
ACE Working Group O. Bergmann
Internet-Draft S. Gerdes
Intended status: Standards Track Universitaet Bremen TZI
Expires: April 21, 2016 October 19, 2015

 Using The Delegated CoAP Authentication and Authorization Framework
 (DCAF) With CBOR Encoded Message Syntax
 draft-bergmann-ace-dcaf-cose-00

Abstract

 This specification defines a profile for the Delegated CoAP
 Authentication and Authorization Framework (DCAF) that facilitates
 client authentication and authorization in a constrained environment
 using the CBOR Encoded Message Syntax.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bergmann & Gerdes Expires April 21, 2016 [Page 1]

Internet-Draft DCAF-COSE October 2015

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 2. Overview . 4
 2.1. Sending Authorized Requests 4
 2.2. Responding to an Authorized Request 5
 3. Establishing a Security Context 6
 3.1. Unauthorized Resource Request Message 6
 3.2. SAM Information Message 7
 3.3. Access Request . 8
 3.4. Ticket Request Message 10
 3.5. Ticket Grant Message 10
 3.6. Ticket Transfer Message 11
 3.7. Security Association between C and S 12
 4. Piggybacked Protected Content 13
 5. CoAP Options Authorization and Authorization-Format 14
 6. Canonicalization of the CoAP Message Header 14
 7. The "auth-info" Link Relation 16
 8. Security Considerations 17
 9. IANA Considerations . 17
 9.1. CoAP Option Registration 17
 10. Acknowledgements . 17
 11. References . 17
 11.1. Normative References 17
 11.2. Informative References 18
 Authors’ Addresses . 19

1. Introduction

 The Delegated CoAP Authentication and Authorization Framework (DCAF)
 is designed to be agnostic of the actual mechanism being used to
 secure the communication between the ACE actors. While the original
 specification [I-D.gerdes-ace-dcaf-authorize] defines how to use DCAF
 messaging for establishing a Datagram Transport Layer Security (DTLS)
 [RFC6347] channel between actors on the constrained level (cf.
 [I-D.ietf-ace-actors]), this document specifies a binding of DCAF to
 the CBOR Encoded Message Syntax, COSE [I-D.ietf-cose-msg].

 To reduce confusion, we use "DTLS DCAF" to refer to DCAF based on
 DTLS security, and "COSE DCAF" to refer to DCAF as defined in the
 present document.

 DCAF defines authorized access to a resource hosted on a resource
 Server (S) based on a security context that is established between
 the requesting Client (C) and S. In DTLS DCAF, this security context
 is tied to a DTLS channel which allows for end-to-end integrity
 protection and confidentiality of communication. In the presence of

Bergmann & Gerdes Expires April 21, 2016 [Page 2]

Internet-Draft DCAF-COSE October 2015

 intermediaries such as, e.g., CoAP proxies, channel security may not
 be applicable for all configurations. If this is the case, the
 exchanged information must be protected at the application level to
 help achieving the principals’ security requirements. The IETF
 working group CBOR Object Signing and Encryption (COSE) has defined a
 Concise Binary Object Representation (CBOR) [RFC7049] representation
 for signed and encrypted objects as well as message authentication
 codes.

 This specification uses this CBOR Encoded Message Syntax
 [I-D.ietf-cose-msg] to protect the DCAF protocol flow on the
 application level. The features of this DCAF profile are:

 o Authenticated exchange of authorization information.

 o Simplified authentication on constrained nodes by handing the more
 sophisticated authentication work over to less-constrained
 devices.

 o Support of secure constrained device to constrained device
 communication.

 o Authorization policies of the principals of both participating
 parties are ensured.

 o Simplified authorization mechanism for cases where implicit
 authorization is sufficient.

 o Can be made to work just using symmetric encryption on the
 constrained nodes.

 o Enable delivery of piggybacked protected content as discussed in
 [I-D.gerdes-ace-dcaf-authorize].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 Readers are expected to be familiar with the terms and concepts
 defined in [I-D.gerdes-ace-dcaf-authorize].

Bergmann & Gerdes Expires April 21, 2016 [Page 3]

Internet-Draft DCAF-COSE October 2015

2. Overview

 This specification retains the most important features of DCAF by
 utilizing the same basic messaging mechanism. DCAF ensures that
 protected information is accessible only by authorized entities, i.e.
 access must be authenticated and the principal that oversees the
 particular piece of information must permit the requested action.
 The DCAF specification cryptographically ties this authorization to a
 DTLS session setup between the communicating Client and Server. The
 DTLS key material used for creating this session hence defines the
 security context between the communicating parties. By supplementing
 DCAF with the notion of a context identifier, the same mechanism can
 be used with application level security as well.

2.1. Sending Authorized Requests

 In general, every request that C sends to S must be treated by S
 within a particular security context with C. [_1] If S is not able
 to otherwise identify the security context from the message context,
 the context identifier must be transferred within the respective
 message. An example of a request containing an explicit context
 identifier is shown in Figure 1 using the CBOR diagnostic notation as
 defined in Section 6 of [RFC7049] to describe the actual data
 represented in CBOR.

PUT /r
Content-Format: application/cose+cbor
[h’a10300’, # protected { content_type: text/plain }
 { alg: HMAC 256/256, # unprotected
 kid: h’3233386473613239’ # context identifier: "238dsa29"
 },
 h’48656c6c6f20576f726c6421’, # payload: "Hello World!\n"
 h’....’, # tag: HMAC(options+protected+payload, secret)
 [[h’’, {}, h’’]] # recipients
]

 Figure 1: Example for CoAP Request with Explicit Context Identifier

 Figure 1 shows a PUT request from C to S for resource r containing a
 payload of type ’application/cose+cbor’ that carries a COSE_Mac
 structure to integrity-protect the request using the MAC key from a
 previously established security context with identifier ’238dsa29’.
 As the security context can be determined from the context
 identifier, an empty COSE_recipient structure is used. Note that the
 integrity protection not only covers the message payload but also the
 content type and various sensitive CoAP options such as Uri-Path that
 will be passed to the MAC creation functions as canonicalized
 external_aad as described in Section 6.

Bergmann & Gerdes Expires April 21, 2016 [Page 4]

Internet-Draft DCAF-COSE October 2015

 Note1: Where confidentiality is required, a COSE_encryptData
 structure will be used instead of the COSE_Mac structure.

 Note2: COSE_enveloped may be used instead of COSE_encryptData when
 dynamically generated session keys should be used, e.g. with
 protected piggybacked content.

 Note3: As transferring COSE objects as the CoAP message payload is
 not always possible (e.g. in GET requests), this specification
 defines two new CoAP options ’Authorization’ and ’Authorization-
 Format’ that can be used to convey the authorization information.

 To retrieve a resource representation using the request method GET,
 the authorization information is conveyed in an Authorization
 attribute as shown in Figure 2.

 GET /r
 Authorization: [h’’, # protected (empty)
 { alg: HMAC 256/256, # unprotected
 kid: h’3233386473613239’ # context identifier: "238dsa29"
 },
 nil, # payload (empty)
 h’....’, # tag: HMAC(options+protected, secret)
 [[h’’, {}, h’’]] # recipients
]

 Figure 2: Example for CoAP Request with Authorization Option

 The request in Figure 2 uses the default Authorization-Format
 ’application-cose’ for the contents of the Authorization option which
 is a COSE_Mac structure. As in Figure 1 the MAC key from a
 previously established security context with identifier ’238dsa29’ is
 used and an empty COSE_recipient structure is used. The integrity
 protection for this request not only covers the message payload but
 also the content type and various sensitive CoAP options such as Uri-
 Path that will be passed to the MAC creation functions as
 external_aad. The external_aad MUST be constructed as CBOR bytes
 containing a canonicalized CoAP message as specified in Section 6.

2.2. Responding to an Authorized Request

 A response to an Authorized Request that uses this DCAF profile MUST
 be protected according to the principals’ security objectives covered
 by the existing security context between C and S. Usually, this
 means that a resource representation returned by S in the response is
 wrapped into a COSE_encryptData or COSE_enveloped structure. A
 protected response to an authorized GET request is depicted in
 Figure 3.

Bergmann & Gerdes Expires April 21, 2016 [Page 5]

Internet-Draft DCAF-COSE October 2015

 Note: For AEAD ciphers, confidentiality and integrity can be
 achieved in one encryption step. For other cipher suites, it may
 be more convenient to use a COSE_Mac structure when only message
 integrity is required.

 2.05 Content
 Content-Format: application/cose+cbor
 [h’a10300’, # protected { content_type: text/plain }
 { alg: AES-CCM-16-64-128, # unprotected
 nonce: h’77cd8a8047b7af7113bb074bcc’, # nonce
 },
 h’TBD:encrypted payload w/ tag’, # ciphertext
 # recipients:
 [[h’’, # protected (absent for AE alg.)
 { alg: A128KW, # unprotected
 kid: h’3233386473613239’ # context identifier: "238dsa29"
 },
 h’fec31142bc...’ # encrypted session key
]]
]

 Figure 3: Example for a Protected Response Containing a Resource
 Representation

3. Establishing a Security Context

 Section 2.1 illustrates the use of CBOR Encoded Message Syntax for
 sending Authorized Requests and Responses. Before this communication
 can take place the security context must be established using the
 COSE DCAF message types as described in this section. This section
 describes the basic message flow as outlined in
 [I-D.gerdes-ace-dcaf-authorize], but using the CBOR Encoded Message
 Syntax to convey the DCAF information instead of DTLS.

3.1. Unauthorized Resource Request Message

 The optional Unauthorized Resource Request message is a request for a
 resource hosted by S for which no proper authorization has been
 granted so far. S MUST treat any CoAP request as an Unauthorized
 Resource Request message when any of the following holds:

 o The request has been received unprotected.

 o The security context for the received request is unknown.

 o S has no valid access ticket for the sender of the request
 regarding the requested action on that resource.

Bergmann & Gerdes Expires April 21, 2016 [Page 6]

Internet-Draft DCAF-COSE October 2015

 o S has a valid access ticket for the sender of the request, but
 this does not allow the requested action on the requested
 resource.

 Note: These conditions ensure that S can handle requests autonomously
 once access has been granted and a security context has been
 established between C and S.

 Unauthorized Resource Request messages MUST be denied with a client
 error response. In this response, the Server MUST provide proper SAM
 Information to enable the Client to request an access ticket from S’s
 SAM as described in Section 3.2. S MAY include a protected
 piggybacked response with the SAM Information Message in the
 Unauthorized Resource Request message, as discussed in Section 4.

 The response code MUST be 4.01 (Unauthorized) in case the sender of
 the Unauthorized Resource Request message is not authenticated, or if
 S has no valid access ticket for C. If S has an access ticket for C
 but not for the resource that C has requested, S MUST reject the
 request with a 4.03 (Forbidden). If S has an access ticket for C but
 it does not cover the action C requested on the resource, S MUST
 reject the request with a 4.05 (Method Not Allowed).

 Note: The use of the response codes 4.03 and 4.05 is intended to
 prevent infinite loops where a naive Client optimistically tries
 to access a requested resource with any access token received from
 the SAM. As malicious clients could pretend to be C to determine
 C’s privileges, these detailed response codes must be used only
 when a certain level of security is already available which can be
 achieved only when the Client is authenticated.

3.2. SAM Information Message

 The SAM Information Message is sent by S as a response to an
 Unauthorized Resource Request message (see Section 3.1) to point the
 sender of the Unauthorized Resource Request message to S’s SAM. The
 SAM information is a set of attributes containing a URI that
 specifies the SAM in charge of S.

 An optional field A lists the different content formats that are
 supported by S.

 The message MAY also contain a timestamp generated by S.

 Figure 4 shows an example for a SAM Information message payload using
 stylized CBOR diagnostic notation. (Refer to
 [I-D.gerdes-ace-dcaf-authorize] for a detailed description of the
 available attributes and their semantics.)

Bergmann & Gerdes Expires April 21, 2016 [Page 7]

Internet-Draft DCAF-COSE October 2015

 4.01 Unauthorized
 Content-Format: application/dcaf+cbor
 {SAM: "coaps://sam.example.com/authorize", TS: 168537,
 A: [ct_cose_msg] }

 Figure 4: SAM Information Payload Example

 In this example, the attribute SAM points the receiver of this
 message to the URI "coaps://sam.example.com/authorize" to request
 access permissions. The originator of the SAM Information payload
 (i.e. S) uses a local clock that is loosely synchronized with a time
 scale common between S and SAM (e.g., wall clock time). Therefore,
 it has included a time stamp on its own time scale that is used as a
 nonce for replay attack prevention.

 The content format accepted by S is ’application/cose+cbor’ defined
 in [I-D.ietf-cose-msg] to indicate DCAF over CBOR Encoded Message
 Syntax as defined in this document.

 Editorial note: ct_cose_msg is to be replaced with the numeric value
 assigned for ’application/cose+cbor’.

 The examples in this document are written in CBOR diagnostic notation
 to improve readability. Figure 5 illustrates the binary encoding of
 the message payload shown in Figure 4.

 a2 # map(2)
 00 # unsigned(0) (=SAM)
 78 21 # text(33)
 636f6170733a2f2f73616d2e6578
 616d706c652e636f6d2f617574686f72
 697a65 # "coaps://sam.example.com/authorize"
 05 # unsigned(5) (=TS)
 1a 00029259 # unsigned(168537)
 0a # unsigned(10) (=A)
 81 # array(2)
 19 03e7 # unsigned(999) (=cose+cbor)

 Figure 5: SAM Information Payload Example encoded in CBOR

3.3. Access Request

 To retrieve an access ticket for the resource that C wants to access,
 C sends an Access Request to its CAM. The Access Request is
 constructed as follows:

 1. The request method is POST.

Bergmann & Gerdes Expires April 21, 2016 [Page 8]

Internet-Draft DCAF-COSE October 2015

 2. The request URI is set as described below.

 3. The message payload contains a COSE_encryptData or COSE_enveloped
 structure with content-type application/dcaf+cbor that describes
 the action and resource for which C requests an access ticket.

 The request URI identifies a resource at CAM for handling
 authorization requests from C. The URI SHOULD be announced by CAM in
 its resource directory as described in
 [I-D.gerdes-ace-dcaf-authorize].

 Note: Where capacity limitations of C do not allow for resource
 directory lookups, the request URI in Access Requests could be
 hard-coded during provisioning or set in a specific device
 configuration profile.

 The message payload is constructed from the SAM information that S
 has returned as described in [I-D.gerdes-ace-dcaf-authorize]. An
 example Access Request from C to CAM is depicted in Figure 6. (Refer
 to [I-D.gerdes-ace-dcaf-authorize] for a detailed description of the
 available attributes and their semantics.)

POST /client-authorize
Content-Format: application/cose+cbor
[h’a1031862’, # protected { content_type: application/dcaf+cbor }
 { alg: AES-CCM-16-64-128 # unprotected
 nonce: h’d6150b90e6f0eb5be42164062c’, # nonce
 },
 h’TBD:encrypted payload w/ tag’, # encrypted DCAF payload
 # recipients:
 [[h’’, # protected (absent for AE algorithm)
 { alg: A128KW, # unprotected
 kid: h’383261622e6161733432’ # context identifier: "82ab.aas42"
 },
 h’52ff9ed52d...’ # encrypted session key
]]
]

 Figure 6: Access Request Message Example

 The example shows an Access Request message with COSE payload that
 contains the encrypted and integrity protected DCAF object shown in
 Figure 7. To integrity-protect the CoAP message header fields the
 canonicalized CoAP message MUST be included in the external_aad
 structure. The recipient structure of this message contains a
 wrapped key that is encrypted with the key material for the common
 security context of C and CAM that is identified by the kid
 parameter. If the client cannot create a random session key, it

Bergmann & Gerdes Expires April 21, 2016 [Page 9]

Internet-Draft DCAF-COSE October 2015

 could send a COSE_encryptData structure instead using the direct
 encryption method. The benefit of wrapping the content encryption
 key is that CAM can pass the encrypted content on to SAM needing to
 wrap the content encryption key with the key material used in the
 common security context with SAM.

 {
 SAM: "coaps://sam.example.com/authorize",
 SAI: ["coaps://temp451.example.com/s/tempC", 5],
 TS: 168537
 }

 Figure 7: Access Request Payload Example

 The example shows an Access Request message for the resource "/s/
 tempC" on the Server "temp451.example.com". Requested operations in
 attribute SAI are GET and PUT.

 The attributes SAM (that denotes the Server Authorization Manager to
 use) and TS (a nonce generated by S) are taken from the SAM
 Information message from S.

 The response to an Authorization Request is delivered by CAM back to
 C in a Ticket Transfer message.

3.4. Ticket Request Message

 CAM processes any Access Request message received from C as defined
 in [I-D.gerdes-ace-dcaf-authorize]. If CAM decides to send a Ticket
 Request message to the SAM provided in the Access Request, it has to
 establish a security context with SAM. Depending on the URI scheme
 used in the SAM field of the Access Request message payload (the
 less-constrained devices CAM and SAM do not necessarily use CoAP to
 communicate with each other), this could be, e.g., a DTLS channel
 (for "coaps") or a TLS connection (for "https"), or a COSE_enveloped
 structure using SAM’s public key to encrypt the content encryption
 key.

3.5. Ticket Grant Message

 A Ticket Request Message is processed and responded to as specified
 in [I-D.gerdes-ace-dcaf-authorize]. SAM MUST use the same security
 context that has been used by CAM to transfer the Ticket Request
 message, i.e., if the Ticket Request message was received over DTLS,
 the response MUST be sent over the same DTLS session. This
 restriction is alleviated slightly when using COSE where the only
 requirement is that the CoAP response can be mapped to the respective
 request.

Bergmann & Gerdes Expires April 21, 2016 [Page 10]

Internet-Draft DCAF-COSE October 2015

3.6. Ticket Transfer Message

 A Ticket Transfer message is sent by CAM to deliver the authorization
 information from SAM in a Ticket Grant message to the requesting
 client C. Processing of the Ticket Grant message and construction of
 the Ticket Transfer message is done as specified in
 [I-D.gerdes-ace-dcaf-authorize]. An example for a Ticket Transfer
 message in response to the Ticket Access Request described in
 Section 3.3 is depicted in Figure 8.

 2.05 Content
 Content-Format: application/cose+cbor
 [h’a1031862’, # protected { content_type: application/dcaf+cbor }
 { alg: AES-CCM-16-64-128 # unprotected
 nonce: h’d259f53783993e757ec9d1d957’, # nonce
 kid: h’383261622e6161733432’ # context identifier: "82ab.aas42"
 },
 h’TBD:encrypted payload w/ tag’, # encrypted DCAF payload
]

 Figure 8: Example Ticket Transfer Message Encoded as COSE Message

 In this example, a COSE_encryptData structure is used to avoid
 including a recipients structure. The kid parameter referring to the
 same security context that has been used for the Access Request
 message is included with the unprotected header of the
 COSE_encryptData structure. The encrypted DCAF payload contains the
 required ticket Face and Verifier as defined in
 [I-D.gerdes-ace-dcaf-authorize]. In this example, the ticket shown
 in Figure 9 is passed in the payload field of the COSE_encryptData
 structure shown in Figure 8.

 { F: {
 SAI: ["/s/tempC", 7],
 TS: 0("2013-07-10T10:04:12.391"),
 L: 86400,
 G: hmac_sha256
 },
 V: h’f89947160c73601c7a65cb5e08812026
 6d0f0565160e3ff7d3907441cdf44cc9’
 CAI: ["/s/tempC", 1],
 TS: 0("2013-07-10T10:04:12.855"),
 L: 86400
 }

 Figure 9: Example Ticket Transfer Message

Bergmann & Gerdes Expires April 21, 2016 [Page 11]

Internet-Draft DCAF-COSE October 2015

3.7. Security Association between C and S

 The information contained in a Ticket Transfer message (i.e. a ticket
 a Face and Client Information) can be used by C to establish a
 security context with S. While [I-D.gerdes-ace-dcaf-authorize]
 defines how to infer a DTLS pre-shared key, this specification uses
 the verifier as MAC key in a COSE_MAC structure as described below.
 This structure comprises the payload of a POST request to the
 authorization resource hosted by S as described in Section 7.

 1. The CoAP request is protected as external_aad as described in
 Section 6.

 2. The protected header contains the parameter content_type with the
 value ’application/dcaf+cbor’.

 3. The unprotected header contains the alg parameter that denotes
 the MAC algorithm that is used at the content level.

 4. The payload field of the COSE_MAC structure contains the ticket
 Face encoded as canonicalized CBOR structure, and the tag field
 is constructed using the verifier from the Ticket Transfer
 message as secret, and the recipients structure is filled with
 empty values.

 The authorization for uploading authorization tickets is tied to a
 key that is associated to the particular ticket Face and MUST be
 generated by the authorized SAM. When receiving a POST request to
 the auth-info resource, S generates its own version of the verifier
 using the information contained in Face.

 The distributed key derivation method is defined as follows:

 o SAM and S both generate the verifier using the information
 included in Face. They use an HMAC algorithm on Face with a
 shared key K(SAM,S). The result serves as the content encryption
 key. How SAM and S exchange K(SAM,S) is not in the scope of this
 document. They MAY use their preshared key as K(SAM,S).

 o SAM MUST include a representation of the session key in the
 Verifier.

 o As SAM and C do not have a shared secret, the Verifier MUST be
 transmitted to C using protected channels.

 o SAM MUST NOT include a representation of the Verifier in Face.

 o SAM MUST NOT encrypt Face.

Bergmann & Gerdes Expires April 21, 2016 [Page 12]

Internet-Draft DCAF-COSE October 2015

 Once S has validated the contents of the POST request using the
 locally generated verifier, it creates a new resource that represents
 this authorization and returns the Location-Path of this new
 resource. This path then can be used by C to update the
 authorization information and MUST be used by C in the kid parameter
 to identify this security context as described in Section 2.1.

 An example for the POST request and corresponding 2.01 response is
 given in Figure 10. The Location-Path returned by S is subsequently
 used by C as identifier for the security context tied to this
 authorization.

 C --> S
 POST /authorize
 Content-Format: application/cose+cbor
 [h’a1031862’, # protected { content_type: application/dcaf+cbor }
 { alg: HMAC 256/256 }, # unprotected
 h’{ SAI: ["/s/tempC" ... }’, # DCAF payload wrapped in CBOR binary
 h’....’, # tag: HMAC(options+protected+payload, secret)
 [[h’’, {}, h’’]] # recipients
]

 S --> C
 2.01 Created
 Content-Format: application/cose+cbor
 Location-Path: 238dsa29
 Authorization: [h’a1031862’, # protected
 { alg: HMAC 256/256 }, # unprotected
 h’’, # empty payload
 h’....’, # tag: HMAC(options+protected, secret)
 [[h’’, {}, h’’]] # recipients
]

 Figure 10: Example POST to S’s auth-info Resource and Response

4. Piggybacked Protected Content

 Piggybacked protected content was introduced in
 [I-D.gerdes-ace-dcaf-authorize] as a possibility to deliver an
 encrypted resource representation without having to maintain
 authorization information for the respective resource. Once a
 requesting client has received the piggybacked content, it needs to
 request authorization for accessing the protected data. To do so, it
 constructs an Access Request as defined in Section 3.3. If access to
 the protected data is granted, the requesting client will be provided
 with cryptographic material to verify the integrity and authenticity
 of the piggybacked content and decrypt the protected data in case it
 is encrypted.

Bergmann & Gerdes Expires April 21, 2016 [Page 13]

Internet-Draft DCAF-COSE October 2015

5. CoAP Options Authorization and Authorization-Format

 The options Authorization and Authorization-Format have the
 properties shown in Table 1.

 +----+---+---+---+---+--------------+------+-------+----------------+
 | No | C | U | N | R | Name | Form | Lengt | Default |
 | . | | | | | | at | h | |
 +----+---+---+---+---+--------------+------+-------+----------------+
64					Authorizatio	opaq	1-103	(none)
					n	ue	4	
65	x				Authorizatio	uint	0-2	application/co
					n-Format			se+cbor
 +----+---+---+---+---+--------------+------+-------+----------------+

 Table 1: The Options Authorization and Authorization-Format

6. Canonicalization of the CoAP Message Header

 This section describes the canonicalization of parts from the CoAP
 message for integrity protection. As intermediaries such as caching
 proxies may change certain fields in a CoAP message, only those
 fields are considered that must not be changed by intermediaries.
 The canonicalized CoAP message then serves as external_aad to the
 COSE MAC_structure and Enc_structure as used in this specification.
 The canonicalized CoAP message is constructed as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver| 0 | 0 | Code | Options to protect (if any) ...
 +-+

 Figure 11: Canonicalized CoAP Message Header

 As shown in Figure 11, only the version bits and the message code
 from the CoAP base header are relevant for integrity protection.
 [_3] From the list of options that a message might have, only the
 following options are to be included with the canonicalized message.
 [_4]

 o If-Match

 o Uri-Host

 o ETag

Bergmann & Gerdes Expires April 21, 2016 [Page 14]

Internet-Draft DCAF-COSE October 2015

 o If-None-Match

 o Observe

 o Uri-Port

 o Location-Path

 o Uri-Path

 o Uri-Query

 o Accept

 o Location-Query

 o Proxy-Uri

 o Proxy-Scheme

 o Size1

 Note: The Content-Format must be contained in the protected header
 of the MAC_structure or Enc_structure and hence is not required
 here.

 An application that requires integrity protection of new options that
 are not listed here must add a critical-options header field to the
 MAC_structure or Enc_structure containing a CBOR array with the
 additional options to protect in ascending numerical order.

 Figure 12 shows an example for a POST request to upload SenML
 [I-D.jennings-core-senml] sensor readings to a remote server. The
 protected header in the COSE_Mac structure contains a ’required
 options’ entry that lists the custom option X-Something, hence the
 external_aad would contain a canonicalized message header that
 consists of the CoAP version number, the method POST, Uri-Path
 ’measurements’, Uri-Path ’current’, and X-Something 1234 as delta-
 encoded options in ascending order as specified in Section 3.1 of
 [RFC7252].

Bergmann & Gerdes Expires April 21, 2016 [Page 15]

Internet-Draft DCAF-COSE October 2015

 POST /measurements/current
 Content-Format: application/senml+cbor
 X-Something: 1234
 Authorization: [
 # protected { content_type: application/senml+cbor,
 # "required options": [X-Something] }
 h’a203766170706c69636174696f6e2f73656e6d6...’,
 { alg: HMAC 256/256, # unprotected
 kid: h’3233386473613239’ # context identifier: "238dsa29"
 },
 h’a2231a4eaecc5d....’, # payload: "{ -4: 1320078..."
 h’....’, # tag: HMAC(options+protected+payload, secret)
 [[nil, {}, h’’]] # recipients
]

 { -4: 1320078429,
 -2: [{0: "temperature", 2: 272, 1: "Cel"},
 {0: "humidity", 2: 80, 1: "%RH"}]
 }

 Figure 12: Example Message with Protected Custom Option

7. The "auth-info" Link Relation

 This section defines a resource type "auth-info" that can be used by
 clients to establish a new security context with S using the
 authorization information retrieved from SAM. When used with the
 parameter rt in a web link, "auth-info" indicates that the
 corresponding target URI can be used in a POST message to upload the
 authorization information contained in the request payload.

 The following example shows the web link used by S in this document
 to accept authorization information created by SAM.

 <authorize>;rt="auth-info";ct=TBD1,ct_cose_msg
 ;title="Upload Authorization Information"

 The resource directory that hosts the resource descriptions of S
 could list the following description. In this example, the URI
 "ep/node138/a/switch2941" is relative to the resource context
 "coaps://sam.example.com/", i.e. the Server Authorization Manager
 SAM.

 <ep/node138/a/switch2941>;rt="auth-info";ct=TBD1,ct_cose_msg
 ;ep="node138"
 ;title="Upload Authorization Information"
 ;anchor="coaps://s.example.com/"

Bergmann & Gerdes Expires April 21, 2016 [Page 16]

Internet-Draft DCAF-COSE October 2015

8. Security Considerations

 The SAM Information message cannot be protected as no security
 context between S and C is present at the time the message is sent.
 An attacker thus can inject a SAM Information message listing a
 different SAM URI to trick C into disclosing the intended action.
 Where this is an issue, C could retrieve the SAM URI from a resource
 directory as described in [I-D.gerdes-ace-dcaf-authorize].

9. IANA Considerations

 The following registrations are done following the procedure
 specified in [RFC6838].

 Note to RFC Editor: Please replace all occurrences of "[RFC-XXXX]"
 with the RFC number of this specification.

9.1. CoAP Option Registration

 IANA is requested to add the following entries to the CoAP Option
 Numbers registry:

 +--------+----------------------+------------+
 | Number | Name | Reference |
 +--------+----------------------+------------+
 | 64 | Authorization | [RFC-XXXX] |
 | | | |
 | 65 | Authorization-Format | [RFC-XXXX] |
 +--------+----------------------+------------+

10. Acknowledgements

 The authors would like to thank Carsten Bormann for his valuable
 input and feedback.

11. References

11.1. Normative References

 [I-D.gerdes-ace-dcaf-authorize]
 Gerdes, S., Bergmann, O., and C. Bormann, "Delegated CoAP
 Authentication and Authorization Framework (DCAF)", draft-
 gerdes-ace-dcaf-authorize-03 (work in progress), September
 2015.

Bergmann & Gerdes Expires April 21, 2016 [Page 17]

Internet-Draft DCAF-COSE October 2015

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, DOI 10.17487/
 RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

11.2. Informative References

 [I-D.ietf-ace-actors]
 Gerdes, S., Seitz, L., Selander, G., and C. Bormann, "An
 architecture for authorization in constrained
 environments", draft-ietf-ace-actors-02 (work in
 progress), October 2015.

 [I-D.ietf-cose-msg]
 Schaad, J., "CBOR Encoded Message Syntax", draft-ietf-
 cose-msg-06 (work in progress), October 2015.

 [I-D.jennings-core-senml]
 Jennings, C., Shelby, Z., Arkko, J., and A. Keranen,
 "Media Types for Sensor Markup Language (SENML)", draft-
 jennings-core-senml-02 (work in progress), October 2015.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13, RFC
 6838, DOI 10.17487/RFC6838, January 2013,
 <http://www.rfc-editor.org/info/rfc6838>.

Editorial Comments

[_1] Editor’s note: As a consequence, if no such security context is
 found, the request will be rejected as Unauthorized Request.

[_3] Editor’s note: message type, token and id can change on the way.

[_4] TBD

Bergmann & Gerdes Expires April 21, 2016 [Page 18]

Internet-Draft DCAF-COSE October 2015

Authors’ Addresses

 Olaf Bergmann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63904
 Email: bergmann@tzi.org

 Stefanie Gerdes
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63906
 Email: gerdes@tzi.org

Bergmann & Gerdes Expires April 21, 2016 [Page 19]

