requests to S.

 If CAI revocation messages are used, C MUST check regularly if CAM is
 still available. If C cannot contact CAM, it MUST end all DTLS
 connections and MUST NOT send any more requests to S.

 Note: The loss of the connection between S and SAM prevents all
 access to S. This might especially be a severe problem if SAM is
 responsible for several Servers or even a whole network.

5. Payload Format and Encoding (application/dcaf+cbor)

 Various messages types of the DCAF protocol carry payloads to express
 authorization information and parameters for generating the DTLS PSK
 to be used by C and S. In this section, a representation in Concise
 Binary Object Representation (CBOR, [RFC7049]) is defined.

 DCAF data structures are defined as CBOR maps that contain key value
 pairs. For efficient encoding, the keys defined in this document are
 represented as unsigned integers in CBOR, i. e. major type 0. For
 improved reading, we use symbolic identifiers to represent the
 corresponding encoded values as defined in Table 1.

Gerdes, et al. Expires April 21, 2016 [Page 23]

Internet-Draft DCAF October 2015

 +---------------+-----+
 | Encoded Value | Key |
 +---------------+-----+
 | 0 | SAM |
 | | |
 | 1 | SAI |
 | | |
 | 2 | CAI |
 | | |
 | 3 | E |
 | | |
 | 4 | K |
 | | |
 | 5 | TS |
 | | |
 | 6 | L |
 | | |
 | 7 | G |
 | | |
 | 8 | F |
 | | |
 | 9 | V |
 | | |
 | 10 | A |
 | | |
 | 11 | D |
 | | |
 | 12 | N |
 +---------------+-----+

 Table 1: DCAF field identifiers encoded in CBOR

 The following list describes the semantics of the keys defined in
 DCAF.

 SAM: Server Authorization Manager. This attribute denotes the
 Server Authorization Manager that is in charge of the resource
 specified in attribute R. The attribute’s value is a string that
 contains an absolute URI according to Section 4.3 of [RFC3986].

 SAI: SAM Authorization Information. A data structure used to convey
 authorization information from SAM to S. It describes C’s
 permissions for S according to SAM, e.g., which actions C is
 allowed to perform on an R of S. The SAI attribute contains an
 AIF object as defined in [I-D.bormann-core-ace-aif]. C uses SAI
 for its Access Request messages.

Gerdes, et al. Expires April 21, 2016 [Page 24]

Internet-Draft DCAF October 2015

 CAI: CAM Authorization Information. A data structure used to convey
 authorization information from CAM to C. It describes the C’s
 permissions for S according to CAM, e.g., which actions C is
 allowed to perform on an R of S. The CAI attribute contains an
 AIF object as defined in [I-D.bormann-core-ace-aif].

 A: Accepted content formats. An array of numeric content formats
 from the CoAP Content-Formats registry (c.f. Section 12.3 of
 [RFC7252].

 D: Protected Data. A binary string containing data that may be
 encrypted.

 E: Encrypted Ticket Face. A binary string containing an encrypted
 ticket Face.

 K: Key. A string that identifies the shared key between S and SAM
 that can be used to decrypt the contents of E. If the attribute E
 is present and no attribute K has been specified, the default is
 to use the current session key for the secured channel between S
 and SAM.

 TS: Time Stamp. A time stamp that indicates the instant when the
 access ticket request was formed. This attribute can be used by
 the Server in an SAM Information message to convey a time stamp in
 its local time scale (e.g. when it does not have a real time clock
 with synchronized global time). When the attribute’s value is
 encoded as a string, it MUST contain a valid UTC timestamp without
 time zone information. When encoded as integer, TS contains a
 system timestamp relative to the local time scale of its
 generator, usually S.

 L: Lifetime. When in included in a ticket face, the contents of the
 L parameter denote the lifetime of the ticket. In combination
 with the protected data field D, this parameter denotes the
 lifetime of the protected data. When encoded as a string, L MUST
 denote the ticket’s expiry time as a valid UTC timestamp without
 time zone information. When encoded as an integer, L MUST denote
 the ticket’s validity period in seconds relative to TS.

 N: Nonce. An initialization vector used in combination with
 piggybacked protected content.

 G: DTLS PSK Generation Method. A numeric identifier for the method
 that S MUST use to derive the DTLS PSK from the ticket Face. This
 attribute MUST NOT be used when attribute V is present within the
 contents of F. This specification uses symbolic identifiers for
 improved readability. The corresponding numeric values encoded in

Gerdes, et al. Expires April 21, 2016 [Page 25]

Internet-Draft DCAF October 2015

 CBOR are defined in Table 2. A registry for these codes is
 defined in Section 13.1.

 F: Ticket Face. An object containing the fields SAI, TS, and
 optionally G, L and V.

 V: Ticket Verifier. A binary string containing the shared secret
 between C and S.

 +---------------+-------------+-----------+
 | Encoded Value | Mnemonic | Support |
 +---------------+-------------+-----------+
 | 0 | hmac_sha256 | mandatory |
 | | | |
 | 1 | hmac_sha384 | optional |
 | | | |
 | 2 | hmac_sha512 | optional |
 +---------------+-------------+-----------+

 Table 2: CBOR encoding for DTLS PSK Key Generation Methods

5.1. Examples

 The following example specifies a SAM that will be accessed using
 HTTP over TLS. The request URI is set to
 "/a?ep=%5B2001:DB8::dcaf:1234%5D" (hence denoting the endpoint
 address to authorize). TS denotes a local timestamp in UTC.

 POST /a?ep=%5B2001:DB8::dcaf:1234%5D HTTP/1.1
 Host: sam.example.com
 Content-Type: application/dcaf+cbor
 {SAM: "https://sam.example.com/a?ep=%5B2001:DB8::dcaf:1234%5D",
 SAI: ["coaps://temp451.example.com/s/tempC", 1],
 TS: 0("2013-07-14T11:58:22.923")}

 The following example shows a ticket for the distributed key
 generation method (cf. Section 6.2), comprised of a Face (F) and a
 Verifier (V). The Face data structure contains authorization
 information SAI, a client descriptor, a timestamp using the local
 time scale of S, and a lifetime relative to S’s time scale.

 The DTLS PSK Generation Method is set to hmac_sha256 denoting that
 the distributed key derivation is used as defined in Section 6.2 with
 SHA-256 as HMAC function.

 The Verifier V contains a shared secret to be used as DTLS PSK
 between C and S.

Gerdes, et al. Expires April 21, 2016 [Page 26]

Internet-Draft DCAF October 2015

 HTTP/1.1 200 OK
 Content-Type: application/dcaf+cbor
 {
 F: {
 SAI: ["/s/tempC", 1],
 TS: 2938749,
 L: 3600,
 G: hmac_sha256
 },
 V: h’48ae5a81b87241d81618f56cab0b65ec
 441202f81faabbe10075b20cb57fa939’
 }

 The Face may be encrypted as illustrated in the following example.
 Here, the field E carries an encrypted Face data structure that
 contains the same information as the previous example, and an
 additional Verifier. Encryption was done with a secret shared by SAM
 and S. (This example uses AES128_CCM with the secret { 0x00, 0x01,
 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,
 0x0d, 0x0e, 0x0f } and S’s timestamp { 0x00, 0x2C, 0xD7, 0x7D } as
 nonce.) Line breaks have been inserted to improve readability.

 The attribute K describes the identity of the key to be used by S to
 decrypt the contents of attribute E. Here, The value "key0" in this
 example is used to indicate that the shared session key between S and
 SAM was used for encrypting E.

 {
 E: h’2e75eeae01b831e0b65c2976e06d90f4
 82135bec5efef3be3d31520b2fa8c6fb
 f572f817203bf7a0940bb6183697567c
 e291b03e9fca5e9cbdfa7e560322d4ed
 3a659f44a542e55331a1a9f43d7f’,
 K: "key0",
 V: h’48ae5a81b87241d81618f56cab0b65ec
 441202f81faabbe10075b20cb57fa939’
 }

 The decrypted contents of E are depicted below (whitespace has been
 added to improve readability). The presence of the attribute V
 indicates that the DTLS PSK Transfer is used to convey the session
 key (cf. Section 6.1).

Gerdes, et al. Expires April 21, 2016 [Page 27]

Internet-Draft DCAF October 2015

 {
 F: {
 SAI: ["/s/tempC", 1],
 TS: 2938749,
 L: 3600,
 G: hmac_sha256
 },
 V: h’48ae5a81b87241d81618f56cab0b65ec
 441202f81faabbe10075b20cb57fa939’
 }

6. DTLS PSK Generation Methods

 One goal of the DCAF protocol is to provide for a DTLS PSK shared
 between C and S. SAM and S MUST negotiate the method for the DTLS
 PSK generation.

6.1. DTLS PSK Transfer

 The DTLS PSK is generated by AS and transmitted to C and S using a
 secure channel.

 The DTLS PSK transfer method is defined as follows:

 o SAM generates the DTLS PSK using an algorithm of its choice

 o SAM MUST include a representation of the DTLS PSK in Face and
 encrypt it together with all other information in Face with a key
 K(SAM,S) it shares with S. How SAM and S exchange K(SAM,S) is not
 in the scope of this document. SAM and S MAY use their preshared
 key as K(SAM,S).

 o SAM MUST include a representation of the DTLS PSK in the Verifier.

 o As SAM and C do not have a shared secret, the Verifier MUST be
 transmitted to C using encrypted channels.

 o S MUST decrypt Face using K(SAM,S)

6.2. Distributed Key Derivation

 SAM generates a DTLS PSK for C which is transmitted using a secure
 channel. S generates its own version of the DTLS PSK using the
 information contained in Face (see also Section 4.1).

 The distributed key derivation method is defined as follows:

Gerdes, et al. Expires April 21, 2016 [Page 28]

Internet-Draft DCAF October 2015

 o SAM and S both generate the DTLS PSK using the information
 included in Face. They use an HMAC algorithm on Face with a
 shared key K(SAM,S). The result serves as the DTLS PSK. How SAM
 and S exchange K(SAM,S) is not in the scope of this document.
 They MAY use their preshared key as K(SAM,S). How SAM and S
 negotiate the used HMAC algorithm is also not in the scope of this
 document. They MAY however use the HMAC algorithm they use for
 their DTLS connection.

 o SAM MUST include a representation of the DTLS PSK in the Verifier.

 o As SAM and C do not have a shared secret, the Verifier MUST be
 transmitted to C using encrypted channels.

 o SAM MUST NOT include a representation of the DTLS PSK in Face.

 o SAM MUST NOT encrypt Face.

7. Authorization Configuration

 For the protocol defined in this document, proper configuration of
 CAM and SAM is crucial. The principals that are in charge of the
 resource, S and SAM, and the principals that are in charge of C and
 CAM need to define the respective permissions. The data
 representation of these permissions are not in the scope of this
 document.

8. Trust Relationships

 The constrained devices may be too constrained to manage complex
 trust relationships. Thus, DCAF does not require the constrained
 devices to perform complex tasks such as identifying a formerly
 unknown party. Each constrained device has a trust relationship with
 its respective AM. These less constrained devices are able to
 perform the more complex security tasks and can establish security
 associations with formerly unknown parties. The AMs hand down these
 security associations to their respective constrained device. The
 constrained devices require the help of their AMs for authentication
 and authorization.

 C has a trust relationship with CAM: C trusts CAM to act in behalf of
 COP. S has a trust relationship with SAM: S trusts SAM to act in
 behalf of ROP. CAM trusts C to handle the data according to the CAI.
 SAM trusts S to protect resources according to the SAI. How the
 trust relationships between AMs and their respective constrained
 devices are established, is not in the scope of this document. It
 may be achieved by using a bootstrapping mechanism similar to
 [bergmann12] or by the means introduced in [I-D.gerdes-ace-a2a].

Gerdes, et al. Expires April 21, 2016 [Page 29]

Internet-Draft DCAF October 2015

 Additionally, SAM and CAM need to have established a trust
 relationship. Its establishment is not in the scope of this
 document. It fulfills the following conditions:

 1. SAM and CAM have means to mutually authenticate each other (e.g.,
 they might have a certificate of the other party or a PKI in
 which it is included)

 2. If SAM requires information about the client from SAM, e.g. if
 SAM only wans to authorize certain types of devices, it can be
 sure that CAM correctly identifies these clients towards SAM and
 does not leak tickets that have been generated for a specific
 client C to another client.

 SAM trusts C indirectly because it trusts CAM and CAM vouches for C.
 The DCAF Protocol does not provide any means for SAM to validate that
 a resource request stems from a specific C.

 C indirectly entrusts SAM with some potentially confidential
 information, and trusts that SAM correctly represents S, because CAM
 trusts SAM.

 CAM trusts S indirectly because it trusts SAM and SAM vouches for S.

 C implicitly entrusts S with some potentially confidential
 information and trusts it to correctly represent R because it trusts
 CAM and because S can prove that it shares a key with SAM.

 CAM <------------------> SAM

 /|\ /|\
 | |
 \|/ \|/

 C S

9. Listing Authorization Manager Information in a Resource Directory

 CoAP utilizes the Web Linking format [RFC5988] to facilitate
 discovery of services in an M2M environment. [RFC6690] defines
 specific link parameters that can be used to describe resources to be
 listed in a resource directory [I-D.ietf-core-resource-directory].

Gerdes, et al. Expires April 21, 2016 [Page 30]

Internet-Draft DCAF October 2015

9.1. The "auth-request" Link Relation

 This section defines a resource type "auth-request" that can be used
 by clients to retrieve the request URI for a server’s authorization
 service. When used with the parameter rt in a web link, "auth-
 request" indicates that the corresponding target URI can be used in a
 POST message to request authorization for the resource and action
 that are described in the request payload.

 The Content-Format "application/dcaf+cbor with numeric identifier
 TBD1 defined in this specification MAY be used to express access
 requests and their responses.

 The following example shows the web link used by CAM in this document
 to relay incoming Authorization Request messages to SAM. (Whitespace
 is included only for readability.)

 <client-authorize>;rt="auth-request";ct=TBD1
 ;title="Contact Remote Authorization Manager"

 The resource directory that hosts the resource descriptions of S
 could list the following description. In this example, the URI
 "ep/node138/a/switch2941" is relative to the resource context
 "coaps://sam.example.com/", i.e. the Server Authorization Manager
 SAM.

 <ep/node138/a/switch2941>;rt="auth-request";ct=TBD1;ep="node138"
 ;title="Request Client Authorization"
 ;anchor="coaps://sam.example.com/"

10. Examples

 This section gives a number of short examples with message flows for
 the initial Unauthorized Resource Request and the subsequent
 retrieval of a ticket from SAM. The notation here follows the actors
 conventions defined in Section 1.2.1. The payload format is encoded
 as proposed in Section 5. The IP address of SAM is 2001:DB8::1, the
 IP address of S is 2001:DB8::dcaf:1234, and C’s IP address is
 2001:DB8::c.

10.1. Access Granted

 This example shows an Unauthorized PUT request from C to S that is
 answered with a SAM Information message. C then sends a POST request
 to CAM with a description of its intended request. CAM forwards this
 request to SAM using CoAP over a DTLS-secured channel. The response
 from SAM contains an access ticket that is relayed back to CAM.

Gerdes, et al. Expires April 21, 2016 [Page 31]

Internet-Draft DCAF October 2015

 C --> S
 PUT a/switch2941 [Mid=1234]
 Content-Format: application/senml+json
 {"e": [{"bv": "1"}]}

 C <-- S
 4.01 Unauthorized [Mid=1234]
 Content-Format: application/dcaf+cbor
 {SAM: "coaps://[2001:DB8::1]/ep/node138/a/switch2941"}

 C --> CAM
 POST client-authorize [Mid=1235,Token="tok"]
 Content-Format: application/dcaf+cbor
 {
 SAM: "coaps://[2001:DB8::1]/ep/node138/a/switch2941",
 SAI: ["coaps://[2001:DB8::dcaf:1234]/a/switch2941", 4]
 }

 CAM --> SAM [Mid=23146]
 POST ep/node138/a/switch2941
 Content-Format: application/dcaf+cbor
 {
 SAM: "coaps://[2001:DB8::1]/ep/node138/a/switch2941",
 SAI: ["coaps://[2001:DB8::dcaf:1234]/a/switch2941", 4]
 }

 CAM <-- SAM
 2.05 Content [Mid=23146]
 Content-Format: application/dcaf+cbor
 { F: {
 SAI: ["a/switch2941", 5],
 TS: 0("2013-07-04T20:17:38.002"),
 G: hmac_sha256
 },
 V: h’7ba4d9e287c8b69dd52fd3498fb8d26d
 9503611917b014ee6ec2a570d857987a’
 }

 C <-- CAM
 2.05 Content [Mid=1235,Token="tok"]
 Content-Format: application/dcaf+cbor
 { F: {
 SAI: ["a/switch2941", 5],
 TS: 0("2013-07-04T20:17:38.002"),
 G: hmac_sha256
 },
 V: h’7ba4d9e287c8b69dd52fd3498fb8d26d
 9503611917b014ee6ec2a570d857987a’

Gerdes, et al. Expires April 21, 2016 [Page 32]

Internet-Draft DCAF October 2015

 }

 C --> S
 ClientHello (TLS_PSK_WITH_AES_128_CCM_8)

 C <-- S
 ServerHello (TLS_PSK_WITH_AES_128_CCM_8)
 ServerHelloDone

 C --> S
 ClientKeyExchange
 psk_identity=0xa301826c612f73776974636832393431
 0x0505c077323031332d30372d30345432
 0x303a31373a33382e3030320700

 (C decodes the contents of V and uses the result as PSK)
 ChangeCipherSpec
 Finished

 (S calculates PSK from SAI, TS and its session key
 HMAC_sha256(0xa301826c612f73776974636832393431
 0x0505c077323031332d30372d30345432
 0x303a31373a33382e3030320700,
 0x736563726574)
 = 0x7ba4d9e287c8...
)

 C <-- S
 ChangeCipherSpec
 Finished

10.2. Access Denied

 This example shows a denied Authorization request for the DELETE
 operation.

Gerdes, et al. Expires April 21, 2016 [Page 33]

Internet-Draft DCAF October 2015

 C --> S
 DELETE a/switch2941

 C <-- S
 4.01 Unauthorized
 Content-Format: application/dcaf+cbor
 {SAM: "coaps://[2001:DB8::1]/ep/node138/a/switch2941"}

 C --> CAM
 POST client-authorize
 Content-Format: application/dcaf+cbor
 {
 SAM: "coaps://[2001:DB8::1]/ep/node138/a/switch2941",
 SAI: ["coaps://[2001:DB8::dcaf:1234]/a/switch2941", 8]
 }

 CAM --> SAM
 POST ep/node138/a/switch2941
 Content-Format: application/dcaf+cbor
 {
 SAM: "coaps://[2001:DB8::1]/ep/node138/a/switch2941",
 SAI: ["coaps://[2001:DB8::dcaf:1234]/a/switch2941", 8]
 }

 CAM <-- SAM
 2.05 Content
 Content-Format: application/dcaf+cbor

 C <-- CAM
 2.05 Content
 Content-Format: application/dcaf+cbor

10.3. Access Restricted

 This example shows a denied Authorization request for the operations
 GET, PUT, and DELETE. SAM grants access for PUT only.

Gerdes, et al. Expires April 21, 2016 [Page 34]

Internet-Draft DCAF October 2015

 CAM --> SAM
 POST ep/node138/a/switch2941
 Content-Format: application/dcaf+cbor
 {
 SAM: "coaps://[2001:DB8::1]/ep/node138/a/switch2941",
 SAI: ["coaps://[2001:DB8::dcaf:1234]/a/switch2941", 13]
 }

 CAM <-- SAM
 2.05 Content
 Content-Format: application/dcaf+cbor
 { F: {
 SAI: ["a/switch2941", 5],
 TS: 0("2013-07-04T21:33:11.930"),
 G: hmac_sha256
 },
 V: h’c7b5774f2ddcbd548f4ad74b30a1b2e5
 b6b04e66a9995edd2545e5a06216c53d’
 }

10.4. Implicit Authorization

 This example shows an Authorization request using implicit
 authorization. CAM initially requests the actions GET and POST on
 the resource "coaps://[2001:DB8::dcaf:1234]/a/switch2941". SAM
 returns a ticket that has no SAI field in its ticket Face, hence
 implicitly authorizing C.

 CAM --> SAM
 POST ep/node138/a/switch2941
 Content-Format: application/dcaf+cbor
 {
 SAM: "coaps://[2001:DB8::1]/ep/node138/a/switch2941",
 SAI: ["coaps://[2001:DB8::dcaf:1234]/a/switch2941", 3]
 }

 CAM <-- SAM
 2.05 Content
 Content-Format: application/dcaf+cbor
 { F: {
 TS: 0("2013-07-16T10:15:43.663"),
 G: hmac_sha256
 },
 V: h’4f7b0e7fdcc498fb2ece648bf6bdf736
 61a6067e51278a0078e5b8217147ea06’
 }

Gerdes, et al. Expires April 21, 2016 [Page 35]

Internet-Draft DCAF October 2015

11. Specific Usage Scenarios

 The general DCAF architure outlined in Section 3.1 illustrates the
 various actors who participate in the message exchange for
 authenticated authorization. The message types defined in this
 document cover the most general case where all four actors are
 separate entities that may or may not reside on the same device.

 Special implementation considerations apply when one single entity
 takes the role of more than one actor. This section gives advice on
 the most common usage scenarios where the Client Authorization
 Manager and Client, the Server Authorization Manager and Server or
 both Authorization Managers reside on the same (less-constrained)
 device and have a means of secure communication outside the scope of
 this document.

11.1. Combined Authorization Manager and Client

 When CAM and C reside on the same (less-constrained) device, the
 Access Request and Ticket Transfer messages can be substituted by
 other means of secure communication. Figure 9 shows a simplified
 message exchange for a combined CAM+C device.

 CAM+C S SAM
 | | <== DTLS chan. ==> |
 | [Resource Req.-->] | |
 | | |
 | [<-- SAM Info.] | |
 | | |
 | <==== TLS/DTLS chan. (Mutual Auth) ===> |
 | | |
 | Ticket Request ---------------------> |
 | | |
 | <--------------------- Ticket Grant |
 | | |
 | <== DTLS chan. ==> | |
 | Auth. Res. Req. -> | |

 Figure 9: Combined Client Authorization Manager and Client

11.1.1. Creating the Ticket Request Message

 When CAM+C receives an SAM Information message as a reaction to an
 Unauthorized Request message, it creates a Ticket Request message as
 follows:

Gerdes, et al. Expires April 21, 2016 [Page 36]

Internet-Draft DCAF October 2015

 1. The destination of the Ticket Request message is derived from the
 authority information in the URI contained in field "SAM" of the
 SAM Information message payload.

 2. The request method is POST.

 3. The request URI is constructed from the SAM field received in the
 SAM Information message payload.

 4. The payload contains the SAM field from the SAM Information
 message, an absolute URI of the resource that CAM+C wants to
 access, the actions that CAM+C wants to perform on the resource,
 and any time stamp generated by S that was transferred with the
 SAM Information message.

11.1.2. Processing the Ticket Grant Message

 Based on the Ticket Grant message, CAM+C is able to establish a DTLS
 channel with S. To do so, CAM+C sets the psk_identity field of the
 DTLS ClientKeyExchange message to the ticket Face received in the
 Ticket Grant message and uses the ticket Verifier as PSK when
 constructing the premaster secret.

11.2. Combined Client Authorization Manager and Server Authorization
 Manager

 In certain scenarios, CAM and SAM may be combined to a single entity
 that knows both, C and S, and decides if their actions are
 authorized. Therefore, no explicit communication between CAM and SAM
 is necessary, resulting in omission of the Ticket Request and Ticket
 Grant messages. Figure 10 depicts the resulting message sequence in
 this simplified architecture.

Gerdes, et al. Expires April 21, 2016 [Page 37]

Internet-Draft DCAF October 2015

 C CAM+SAM S
 | <== DTLS chan. ==> | <== DTLS chan. ==> |
 | | |
 | [Resource Req.----------------------->] |
 | | |
 | [<-------------------- SAM Information] |
 | | |
 | Access Request --> | |
 | | |
 | <-- Ticket Transf. | |
 | | |
 | <=========== DTLS channel ===========> |
 | | |
 | Authorized Resource Request ----------> |

 Figure 10: Combined Client Authorization Manager and Server
 Authorization Manager

11.2.1. Processing the Access Request Message

 When receiving an Access Request message, CAM+SAM performs the checks
 specified in Section 3.5 and returns a 4.00 (Bad Request) response in
 case of failure. Otherwise, if the checks have succeeded, CAM+SAM
 evaluates the contents of Access Request message as described in
 Section 3.6.

 The decision on the access request is performed by CAM+SAM with
 respect to the stored policies. When the requested action is
 permitted on the respective resource, CAM+SAM generates an access
 ticket as outlined in Section 4.1 and creates a Ticket Transfer
 message to convey the access ticket to the Client.

11.2.2. Creating the Ticket Transfer Message

 A Ticket Transfer message is constructed as a 2.05 response with the
 access ticket contained in its payload. The response MAY contain a
 Max-Age option to indicate the ticket’s lifetime to the receiving
 Client.

 This specification defines a CBOR data representation for the access
 ticket as illustrated in Section 3.6.

11.3. Combined Server Authorization Manager and Server

 If SAM and S are colocated in one entity (SAM+S), the main objective
 is to allow CAM to delegate access to C. Accordingly, the
 authorization information could be replaced by a nonce internal to
 SAM+S. (TBD.)

Gerdes, et al. Expires April 21, 2016 [Page 38]

Internet-Draft DCAF October 2015

 CAM C SAM+S
 | <== DTLS chan. ==> | |
 | | [Resource Req.-->] |
 | | |
 | | [<-- SAM Info.] |
 | | |
 | <-- Access Req. | |
 | | |
 | <========= TLS/DTLS channel =========> |
 | | |
 | Ticket Request ---------------------> |
 | | |
 | <--------------------- Ticket Grant |
 | | |
 | Ticket Transf. --> | |
 | | |
 | | <== DTLS chan. ==> |
 | | Auth. Res. Req. -> |

 Figure 11: Combined Server Authorization Manager and Server

12. Security Considerations

 As this protocol builds on transitive trust between Authorization
 Managers as mentioned in Section 8, SAM has no direct means to
 validate that a resource request originates from C. It has to trust
 CAM that it correctly vouches for C and that it does not give
 authorization tickets meant for C to another client nor disclose the
 contained session key.

 The Authorization Managers also could constitute a single point of
 failure. If the Server Authorization Manager fails, the resources on
 all Servers it is responsible for cannot be accessed any more. If a
 Client Authorization Manager fails, all clients it is responsible are
 not able to access resources on a Server. Thus, it is crucial for
 large networks to use Authorization Managers in a redundant setup.

13. IANA Considerations

 The following registrations are done following the procedure
 specified in [RFC6838].

 Note to RFC Editor: Please replace all occurrences of "[RFC-XXXX]"
 with the RFC number of this specification.

Gerdes, et al. Expires April 21, 2016 [Page 39]

Internet-Draft DCAF October 2015

13.1. DTLS PSK Key Generation Methods

 A sub-registry for the values indicating the PSK key generation
 method as contents of the field G in a payload of type application/
 dcaf+cbor is defined. Values in this sub-registry are numeric
 integers encoded in Concise Binary Object Notation (CBOR, [RFC7049]).
 This document follows the notation of [RFC7049] for binary values,
 i.e. a number starts with the prefix "0b". The major type is
 separated from the actual numeric value by an underscore to emphasize
 the value’s internal structure.

 Initial entries in this sub-registry are as follows:

 +---------------+-------------+------------+
 | Encoded Value | Name | Reference |
 +---------------+-------------+------------+
 | 0b000_00000 | hmac_sha256 | [RFC-XXXX] |
 | | | |
 | 0b000_00001 | hmac_sha384 | [RFC-XXXX] |
 | | | |
 | 0b000_00010 | hmac_sha512 | [RFC-XXXX] |
 +---------------+-------------+------------+

 Table 3: DTLS PSK Key Generation Methods

 New methods can be added to this registry based on designated expert
 review according to [RFC5226].

 (TBD: criteria for expert review.)

13.2. dcaf+cbor Media Type Registration

 Type name: application

 Subtype name: dcaf+cbor

 Required parameters: none

 Optional parameters: none

 Encoding considerations: Must be encoded as using a subset of the
 encoding allowed in [RFC7049]. Specifically, only the primitive data
 types String and Number are allowed. The type Number is restricted
 to unsigned integers (i.e., no negative numbers, fractions or
 exponents are allowed). Encoding MUST be UTF-8. These restrictions
 simplify implementations on devices that have very limited memory
 capacity.

Gerdes, et al. Expires April 21, 2016 [Page 40]

Internet-Draft DCAF October 2015

 Security considerations: TBD

 Interoperability considerations: TBD

 Published specification: [RFC-XXXX]

 Applications that use this media type: TBD

 Additional information:

 Magic number(s): none

 File extension(s): dcaf

 Macintosh file type code(s): none

 Person & email address to contact for further information: TBD

 Intended usage: COMMON

 Restrictions on usage: None

 Author: TBD

 Change controller: IESG

13.3. CoAP Content Format Registration

 This document specifies a new media type application/dcaf+cbor (cf.
 Section 13.2). For use with CoAP, a numeric Content-Format
 identifier is to be registered in the "CoAP Content-Formats" sub-
 registry within the "CoRE Parameters" registry.

 Note to RFC Editor: Please replace all occurrences of "RFC-XXXX" with
 the RFC number of this specification.

 +-----------------------+----------+------+------------+
 | Media type | Encoding | Id. | Reference |
 +-----------------------+----------+------+------------+
 | application/dcaf+cbor | - | TBD1 | [RFC-XXXX] |
 +-----------------------+----------+------+------------+

14. Acknowledgements

 The authors would like to thank Renzo Navas for his valuable input
 and feedback.

Gerdes, et al. Expires April 21, 2016 [Page 41]

Internet-Draft DCAF October 2015

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)", RFC
 4279, DOI 10.17487/RFC4279, December 2005,
 <http://www.rfc-editor.org/info/rfc4279>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,
 <http://www.rfc-editor.org/info/rfc5746>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13, RFC
 6838, DOI 10.17487/RFC6838, January 2013,
 <http://www.rfc-editor.org/info/rfc6838>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, DOI 10.17487/
 RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

Gerdes, et al. Expires April 21, 2016 [Page 42]

Internet-Draft DCAF October 2015

15.2. Informative References

 [I-D.bormann-core-ace-aif]
 Bormann, C., "An Authorization Information Format (AIF)
 for ACE", draft-bormann-core-ace-aif-03 (work in
 progress), July 2015.

 [I-D.gerdes-ace-a2a]
 Gerdes, S., "Managing the Authorization to Authorize in
 the Lifecycle of a Constrained Device", draft-gerdes-ace-
 a2a-01 (work in progress), September 2015.

 [I-D.greevenbosch-appsawg-cbor-cddl]
 Vigano, C. and H. Birkholz, "CBOR data definition language
 (CDDL): a notational convention to express CBOR data
 structures", draft-greevenbosch-appsawg-cbor-cddl-07 (work
 in progress), October 2015.

 [I-D.ietf-ace-actors]
 Gerdes, S., Seitz, L., Selander, G., and C. Bormann, "An
 architecture for authorization in constrained
 environments", draft-ietf-ace-actors-02 (work in
 progress), October 2015.

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Block-wise transfers in CoAP",
 draft-ietf-core-block-18 (work in progress), September
 2015.

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., and P. Stok, "CoRE
 Resource Directory", draft-ietf-core-resource-directory-05
 (work in progress), October 2015.

 [I-D.ietf-cose-msg]
 Schaad, J., "CBOR Encoded Message Syntax", draft-ietf-
 cose-msg-06 (work in progress), October 2015.

 [I-D.schmertmann-dice-codtls]
 Schmertmann, L., Hartke, K., and C. Bormann, "CoDTLS: DTLS
 handshakes over CoAP", draft-schmertmann-dice-codtls-01
 (work in progress), August 2014.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, DOI 10.17487/
 RFC5988, October 2010,
 <http://www.rfc-editor.org/info/rfc5988>.

Gerdes, et al. Expires April 21, 2016 [Page 43]

Internet-Draft DCAF October 2015

 [RFC6655] McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for
 Transport Layer Security (TLS)", RFC 6655, DOI 10.17487/
 RFC6655, July 2012,
 <http://www.rfc-editor.org/info/rfc6655>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <http://www.rfc-editor.org/info/rfc6690>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641, DOI 10.17487/
 RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

 [bergmann12]
 Bergmann, O., Gerdes, S., Schaefer, S., Junge, F., and C.
 Bormann, "Secure Bootstrapping of Nodes in a CoAP
 Network", IEEE Wireless Communications and Networking
 Conference Workshops (WCNCW), April 2012.

Appendix A. CDDL Specification

 This appendix shows a formal specification of the DCAF messaging
 format using the CBOR data definition language (CDDL)
 [I-D.greevenbosch-appsawg-cbor-cddl]:

 dcaf-msg = sam-information-msg
 / access-request-msg
 / ticket-transfer-msg
 / ticket-grant-msg

 sam-information-msg = { sam, ? full-timestamp, ? accepted-formats,
 ? piggybacked }

 access-request-msg = { sam, sam-ai, full-timestamp }

 ticket-transfer-msg = { face-or-encrypted, verifier }
 face-or-encrypted = (face | encrypted-face)
 face = (F => { sam-ai, limited-timestamp, lifetime, psk-gen })
 verifier = (V => shared-secret)
 shared-secret = bstr
 F = 8
 V = 9

 encrypted-face = (E => bstr, K => tstr)
 E = 3
 K = 4

Gerdes, et al. Expires April 21, 2016 [Page 44]

Internet-Draft DCAF October 2015

 ticket-grant-msg = { face-or-encrypted, verifier, ? client-info }
 client-info = (cam-ai, full-timestamp, lifetime)

 sam = (SAM => abs-uri)
 SAM = 0
 abs-uri = tstr ; .regexp "______"

 sam-ai = (SAI => [* auth-info])
 SAI = 1
 auth-info = (uri : tstr, mask : 0..15)

 cam-ai = (CAI => [* auth-info])
 CAI = 2

 full-timestamp = (TS => date)
 TS = 5
 date = tdate / localdate
 localdate = uint
 limited-timestamp = (TS => localdate)

 accepted-formats = (A => [+ content-format])
 content-format = uint ; valid entry from CoAP content format registry
 A=10

 piggybacked = (data, lifetime, nonce)
 data = (D => bstr)
 none = (N => bstr)
 lifetime = (L => period)
 period = uint ; in seconds
 L = 6
 D = 11
 N = 12

 psk-gen = (G => mac-algorithm)
 G = 7
 mac-algorithm = &(hmac-sha256: 0, hmac-sha384: 1, hmac-sha512: 2)

Authors’ Addresses

 Stefanie Gerdes
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63906
 Email: gerdes@tzi.org

Gerdes, et al. Expires April 21, 2016 [Page 45]

Internet-Draft DCAF October 2015

 Olaf Bergmann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63904
 Email: bergmann@tzi.org

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

Gerdes, et al. Expires April 21, 2016 [Page 46]

