
ACE Working Group G. Selander
Internet-Draft J. Mattsson
Intended status: Standards Track F. Palombini
Expires: April 21, 2016 Ericsson
 L. Seitz
 SICS Swedish ICT
 October 19, 2015

 Object Security of CoAP (OSCOAP)
 draft-selander-ace-object-security-03

Abstract

 This memo defines Object Security of CoAP (OSCOAP), a method for
 protection of request and response message exchanges of the
 Constrained Application Protocol (CoAP) using data object security.
 OSCOAP provides end-to-end encryption, integrity and replay
 protection to CoAP payload, options and header fields, and a secure
 binding between CoAP request and response messages. The use of
 OSCOAP is signaled with the Object-Security option, also defined in
 this memo.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Selander, et al. Expires April 21, 2016 [Page 1]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 2. Background . 5
 3. The Object-Security Option 6
 4. Secure Message Format . 7
 4.1. Secure Message Header 7
 4.2. Secure Message Body and Tag 8
 4.2.1. Integrity Protection Only 8
 4.2.2. Encryption and Integrity Protection 8
 5. CoAP Message Protection 9
 5.1. Integrity Protection Only 9
 5.1.1. Protected CoAP message formatting 9
 5.1.2. Secure Message formatting 10
 5.1.3. Integrity Protection and Verification 10
 5.2. Encryption and Integrity Protection 10
 5.2.1. Protected CoAP message formatting 10
 5.2.2. Secure Message formatting 11
 6. Protected CoAP Message Fields 12
 6.1. Protected CoAP Header Fields 12
 6.2. Protected CoAP Options 12
 6.2.1. Integrity Protection 13
 6.2.2. Encryption . 15
 7. Replay Protection and Freshness 15
 7.1. Replay Protection . 15
 7.2. Freshness . 16
 8. Security Considerations 16
 9. Privacy Considerations 18
 10. IANA Considerations . 18
 11. Acknowledgments . 19
 12. References . 19
 12.1. Normative References 19
 12.2. Informative References 20
 Appendix A. COSE Profile of SM 21
 A.1. Integrity Protection Only 21
 A.1.1. COSE_Sign . 21
 A.1.2. COSE_mac . 22
 A.2. Encryption and Integrity Protection: COSE_enveloped . . . 22
 A.3. COSE Optimizations 23
 Appendix B. Comparison of message sizes 25

Selander, et al. Expires April 21, 2016 [Page 2]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 B.1. MAC Only . 26
 B.2. Signature Only . 27
 B.3. Authenticated Encryption with Additional Data (AEAD) . . 29
 B.4. Symmetric Encryption with Asymmetric Signature (SEAS) . . 30
 Appendix C. Object Security of Content (OSCON) 32
 C.1. Security Considerations of OSCON 33
 Appendix D. Examples . 34
 D.1. CoAP Message Protection 34
 D.1.1. Integrity Protection of CoAP Message Exchange 34
 D.1.2. Additional Encryption of CoAP Message 36
 D.2. Payload Protection 37
 D.2.1. Proxy Caching . 37
 D.2.2. Publish-Subscribe 38
 D.2.3. Transporting Authorization Information 40
 Authors’ Addresses . 41

1. Introduction

 The Constrained Application Protocol CoAP [RFC7252] was designed with
 a constrained RESTful environment in mind. CoAP references DTLS
 [RFC6347] for securing the message exchanges. Two prominent features
 of CoAP, store-and-forward and publish-subscribe exchanges, are
 problematic to secure with DTLS and transport layer security. As
 DTLS offers hop-by-hop security, in case of store-and-forward
 exchanges it necessitates a trusted intermediary. Securing publish-
 subscribe CoAP exchanges with DTLS requires the use of the keep-alive
 mechanism which incurs additional overhead and actually takes away
 most of the benefits of asynchronous communication.

 The pervasive monitoring debate has illustrated the need to protect
 data also from trustworthy intermediary nodes as they can be
 compromised. The community has reacted strongly to the revelations,
 and new solutions must consider this attack [RFC7258] and include
 encryption by default.

 This memo defines Object Security of CoAP (OSCOAP) a data object
 based communication security solution complementing DTLS and
 supporting secure messaging end-to-end across intermediary nodes.
 OSCOAP may be used in very constrained settings where DTLS cannot be
 supported. OSCOAP can also be combined with DTLS thus enabling, for
 example, end-to-end security of CoAP payload in combination with hop-
 by-hop protection of the entire CoAP message during transport between
 end-point and intermediary node.

 OSCOAP provides end-to-end encryption, integrity and replay
 protection to CoAP payload, options and header fields, and a secure
 binding between CoAP request and response messages. Using this
 method the unprotected CoAP message is transformed into a protected

Selander, et al. Expires April 21, 2016 [Page 3]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 CoAP message, which contains a secure data object protecting the
 unprotected message, and which is sent instead of the unprotected
 message. The use of OSCOAP is signaled with the Object-Security
 option, also defined in this memo.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].These words
 may also appear in this document in lowercase, absent their normative
 meanings.

 Certain security-related terms are to be understood in the sense
 defined in [RFC4949]. These terms include, but are not limited to,
 "authentication", "authorization", "confidentiality", "(data)
 integrity", "message authentication code", and "verify". For
 "signature", see below.

 RESTful terms, such as "resource" or "representation", are to be
 understood as used in HTTP [RFC7231] and CoAP.

 Terminology for constrained environments, such as "constrained
 device", "constrained-node network", is defined in [RFC7228].

 Terminology for authentication and authorization in constrained
 environments, such as "Authorization Server", "Resource Server", etc,
 is defined in [I-D.ietf-ace-actors].

 The CoAP option Object-Security and the Secure Message (SM) format
 are defined in this memo.

 Two different scopes of object security are defined:

 o OSCOAP = object security of CoAP, signaled with the Object-
 Security option

 o OSCON = object security of content, signaled with Content Format/
 Media Type set to application/oscon.

 OSCON is defined in Appendix C and included for comparison with
 OSCOAP.

 The COSE message format is defined in [I-D.ietf-cose-msg].

Selander, et al. Expires April 21, 2016 [Page 4]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

2. Background

 The background for this work is provided by the use cases and
 architecture in [I-D.ietf-ace-usecases] and [I-D.ietf-ace-actors].
 The focus of this memo is on end-to-end security in constrained
 environments in the presence of intermediary nodes.

 For constrained-node networks there may be several reasons for
 messages to be cached or stored in one node and later forwarded.

 For example, connectivity between the nodes may be intermittent, or
 some node may be sleeping at the time when the message should have
 been forwarded (see e.g. [I-D.ietf-ace-usecases] sections 2.1.1, and
 2.5.1). Also, the architectural model or protocol applied may
 require an intermediary node which breaks security on transport layer
 (see e.g. [I-D.ietf-ace-usecases] sections 2.1.1, and 2.5.2).
 Examples of intermediary nodes include forward proxies, reverse
 proxies, pub-sub brokers, HTTP-CoAP cross-proxies, and SMS servers.

 Based on these examples the following security requirements have been
 identified:

 1. The payload shall be integrity protected and should be encrypted
 end-to-end from sender to receiver.

 2. It shall be possible for an intended receiver to detect if it has
 received this message previously, i.e. replay protection.

 3. The CoAP options which are not intended to be changed by an
 intermediary node shall be integrity protected between Client and
 Server.

 4. The CoAP options which are not intended to be read by an
 intermediary node shall be encrypted between Client and Server.

 5. The CoAP header fields "Code" and "Version" shall be integrity
 protected between Client and Server.

 6. A Client shall be able to verify that a message is the response
 to a particular request the Client made.

 In this list above, requirements 1-2 deals essentially with
 protecting the CoAP payload only, whereas 3-6 deals with protecting
 an entire CoAP request-response exchange, including also CoAP options
 and header fields.

 Object Security of CoAP (OSCOAP), which is the main focus of this
 memo, addresses all requirements above by defining a method for

Selander, et al. Expires April 21, 2016 [Page 5]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 encryption, integrity protection and replay protection of CoAP
 payload, options and header fields, and a secure binding between CoAP
 request and response messages. OSCOAP consists of:

 o the Object-Security option, indicating that OSCOAP is being used;

 o a compact cryptographic message format called "Secure Message",
 based on the COSE message format ([I-D.ietf-cose-msg]); and

 o a scheme for transforming an unprotected CoAP message into a
 protected CoAP message, which contains the Object-Security option
 and a Secure Message protecting CoAP payload, options and header
 fields.

 The same method can be applied to payload only of individual
 messages, targeting only requirements 1-2 above. We call this object
 security of content (OSCON) and it is defined in Appendix C.

 Examples of the use of OSCOAP and OSCON are given in Appendix D.

3. The Object-Security Option

 In order to end-to-end protect CoAP message exchanges including
 options and headers, a new CoAP option is introduced: the Object-
 Security option. The Object-Security option indicates that OSCOAP is
 used, i.e. that certain CoAP Header fields, Options and Payload (if
 present) are integrity and replay protected and potentially
 encrypted, using a cryptographic message format called the Secure
 Message format Section 4.

 This option is critical, safe to forward, it is not part of a cache
 key, and it is not repeatable. Figure 1 illustrates the structure of
 this option.

 +-----+---+---+---+---+-----------------+--------+--------+
 | No. | C | U | N | R | Name | Format | Length |
 +-----+---+---+---+---+-----------------+--------+--------|
 | TBD | x | | x | | Object-Security | opaque | 0, TBD |
 +-----+---+---+---+---+-----------------+--------+--------+
 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

 Figure 1: The Object-Security Option

 The length of the option depends on the specific choice of the Secure
 Message format. Length 0 indicates that the Secure Message is the
 CoAP Payload of the message, and is used when the CoAP message type
 used supports payload.

Selander, et al. Expires April 21, 2016 [Page 6]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

4. Secure Message Format

 There exist already standardized and draft content formats for
 encryption and integrity protection of data such as CMS [RFC5652],
 JWS [RFC7515], JWE [RFC7516], and COSE [I-D.ietf-cose-msg].

 Current CMS and JWx objects are undesirably large for very
 constrained devices. Large messages has a negative impact on memory
 and storage in constrained devices, packet fragmentation in
 constrained-node networks due to limited frame sizes, and increased
 energy consumption due to more data transmission and reception. The
 candidate for use with object security of CoAP messages is the COSE
 message format [I-D.ietf-cose-msg].

 Pending an optimized and stable version of the COSE message format
 this memo defines the SM format to refer to a content format for
 encrypted and integrity protected data, and also includes a unique
 transaction identifier for replay protection. Appendix A shows a
 profile of the COSE message format which complies with the Secure
 Message format.

 A Secure Message (SM) SHALL consist of Header, Body and Tag.

4.1. Secure Message Header

 The following parameters SHALL be included in the SM Header:

 o Context Identifier (CID). This parameter identifies the sender
 security context including the cipher suite, key(s) and additional
 algorithm specific parameters used to protect the message. Each
 client and server communicating using OSCOAP has two contexts, one
 for sending and one for receiving.

 o Sequence Number (SEQ). The Sequence Number parameter enumerates
 the Secure Messages sent associated to a Context Identifier, and
 is used for replay protection and uniqueness of nonce. The start
 sequence number SHALL be 0. For a given key, any Sequence Number
 MUST NOT be used more than once.

 The granularity of "sender" - what is being identified with the
 Context Identifier - is defined by the application. With OSCOAP the
 Context Identifier typically identifies the sending party and
 different resources may be identified by the Uri-Path in the request.
 (Compare Appendix C.)

 The ordered sequence (SEQ, CID) is called Transaction Identifier
 (TID), and SHALL be unique for each SM.

Selander, et al. Expires April 21, 2016 [Page 7]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

4.2. Secure Message Body and Tag

 The use cases require support for two message types, one for
 Encryption and Integrity Protection, and another for integrity
 protection only. The SM Body and the SM Tag are different depending
 on message type.

 For Integrity Protection Only we denote by Authenticated Data (AD)
 the data which is integrity protected in the Secure Message. For
 Encryption and Integrity Protection we denote by Plaintext and
 Additional Authenticated Data (AAD), the data which is encrypted and
 integrity protected, and integrity protected only, respectively, in
 the Secure Message.

 The message type SHALL be explicit to allow an intermediate node to
 distinguish between the two types and read the SM Body of an
 Integrity Protected Only message.

4.2.1. Integrity Protection Only

 In the case of integrity protection only, the SM Body SHALL consist
 of the payload of the CoAP message.

 The SM Tag SHALL consist of the Signature / Message Authentication
 Code (MAC) as defined by the cipher suite calculated over the
 Authenticated Data (AD). The AD for OSCOAP is defined in
 Section 5.1.2.

4.2.2. Encryption and Integrity Protection

 The use cases require support for two kinds of cipher suites:
 Authenticated Encryption with Additional Data (AEAD) as well as
 Symmetric Encryption and Asymmetric Signature (SEAS).

 In case of AEAD, the SM Body and SM Tag SHALL consist of the
 Ciphertext as defined by the cipher suite calculated over the
 Plaintext and the Additional Authenticated Data (AAD).

 In case of SEAS, the SM Body SHALL be the Ciphertext as defined by
 the symmetric encryption algorithm, given by the cipher suite,
 calculated over the Plaintext. The SM Tag SHALL be the Signature
 defined by the cipher suite calculated over Ciphertext and AAD.

 The Plaintext and the AAD for OSCOAP are defined in Section 5.2.2.

Selander, et al. Expires April 21, 2016 [Page 8]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

5. CoAP Message Protection

 This section presents how OSCOAP protects individual CoAP messages
 including payload, options and header fields, as well as request-
 response message exchanges, using the Object-Security option
 (Section 3) and the Secure Message format (Section 4).

 The basic idea is that the significant parts of an unprotected CoAP
 message - including payload, certain header field and options - are
 protected using the Secure Message format and sent in a CoAP message
 with the Object-Security option, in what we then call a "protected"
 CoAP message. As much a possible of the CoAP message should be
 protected, but not all CoAP header fields or options can be encrypted
 and integrity protected, because some are intended to be read or
 changed by an intermediary node, see Section 6.1 and Section 6.2.

 The use of OSCOAP is signaled with the Object-Security option.
 Endpoints supporting the Object-Security option MUST verify the SM as
 described in this section before accepting a message as valid. An
 endpoint receiving a CoAP request with the Object-Security option
 MUST respond with a CoAP message with the Object-Security option.

 The differences between Encryption and Integrity Protection vs
 Integrity Protection Only is described below. Encryption and
 Integrity Protection SHALL be used by default.

5.1. Integrity Protection Only

5.1.1. Protected CoAP message formatting

 The protected CoAP message is formatted as an ordinary CoAP message,
 with the following Header, Options and Payload based on the
 unprotected CoAP message:

 o The CoAP header SHALL be the same as the unprotected CoAP message.

 o The CoAP options SHALL consist of the same options as the
 unprotected CoAP message, and the Object-Security option.

 o If the unprotected CoAP message has no Payload then the Object-
 Security option SHALL contain the SM. If the unprotected CoAP
 message has Payload, then the Object-Security option SHALL be
 empty and the Payload of the CoAP message SHALL be the SM.

Selander, et al. Expires April 21, 2016 [Page 9]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

5.1.2. Secure Message formatting

 The SM Header, Body and Tag are specified in Section 4.1 and
 Section 4.2.

 The Authenticated Data SHALL consist of the following data, in this
 order:

 o the SM Header;

 o the two first bytes of the CoAP header (including Version and
 Code) with Type and Token Length bits set to 0;

 o all CoAP options present which are marked as IP in Figure 2
 (Section 6.2), in the order as given by the option number (each
 Option with Option Header including delta to previous IP-marked
 Option which is present);

 o the CoAP Payload (if any); and

 o the Transaction Identifier of the associated CoAP Request, if the
 message is a CoAP Response (see Section 4.1).

5.1.3. Integrity Protection and Verification

 A CoAP endpoint protecting a CoAP message with the Object-Security
 option using a cipher suite for integrity protection only SHALL
 generate a protected CoAP message and SM based on the unprotected
 CoAP message as described in Section 5.1.1 and Section 5.1.2. In
 addition, the sending endpoint SHALL process the Sequence Number as
 described in Section 7.

 A CoAP endpoint receiving a message containing the Object-Security
 option SHALL first recreate the Authenticated Data as described in
 Section 5.1.2, and then verify the SM Tag as defined by the cipher
 suite associated to the Context Identifier. In addition, the
 receiving endpoint SHALL process the Sequence Number as described in
 Section 7.

5.2. Encryption and Integrity Protection

5.2.1. Protected CoAP message formatting

 The protected CoAP message is formatted as an ordinary CoAP message,
 with the following Header, Options and Payload based on the
 unprotected CoAP message:

 o The CoAP header SHALL be the same as the unprotected CoAP message.

Selander, et al. Expires April 21, 2016 [Page 10]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 o The CoAP options SHALL consist of the unencrypted options of the
 unprotected CoAP message (those not marked as E in Figure 2
 (Section 6.2)), and the Object-Security option. The options shall
 be formatted as in a CoAP message (each Option with Options Header
 including delta to previous unencrypted Option).

 o If the unprotected CoAP message has no Payload then the Object-
 Security option SHALL contain the SM. If the unprotected CoAP
 message has Payload, then the Object-Security option SHALL be
 empty and the Payload of the CoAP message SHALL be the SM.

5.2.2. Secure Message formatting

 The SM Header, Body and Tag are specified in Section 4.1 and
 Section 4.2.

 The Additional Authenticated Data SHALL consist of the following
 data, in this order:

 o the SM Header;

 o the two first bytes of the CoAP header (including Version and
 Code) with Type and Token Length bits set to 0;

 o all CoAP options present which are marked as IP but not marked as
 E in Figure 2 (Section 6.2), in the order as given by the option
 number (each Option with Option Header including delta to previous
 IP-marked Option which is present); and

 o the Transaction Identifier of the associated CoAP Request, if the
 message is a CoAP Response (see Section 4.1).

 The Plaintext SHALL consist of the following data, formatted as a
 CoAP message without Header consisting of:

 o all CoAP Options present which are marked as E in Figure 2 (see
 Section 6.2), in the order as given by the Option number (each
 Option with Option Header including delta to previous E-marked
 Option); and

 o the CoAP Payload, if present, and in that case prefixed by the
 one-byte Payload Marker (0xFF).

5.2.2.1. Encryption and Decryption

 A CoAP endpoint protecting a CoAP message with the Object-Security
 option using a cipher suite for encryption and integrity protection
 SHALL generate a protected CoAP message and SM based on the

Selander, et al. Expires April 21, 2016 [Page 11]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 unprotected CoAP message as described in Section 5.2.1 and
 Section 5.2.2. In addition, the sending endpoint SHALL process the
 Sequence Number as described in Section 7.

 A CoAP endpoint receiving a message containing the Object-Security
 option SHALL recreate the Additional Authenticated Data as described
 in Section 5.1.2 and verify the integrity of, and decrypt the message
 as defined by the cipher suite associated to the Context Identifier.
 In addition, the receiving endpoint SHALL process the Sequence Number
 as described in Section 7.

6. Protected CoAP Message Fields

 The CoAP payload SHALL be integrity protected. The CoAP payload
 SHOULD be encrypted by default.

 How CoAP Options and Header Fields shall be protected is described in
 the remainder of this section.

6.1. Protected CoAP Header Fields

 This section describes which CoAP header fields are encrypted or
 integrity protected end-to-end in OSCOAP.

 The CoAP Message Layer parameters, Type and Message ID, as well as
 Token and Token Length may be changed by a proxy and thus SHALL
 neither be integrity protected nor encrypted.

 The Version and Code fields SHALL be integrity protected, see
 security considerations.

6.2. Protected CoAP Options

 This section describes which CoAP options are encrypted and integrity
 protected, if present in the unprotected CoAP message.

 All CoAP options SHALL be encrypted by default, unless intended to be
 read by an intermediate node; and SHALL be integrity protected,
 unless intended to be changed by an intermediate node.

 However, some special considerations are necessary because CoAP
 defines certain legitimate proxy operations, because the security
 information itself may be transported as an option, and because
 different processing is performed depending on whether encryption is
 applied or not.

 The details are presented in Section 6.2.1 and Section 6.2.2, and
 summarized in Figure 2.

Selander, et al. Expires April 21, 2016 [Page 12]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 +-----+---+---+---+---+----------------+--------+--------+---+----+
 | No. | C | U | N | R | Name | Format | Length | E | IP |
 +-----+---+---+---+---+----------------+--------+--------+---+----|
1	x			x	If-Match	opaque	0-8	x	x
3	x	x	-		Uri-Host	string	1-255		a
4				x	ETag	opaque	1-8	x	x
5	x				If-None-Match	empty	0	x	x
6		x	-		Observe	uint	0-3		
7	x	x	-		Uri-Port	uint	0-2		a
8				x	Location-Path	string	0-255	x	x
11	x	x	-	x	Uri-Path	string	0-255	x	b
12					Content-Format	uint	0-2	x	x
14		x	-		Max-Age	uint	0-4		
15	x	x	-	x	Uri-Query	string	0-255	x	b
17	x				Accept	uint	0-2	x	x
20				x	Location-Query	string	0-255	x	x
23	x	x	-		Block2	uint	0-3		
27	x	x	-		Block1	uint	0-3		
28			x		Size2	uint	0-4	x	x
35	x	x	-		Proxy-Uri	string	1-1034		i
39	x	x	-		Proxy-Scheme	string	1-255		i
60			x		Size1	uint	0-4	x	x
 +-----+---+---+---+---+----------------+--------+--------+---+----+
 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable,
 E=Encrypt, IP=Integrity Protect.

 Figure 2: Protected CoAP options in OSCOAP

 CoAP options marked "i" indicate that they are used as invariants in
 the authenticated data (AD/AAD) as described in Section 6.2.1.1 and
 Section 6.2.1.2.

 In case of Integrity Protection Only, options marked with "a" and "b"
 are composed into a URI as described in Section 6.2.1.2 and included
 as invariant in the Proxy-Uri option in the Authenticated Data.

 In case of Encryption and Integrity Protection, options marked "a"
 are composed into a URI as described in Section 6.2.2 and included as
 the Proxy-Uri option in the Additional Authenticated Data. (Options
 marked "b" are included in the Plaintext.)

6.2.1. Integrity Protection

 CoAP options which are not intended to be changed by an intermediate
 node MUST be integrity protected.

 o CoAP options of the unprotected message which are Safe-to-Forward
 SHALL be integrity protected. See Figure 2.

Selander, et al. Expires April 21, 2016 [Page 13]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 Note: The Object-Security option in itself is Safe-to-Forward but is
 added to the protected message.

 CoAP options which are intended to be modified by a proxy can be
 divided into two categories, those that are intended to change in a
 predictable way, and those which are not. The following options are
 of the latter kind and SHALL NOT be integrity protected:

 o Max-Age, Observe, Block1, Block2: These options may be modified by
 a proxy in a way that is not predictable for client and server.

 The remaining options may be modified by a proxy, but when they are,
 the change is predictable. Therefore it is possible to define
 "invariants" which can be integrity protected.

6.2.1.1. Proxy-Scheme

 A Forward Proxy is intended to replace the URI scheme with the
 content of the Proxy-Scheme option. The Proxy-Scheme option is
 defined in this memo to be an invariant with respect to the following
 processing

 o If there is a Proxy-Scheme present in the unprotected message,
 then the client SHALL integrity protect the Proxy-Scheme option.

 o If there is no Proxy-Scheme option present the client SHALL
 include the Proxy-Scheme option in the authenticated data (AD/AAD)
 set to the URI scheme. (The sent message does not include the
 Proxy-Scheme option.)

 o The server SHALL insert the Proxy-Scheme option with the name of
 the URI scheme the message was received in the authenticated data
 (AD/AAD).

6.2.1.2. Uri-*

 For options related to URI of resource (Uri-Host, Uri-Port, Uri-Path,
 Uri-Query, Proxy-Uri) a Forward Proxy is intended to replace the Uri-
 * options with the content of the Proxy-Uri option.

 The Proxy-Uri option is defined in this memo to be an invariant with
 respect to the following processing (applied to Integrity Protection
 only, for Encryption see next section):

 o If there is a Proxy-Uri present, then the client MUST integrity
 protect the Proxy-Uri option and the Uri-* options MUST NOT be
 integrity protected.

Selander, et al. Expires April 21, 2016 [Page 14]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 o If there is no Proxy-Uri option present, then the client SHALL
 compose the full URI from Uri-* options according to the method
 described in section 6.5 of [RFC7252]. The Authenticated Data
 contains the following options, modified compared to what is sent:

 o All Uri-* options removed

 o A Proxy-Uri option with the full URI included

 o The server SHALL compose the URI from the Uri-* options according
 to the method described in section 6.5 of [RFC7252]. The so
 obtained URI is placed into a Proxy-Uri option, which is included
 in the Authenticated Data.

6.2.2. Encryption

 All CoAP options MUST be encrypted, except the options below which
 MUST NOT be encrypted:

 o Max-Age, Observe, Block1, Block2, Proxy-Uri, Proxy-Scheme: This
 information is intended to be read by a proxy.

 o Uri-Host, Uri-Port: This information can be inferred from
 destination IP address and port.

 o Object-Security: This is the security-providing option.

 In the case of encryption, the Proxy-Uri of the Additional
 Authenticated Data MUST only contain Uri-Host and Uri-Port and MUST
 NOT contain Uri-Path and Uri-Query because the latter options are not
 necessarily available to a Forward Proxy.

7. Replay Protection and Freshness

 In order to protect from replay of messages and verify freshness of
 responses, a CoAP endpoint using object security SHALL maintain
 Sequence Numbers (SEQs) of sent and received Secure Messages (see
 Section 4.1), associated to the respective security context
 identified with the Context Identifier (CID).

7.1. Replay Protection

 An endpoint SHALL maintain a SEQ for each security context it uses to
 receive messages, and one SEQ for each security context for
 protecting sent messages. Depending on use case, an endpoint MAY
 maintain a sliding receive window for Sequence Numbers in received
 messages associated to each CID, equivalent to the functionality
 described in section 4.1.2.6 of [RFC6347].

Selander, et al. Expires April 21, 2016 [Page 15]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 Before composing a new message a sending endpoint SHALL step the SEQ
 of the associated CID. However, if the Sequence Number counter
 wraps, the endpoint must first acquire a new CID and associated
 security context/key(s). The latter is out of scope of this memo.

 A receiving endpoint SHALL verify that the Sequence Number received
 in the SM Header is greater than the Sequence Number of the
 associated CID (or within the sliding window and not previously
 received) and update the SEQ (window) accordingly.

7.2. Freshness

 OSCOAP is a challenge-response protocol, where the response is
 verified to match a prior request by including the unique transaction
 identifier TID (concatenation of SEQ and CID) of the request in the
 integrity calculation of the response message.

 If a CoAP server receives a request with the Object-Security option,
 then the authenticated data (AD or AAD) of the response SHALL include
 the TID of the request as described in Section 5.1.2 and
 Section 5.2.2.

 If the CoAP client receives a response with the Object-Security
 option, then the client SHALL verify the integrity of the response
 using the TID of its own associated request in the authenticated data
 (AD or AAD) as described in Section 5.1.2 and Section 5.2.2.

8. Security Considerations

 In scenarios with proxies, gateways, or caching, DTLS only protects
 data hop-by-hop meaning that these intermediary nodes can read and
 modify information. The trust model where all participating nodes
 are considered trustworthy is problematic not only from a privacy
 perspective but also from a security perspective as the
 intermediaries are free to delete resources on sensors and falsify
 commands to actuators (such as "unlock door", "start fire alarm",
 "raise bridge"). Even in the rare cases where all the owners of the
 intermediary nodes are fully trusted, attacks and data breaches make
 such an architecture weak.

 DTLS protects the entire CoAP message including Header, Options and
 Payload, whereas OSCOAP protects the payload and message fields
 described in Section 6.1 and Section 6.2. The cost for DTLS
 providing this protection is the overhead in e.g. additional
 messages, processing, memory incurred by the DTLS Handshake protocol,
 which can be omitted in use cases where key establishment can be
 provided by other means.

Selander, et al. Expires April 21, 2016 [Page 16]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 CoAP specifies how messages should be acknowledged on message layer.
 The CoAP message layer, however, cannot be protected by application
 layer security end-to-end since the parameters Type and Message ID,
 as well as Token and Token Length may be changed by a proxy.
 Moreover, messages that are not possible to verify should for
 security reasons not always be acknowledged but in some cases be
 silently dropped. This would not comply with CoAP message layer, but
 does not have an impact on the object security solution, since
 message layer is excluded from that.

 The CoAP Header field Code needs to be integrity protected end-to-
 end. For example, if a malicous man-in-the-middle would replace the
 client requested GET with a DELETE, this must be detected by the
 server. The CoAP Header field Version needs also to be integrity
 protected to prevent from potential cross-version attacks, such as
 bidding-down.

 Blockwise transfers as defined [I-D.ietf-core-block] cannot be
 protected with application layer security end-to-end because the
 Block1/Block2 options may be changed in an unpredictable way by an
 intermediate node.

 However, it is possible to define end-to-end block options analogous
 to Block1 and Block2 which are safe-to-forward, integrity protected
 and not supposed to be changed by intermediate devices. With such an
 option each individual block can be securely verified by the
 receiver, retransmission securely requested etc. Since the blocks
 are enumerated sequentially and carry information about last block,
 when all blocks have been securely received, this proves that the
 entire message has been securely transferred.

 The Observe option cannot be integrity protected since it is allowed
 to change in an unpredictable way. But since message sequence
 numbers are integrity protected a client
 can verifies that a GET response has not been received before.

 The use of sequence numbers for replay protection introduces the
 problem related to wrapping of the counter. The alternatives also
 have issues: very constrained devices may not be able to support
 accurate time or generate and store large numbers of random nonces.
 The requirement to change key at counter wrap is a complication, but
 it also forces the user of this specification to think about
 implementing key renewal.

 This specification needs to be complemented with a procedure whereby
 the client and the server establish the keys used for wrapping and
 unwrapping the Secure Message. One way to address key establishment
 is to assume that there is a trusted third party which can support

Selander, et al. Expires April 21, 2016 [Page 17]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 client and server, such as the Authorization Server in
 [I-D.ietf-ace-actors]. The Authorization Server may, for example,
 authenticate the client on behalf of the server, or provide
 cryptographic keys or credentials to the client and/or server which
 can be use to derive the keys used in the Secure Message exchange.
 Similarly, the Authorization Server may, on behalf of the server,
 notify the client of server supported ciphers, in order to facilitate
 the usage of OSCOAP in deployments with multiple supported
 cryptographic algorithms.

 The security contexts required are different for different cipher
 suites. For an AEAD or SEAS it is required to have a unique
 Initialization Vector for each message, for which the Sequence Number
 is used. The Initialization Vector SHALL be the concatenation of a
 Salt (4 bytes unsigned integer) and the Sequence Number. The Salt
 SHOULD be established between sender and receiver before the message
 is sent, to avoid the overhead of sending it in each message. For
 example, the Salt may be established by the same means as keys are
 established.

9. Privacy Considerations

 End-to-end integrity protection provides certain privacy properties,
 e.g. protection of communication with sensor and actuator from
 manipulation which may affect the personal sphere. End-to-end
 encryption of payload and certain CoAP options provides additional
 protection as to the content and nature of the message exchange.

 The headers sent in plaintext allow for example matching of CON and
 ACK (CoAP Message Identifier), matching of request and response
 (Token). Plaintext options could also reveal information, e.g.
 lifetime of measurement (Max-age), or that this message contains one
 data point in a sequence (Observe).

10. IANA Considerations

 Note to RFC Editor: Please replace all occurrences of "[this
 document]" with the RFC number of this specification.

 The following entry is added to the CoAP Option Numbers registry:

 +--------+-----------------+-------------------+
 | Number | Name | Reference |
 +--------+-----------------+-------------------+
 | TBD | Object-Security | [[this document]] |
 +--------+-----------------+-------------------+

Selander, et al. Expires April 21, 2016 [Page 18]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 This document registers the following value in the CoAP Content
 Format registry established by [RFC7252].

 Media Type: application/oscon

 Encoding: -

 Id: 70

 Reference: [this document]

11. Acknowledgments

 Klaus Hartke has independently been working on the same problem and a
 similar solution: establishing end-to-end security across proxies by
 adding a CoAP option. We are grateful to Malisa Vucinic for
 providing helpful and timely reviews of new versions of the draft.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, DOI 10.17487/
 RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <http://www.rfc-editor.org/info/rfc7258>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
 RFC 7516, DOI 10.17487/RFC7516, May 2015,
 <http://www.rfc-editor.org/info/rfc7516>.

Selander, et al. Expires April 21, 2016 [Page 19]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

12.2. Informative References

 [I-D.ietf-ace-actors]
 Gerdes, S., Seitz, L., Selander, G., and C. Bormann, "An
 architecture for authorization in constrained
 environments", draft-ietf-ace-actors-02 (work in
 progress), September 2015.

 [I-D.ietf-ace-usecases]
 Seitz, L., Gerdes, S., Selander, G., Mani, M., and S.
 Kumar, "ACE use cases", draft-ietf-ace-usecases-09 (work
 in progress), October 2015.

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Block-wise transfers in CoAP",
 draft-ietf-core-block-18 (work in progress), September
 2015.

 [I-D.ietf-cose-msg]
 Schaad, J. and B. Campbell, "CBOR Encoded Message Syntax",
 draft-ietf-cose-msg-05 (work in progress), September 2015.

 [I-D.seitz-ace-core-authz]
 Seitz, L., Selander, G., and M. Vucinic, "Authorization
 for Constrained RESTful Environments", draft-seitz-ace-
 core-authz-00 (work in progress), June 2015.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2", FYI
 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <http://www.rfc-editor.org/info/rfc4949>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <http://www.rfc-editor.org/info/rfc5652>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228, DOI 10.17487/
 RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DOI
 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

Selander, et al. Expires April 21, 2016 [Page 20]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

Appendix A. COSE Profile of SM

 This section defines a profile of the 05-version of COSE
 [I-D.ietf-cose-msg] complying with the Secure Message format (see
 Section 4) and supporting the two scopes of object security OSCOAP
 and OSCON (Appendix C). In the last subsection we elaborate on
 possible optimizations.

 o The "COSE_MSG" top level object as defined in COSE corresponds to
 the Secure Message object.

 o The "msg_type" parameter corresponds to the Secure Message type,
 as defined in Section 4.2. Depending on the use case, this field
 can take the values msg_type_mac, msg_type_signed or
 msg_type_encryptData.

 o The "Header" field of the COSE object corresponds to the Header
 field of the Secure Message.

 * The "protected" field includes:

 + the new "seq" parameter corresponding to the parameter
 Sequence Number of the Secure Message (see Section 4.1).

 * The "unprotected" field is empty.

A.1. Integrity Protection Only

 When Integrity Protection only needs to be provided, the Secure
 Message object corresponds to a COSE_MSG with msg_type equal to
 msg_type_signed (COSE_Sign) or msg_type_mac (COSE_mac).

 The Externally Supplied Data ("external_aad" field), as defined in
 Section 4.1 of [I-D.ietf-cose-msg] include the Authenticated Data as
 defined in Section 5.1.2 with the exception of SM Header and CoAP
 Payload.

A.1.1. COSE_Sign

 A COSE_MSG of type COSE_Sign is a Secure Message if its fields are
 defined as follows (see example in Appendix B.2).

 The "Headers" field of COSE_Sign as defined in Appendix A.

 The "payload" field contains the CoAP Payload (if any).

 The "signatures" array contains one "COSE_signature" item. The
 "Headers" field of the COSE_signature object is defined as follows:

Selander, et al. Expires April 21, 2016 [Page 21]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 o The "protected" field includes:

 * the new "cid" parameter which corresponds to the parameter
 Context Identifier of the Secure Message (see Section 4.1);

 o The "unprotected" field is empty.

 The "signature" field contains the computed signature value as
 described in Section 4.2 of [I-D.ietf-cose-msg].

 A Secure Message with digital signature and Detached Content
 corresponds to COSE_sign with "Headers" and "signatures" fields; i.e.
 no "payload" field.

A.1.2. COSE_mac

 A COSE_MSG of type COSE_mac is a Secure Message if its fields are
 defined as follows (see example in Appendix B.1).

 The "Headers" field of COSE_mac as defined in Appendix A.

 The "payload" field contains the CoAP Payload (if any).

 The "tag" field contains the MAC value, computed as defined in
 Section 6.1 of [I-D.ietf-cose-msg].

 The "recipients" array contains one "COSE_recipient" item (section 5
 of [I-D.ietf-cose-msg]). The "COSE_recipient" item contains one
 "COSE_encrypt_fields" object. The "Headers" field of the
 COSE_encrypt_fields object is defined as follows:

 o The "protected" field includes:

 * the new "cid" parameter which corresponds to the parameter
 Context Identifier of the Secure Message (see Section 4.1);

 o The "unprotected" field is empty.

 A Secure Message with MAC and Detached Content corresponds to a
 COSE_sign with "Headers", "recipients" and "tag" fields; i.e. no
 "payload" field.

A.2. Encryption and Integrity Protection: COSE_enveloped

 When Encryption and Integrity Protection need to be provided, the
 Secure Message object corresponds to a COSE_MSG with msg_type equal
 to msg_type_enveloped (COSE_enveloped).

Selander, et al. Expires April 21, 2016 [Page 22]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 The Additional Authenticated Data ("Enc_structure") as described is
 Section 5.3 of [I-D.ietf-cose-msg] is defined in Section 5.2.2: * the
 "protected" parameters includes the SM Header; * the "external_aad"
 includes the other fields (CoAP Version, Code, Options to integrity
 protect and TID).

 The plain text, as mentioned in Sections 5.3 and 5.4 of
 [I-D.ietf-cose-msg] is defined in Section 5.2.2 and contains CoAP
 Options to encrypt and the CoAP Payload.

 A COSE_MSG of type COSE_enveloped [I-D.ietf-cose-msg] is a Secure
 Message if its fields are defined as follows (see example in
 Appendix B.3).

 The "Headers" field of COSE_encrypt_fields item as defined in
 Appendix A.

 The "ciphertext" field is encoded as a nil type, following the
 specifications in Section 5.1 of [I-D.ietf-cose-msg].

 The "recipients" array contains one "COSE_recipient" item
 (Section 5.1 of [I-D.ietf-cose-msg]). The "COSE_recipient" item
 contains one "COSE_encrypt_fields" object. The "Headers" field of
 the COSE_encrypt_fields object is defined as follows:

 o The "protected" field includes:

 * the new "cid" parameter which corresponds to the parameter
 Context Identifier of the Secure Message (see Section 4.1);

 o The "unprotected" field is empty.

 The "ciphertext" field of the COSE_encrypt_fields object contains the
 encrypted plain text, as defined in section 5 of [I-D.ietf-cose-msg].

A.3. COSE Optimizations

 For constrained environments it is important that the message
 expansion due to security overhead is kept at a minimum.

 This section lists potential optimizations of COSE
 [I-D.ietf-cose-msg] for the purpose of reducing message size and
 improving performance in constrained node networks. The message
 sizes resulting from the first four optimizations are presented in
 Appendix B (as "modified COSE").

 1. The first improvement proposed is to flatten the structure of the
 COSE_msg, following the Encrypted COSE structure defined in

Selander, et al. Expires April 21, 2016 [Page 23]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 Section 5.2 of [I-D.ietf-cose-msg]. In fact, there is little
 need to support multiple signatures or recipients in the use
 cases targeting the most constrained devices. Two different
 structures inspired by the COSE_encryptData are defined: COSE_ip
 and COSE_en. COSE_ip is used for the Integrity Protection Only
 use case (Section 5.1), COSE_en is used for Encryption
 (Section 5.2).

 2. In general, the security context defines uniquely the cipher
 suite, and hence the "alg" parameter of COSE_msg can be removed.

 3. The "unprotected" field is not used since it is assumed that all
 parameters should be protected when possible. Thus the "Headers"
 structure can be flattened into a "protectedHeader" field,
 containing the "cid" parameter and the "seq" parameter.

 4. Analogous to other key values, one-byte keys/labels can be
 assigned to the new parameters defined in this document and
 cipher suites adapted to constrained device processing. For
 example: "cid" = 11 and "seq" = 12.

 5. Digitally signed messages have the largest absolute overhead due
 to the size of the signature (see Appendix B.2 and Appendix B.4).
 Whereas certain MACs can be securely truncated, signatures
 cannot. Signature schemes with message recovery allow some
 remedy since they allow part of the message to be recovered from
 the signature itself and thus need not be sent. The effective
 size of the signature could in this way be considerably reduced,
 which would have a large impact on the message size (compare size
 of signature and total overhead in Figure 5 and Figure 6). A
 valuable optimization would thus be to support signature schemes
 with message recovery.

 Combining the first 4 points, the resulting structures and their
 fields are defined as follows: COSE_ip top level object corresponds
 to the Secure Message object.

 o The "msg_type" parameter takes a new value,
 msg_type_integrityprotection=5.

 o The "protectedHeader" field, analogous to the "protected" field of
 the "Headers", includes:

 * the new "cid" parameter which corresponds to the parameter
 Context Identifier of the Secure Message (see Section 4.1);

 * the new "seq" parameter corresponding to the parameter Sequence
 Number of the Secure Message (see Section 4.1).

Selander, et al. Expires April 21, 2016 [Page 24]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 o The "payload" field (as described in Appendix A.1.1 and
 Appendix A.1.2).

 o The "tag" field (as described in Appendix A.1.1 and
 Appendix A.1.2).

 COSE_en top level object corresponds to the Secure Message object.

 o The "msg_type" parameter takes a new value, msg_type_encryption=6.

 o The "protectedHeader" field, analogous to the "protected" field of
 the "Headers", includes:

 * the new "cid" parameter which corresponds to the parameter
 Context Identifier of the Secure Message (see Section 4.1);

 * the new "seq" parameter corresponding to the parameter Sequence
 Number of the Secure Message (see Section 4.1).

 o The "ciphertext" field (as described in Appendix A.2).

 o The "tag" field contains the tag value in case Integrity
 Protection is also provided.

Appendix B. Comparison of message sizes

 This section gives some examples of overhead incurred with the
 current proposal for COSE at the time of writing [I-D.ietf-cose-msg].
 Message sizes are also listed for a modified version of COSE
 implementing some of the optimizations described in Appendix A.3 and
 for a lower bound CBOR encoding of the Secure Message with structure
 [seq, cid, body, tag].

 Motivated by the use cases, there are four different kinds of
 protected messages that need to be supported: message authentication
 code, digital signature, authenticated encryption, and symmetric
 encryption + digital signature. The latter is relevant e.g. for
 proxy-caching and publish-subscribe with untrusted intermediary (see
 Appendix D.2). The sizes estimated for selected algorithms are
 detailed in the subsections.

 The size of the header is shown separately from the size of the MAC/
 signature. An 8-byte Context Identifier and a 3-byte Sequence Number
 are used throughout all examples, with these value:

 o cid: 0xa1534e3c5fdc09bd

 o seq: 0x112233

Selander, et al. Expires April 21, 2016 [Page 25]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 For each scheme, we indicate the fixed length of these two parameters
 ("seq+cid" column) and of the tag ("MAC"/"SIG"/"TAG"). The "Total
 Size" column shows the total Secure Message size, while the
 "Overhead" column is calculated from the previous columns following
 this equation:

 Overhead = Total Size - (MAC + seq+cid)

 This means that overhead incurring from CBOR encoding is also
 included in the Overhead count.

 To make it easier to read, COSE objects are represented using CBOR’s
 diagnostic notation rather than a binary dump.

B.1. MAC Only

 This example is based on HMAC-SHA256, with truncation to 16 bytes.

 The object in COSE encoding gives:

 [
 3, # msg_type
 h’a201046373657143112233’, # protected:
 {1: 4,
 "seq": h’112233’}
 {}, # unprotected
 h’’, # payload
 MAC, # truncated 16-byte MAC
 [# recipients
 [# recipient structure
 h’’, # protected
 {1:-6, "cid":h’a1534e3c5fdc09bd’}, # unprotected
 h’’ # ciphertext
]
]
]

 The COSE object encodes to a total size of 53 bytes.

 In the modified version of COSE defined in Appendix A.3, the
 equivalent COSE object would be:

Selander, et al. Expires April 21, 2016 [Page 26]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 [
 5, # msg_type
 h’a20b48a1534e3c5fdc09bd0c43112233’, # protected:
 {11:h’a1534e3c5fdc09bd’,
 12:h’112233’}
 h’’, # payload
 MAC # truncated 16-byte MAC
]

 This modified COSE object encodes to a total size of 37 bytes.

 The low-bound CBOR encoding of this same object is encoded by:

 [
 h’112233’, # seq
 h’a1534e3c5fdc09bd’, # cid
 h’’, # payload
 MAC # truncated 16-byte MAC
]

 This object encodes to a total size of 32 bytes.

 Figure 3 summarizes these results.

 +--------+---------+------+------------+----------+
 | Scheme | seq+cid | MAC | Total Size | Overhead |
 +--------+---------+------+------------+----------+
 | COSE | 11 B | 16 B | 53 bytes | 26 bytes |
 +--------+---------+------+------------+----------+
 |mod-COSE| 11 B | 16 B | 37 bytes | 10 bytes |
 +--------+---------+------+------------+----------+
 | bound | 11 B | 16 B | 32 bytes | 5 bytes |
 +--------+---------+------+------------+----------+

 Figure 3: Comparison of COSE, modified COSE and CBOR lower bound for
 HMAC-SHA256.

B.2. Signature Only

 This example is based on ECDSA, with a signature of 64 bytes.

 The object in COSE encoding gives:

Selander, et al. Expires April 21, 2016 [Page 27]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 [
 1, # msg_type
 h’a16373657143112233’, # protected:
 {"seq": h’112233’}
 {}, # unprotected
 h’’, # payload
 [# signatures
 [# signature structure
 h’a201266363696448a1534e3c5fdc09bd’, # protected:
 {1: -7,
 "cid":h’a1534e3c5fdc09bd’}
 {}, # unprotected
 SIG # 64-byte signature
]
]
]

 The COSE object encodes to a total size of 100 bytes.

 In the modified version of COSE defined in Appendix A.3, the
 equivalent COSE object would be:

 [
 5, # msg_type
 h’a20b48a1534e3c5fdc09bd0c43112233’, # protected:
 {11:h’a1534e3c5fdc09bd’,
 12:h’112233’}
 h’’, # payload
 SIG # 64-byte signature
]

 The COSE object encodes to a total size of 86 bytes.

 The low-bound CBOR encoding of this same object is encoded by:

 [
 h’112233’, # seq
 h’a1534e3c5fdc09bd’, # cid
 h’’, # payload
 SIG # 64-byte signature
]

 This object encodes to a total size of 81 bytes.

 Figure 4 summarizes these results.

Selander, et al. Expires April 21, 2016 [Page 28]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 +--------+---------+------+------------+----------+
 | Scheme | seq+cid | SIG | Total Size | Overhead |
 +--------+---------+------+------------+----------+
 | COSE | 11 B | 64 B | 100 bytes | 25 bytes |
 +--------+---------+------+------------+----------+
 |mod-COSE| 11 B | 64 B | 86 bytes | 11 bytes |
 +--------+---------+------+------------+----------+
 | bound | 11 B | 64 B | 81 bytes | 6 bytes |
 +--------+---------+------+------------+----------+

 Figure 4: Comparison of COSE, modified COSE and CBOR lower bound for
 64 byte ECDSA signature.

B.3. Authenticated Encryption with Additional Data (AEAD)

 This example is based on AES-128-CCM-8.

 It is assumed that the IV is generated from the Sequence Number and
 some previously agreed upon Salt. This means it is not required to
 explicitly send the whole IV in the message.

 The object in COSE encoding gives:

 [
 2, # msg_type
 h’a201046373657143112233’, # protected:
 {1: 4,
 "seq": h’112233’}
 {}, # unprotected
 TAG, # 8byte authentication tag
 [# recipients
 [# recipient structure
 h’’, # protected
 {1:-6, "cid":h’a1534e3c5fdc09bd’}, # unprotected
 h’’ # ciphertext
]
]
]

 The COSE object encodes to a total size of 44 bytes.

 In the modified version of COSE defined in Appendix A.3, the
 equivalent COSE object would be:

Selander, et al. Expires April 21, 2016 [Page 29]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 [
 6, # msg_type
 h’a20b48a1534e3c5fdc09bd0c43112233’, # protected:
 {11:h’a1534e3c5fdc09bd’,
 12:h’112233’}
 h’’, # ciphertext
 TAG # 8byte authentication tag
]

 The modified COSE object encodes to a total size of 29 bytes.

 The low-bound CBOR encoding of this same object is encoded by:

 [
 h’112233’, # seq
 h’a1534e3c5fdc09bd’, # cid
 h’’, # ciphertext
 TAG # 8byte authentication tag
]

 This object encodes to a total size of 24 bytes.

 Figure 5 summarizes these results.

 +--------+---------+-----+------------+----------+
 | Scheme | seq+cid | TAG | Total Size | Overhead |
 +--------+---------+-----+------------+----------+
 | COSE | 11 B | 8 B | 44 bytes | 25 bytes |
 +--------+---------+-----+------------+----------+
 |mod-COSE| 11 B | 8 B | 29 bytes | 10 bytes |
 +--------+---------+-----+------------+----------+
 | bound | 11 B | 8 B | 24 bytes | 5 bytes |
 +--------+---------+-----+------------+----------+

 Figure 5: Comparison of COSE, modified COSE and CBOR lower bound for
 AES-CCM.

B.4. Symmetric Encryption with Asymmetric Signature (SEAS)

 This example is based on AES-128-CTR and ECDSA with 64 bytes
 signature. COSE requires this to be a nested encapsulation of one
 object into another, here illustrated with a digitally signed AEAD
 protected object.

 The object in COSE encoding gives:

Selander, et al. Expires April 21, 2016 [Page 30]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 [
 1, # msg_type
 h’a16373657143112233’, # protected:
 {"seq": h’112233’}
 {}, # unprotected
 h’85024ba2010a6373657143112233a04081834
 0a201256363696448a1534e3c5fdc09bd40’, # payload:
 [2,
 h’a2010a6373657143112233’,
 {}, h’, [[h’’,
 {1: -6,
 "cid": h’a1534e3c5fdc09bd’
 }, h’’]]]
 [# signatures
 [# signature structure
 h’a201266363696448a1534e3c5fdc09bd’, # protected:
 {1: -7,
 "cid":h’a1534e3c5fdc09bd’}
 {}, # unprotected
 SIG # 64-byte signature
]
]
]

 The COSE object encodes to a total size of 134 bytes.

 In the modified version of COSE defined in Appendix A.3, the
 equivalent COSE object would be:

 [
 6, # msg_type
 h’a20b48a1534e3c5fdc09bd0c43112233’, # protected:
 {11:h’a1534e3c5fdc09bd’,
 12:h’112233’}
 h’’, # ciphertext
 SIG # 64-byte signature
]

 This modified COSE object encodes to a total size of 86 bytes.

 The low-bound CBOR encoding of this same object is encoded by:

 [
 h’112233’, # seq
 h’a1534e3c5fdc09bd’, # cid
 h’’, # ciphertext
 SIG # 64-byte signature
]

Selander, et al. Expires April 21, 2016 [Page 31]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 This object encodes to a total size of 81 bytes.

 Figure 6 summarizes these results.

 +--------+---------+------+------------+----------+
 | Scheme | seq+cid | SIG | Total Size | Overhead |
 +--------+---------+------+------------+----------+
 | COSE | 11 B | 64 B | 134 bytes | 59 bytes |
 +--------+---------+------+------------+----------+
 |mod-COSE| 11 B | 64 B | 86 bytes | 11 bytes |
 +--------+---------+------+------------+----------+
 | bound | 11 B | 64 B | 81 bytes | 6 bytes |
 +--------+---------+------+------------+----------+

 Figure 6: Comparison of nested AES-CCM within ECDSA (COSE) and
 combined AES-ECDSA (modified COSE and CBOR lower bound).

Appendix C. Object Security of Content (OSCON)

 In this section we define how to only protect the payload/content of
 individual messages using the Secure Message format (Section 4) to
 comply with the requirements 1 and 2 in Section 2. This is referred
 to as Object Security of Content (OSCON).

 Note that by only protecting the content of a message it may be
 verified by multiple recipients. For example, in the case of a proxy
 that supports caching, a recent response for a certain resource can
 be cached and used to serve multiple clients. Or, in a publish-
 subscribe setting, multiple subscribers can be served the same
 publication. The use of content protection also decouples the
 binding to the underlying transfer protocol, so the same protected
 content object can be freely move between CoAP, HTTP, BlueTooth or
 whatever application layer protocol.

 The use of OSCON is signaled with the Content-Format/Media Type set
 to application/oscon (Section 10). Since the actual format of the
 content which is protected is lost, that information needs to be
 added to the message header or known to the recipient.

 The sending endpoint SHALL wrap the Payload, and the receiving
 endpoint unwrap the Payload in the SM format as described in this
 section. A CoAP client MAY request a response in the OSCON format by
 setting the option Accept to application/oscon.

 In case of cipher suite for integrity protection only, the
 Authenticated Data SHALL be the concatenation of the SM Header and
 the CoAP Payload. If case of cipher suite for both encryption and
 integrity protection, then the AAD SHALL be the SM Header and the

Selander, et al. Expires April 21, 2016 [Page 32]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 Plaintext SHALL be the CoAP Payload. By default, cipher suites for
 encryption and integrity protection SHALL be used.

 The SM SHALL be protected (encrypted) and verified (decrypted) as
 described in Section 5.1.3 (Section 5.2.2.1), including replay
 protection as described in Section 7.1.

 Whereas in OSCOAP, the Context Identifier of the SM Header
 (Section 4.1) typically identifies the sending party, with OSCON
 (Appendix C) the Context Identifier may well identify the sender and
 resource.

C.1. Security Considerations of OSCON

 OSCON (Appendix C) only protects payload and only gives replay
 protection (not freshness of response), but allows additional use
 cases such as point to multi-point interactions including publish-
 subscribe, reverse proxies and proxy caching of responses. In case
 of symmetric keys the receiver does not get data origin
 authentication, which requires a digital signature using a private
 asymmetric key.

 OSCON SHALL NOT be used in cases where CoAP header fields (such as
 Code or Version) or CoAP options need to be integrity protected. The
 request for a response in OSCON using the CoAP option Accept set to
 "application/oscon" is not secured since OSCON does not integrity
 protect any options. Hence the exchange of OSCON request-response
 messages is vulnerable to a man-in-the-middle attack where response
 is exchanged for another response, but since there is replay
 protection only messages with higher sequence numbers will be
 accepted.

 Blockwise transfers in CoAP as defined in [I-D.ietf-core-block] can
 be applied with OSCON, i.e. the entire payload is encapsulated in a
 Secure Message which is partitioned into blocks which are sent with
 unprotected CoAP. The receiver is able to verify the integrity of
 the payload but only after the last block containing the signature/
 MAC is received, and if the verification fails the entire message
 needs to be resent. However, if the verification succeeds, then the
 transmission in OSCON has less computational and packet overhead
 since only one signature/MAC was generated and sent. As CoAP
 blockwise transfer with OSCON is prone to Denial of Service attacks,
 it should only be used for exchanges where this threat can be
 mitigated, for example within a local area network where link-layer
 security is activated.

Selander, et al. Expires April 21, 2016 [Page 33]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

Appendix D. Examples

 This section gives examples of how to use the Object-Security option
 and the message formats defined in this memo.

D.1. CoAP Message Protection

 This section illustrates Object Security of CoAP (OSCOAP). The
 message exchange assumes there is a security context established
 between client and server. One key is used for each direction of the
 message transfer. The intermediate node detects that the CoAP
 message contains an OSCOAP object (Object-Security option is set) and
 thus forwards the message as it cannot serve a cached response.

D.1.1. Integrity Protection of CoAP Message Exchange

 Here is an example of a PUT request/response message exchange passing
 an intermediate node protected with the Object-Security option. The
 example illustrates a client closing a lock (PUT 1) and getting a
 confirmation that the lock is closed. Code, Uri-Path and Payload of
 the request and Code of the response are integrity protected (and
 other message fields, see Section 6.1 and Section 6.2).

Selander, et al. Expires April 21, 2016 [Page 34]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 Client Proxy Server
 | | |
 | | |
 | | |
 +----->| | Code: 0.03 (PUT)
 | PUT | | Token: 0x8c
 | | | Uri-Path: lock
 | | | Object-Security:
 | | | Payload: ["seq":"142",
 | | | "cid":"a1534e3c5fdc09bd", 1, <Tag>]
 | | |
 | +----->| Code: 0.03 (PUT)
 | | PUT | Token: 0x7b
 | | | Uri-Path: lock
 | | | Object-Security:
 | | | Payload: ["seq":"142",
 | | | "cid":"a1534e3c5fdc09bd", 1, <Tag>]
 | | |
 | |<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x7b
 | | | Object-Security: ["seq":"a6",
 | | | "cid":"5fdc09bda1534e3c", , <Tag>]
 | | |
 |<-----+ | Code: 2.04 (Changed)
 | 2.04 | | Token: 0x8c
 | | | Object-Security: ["seq":"a6",
 | | | "cid":"5fdc09bda1534e3c", , <Tag>]
 | | |

 Figure 7: CoAP PUT protected with OSCOAP

 Since the request message (PUT) supports payload, the OSCOAP object
 is carried in the CoAP payload. Since the response message (Changed)
 does not supports payload the Object-Security option carries the
 OSCOAP object.

 The Header contains Sequence Number ("seq":"a6") and Context
 Identifier ("cid":"5fdc09bda1534e3c"), the latter is an identifier
 indicating which security context was used to integrity protect the
 message, and may be used as an identifier for a secret key or a
 public key. (It may e.g. be the hash of a public key.)

 The server and client can verify that the Sequence Number has not
 been received and used with this key before. With OSCOAP, the client
 additionally verifies the freshness of the response, i.e. that the
 response message is generated as an answer to the received request
 message (see Section 7).

Selander, et al. Expires April 21, 2016 [Page 35]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 This example deviates from encryption by default (see Section 8) just
 to illustrate the case of Integrity Protection only. If there is no
 compelling reason why the CoAP message should be in plaintext, then
 it MUST be encrypted.

D.1.2. Additional Encryption of CoAP Message

 Here is an example of a GET request/response message exchange passing
 an intermediate node protected with the Enc option. The example
 illustrates a client requesting a blood sugar measurement resource
 (GET /glucose) and receiving the value 220 mg/dl. Uri-Path and
 Payload are encrypted and integrity protected. Code is integrity
 protected only (see Section 6.1 and Section 6.2).

 Client Proxy Server
 | | |
 | | |
 | | |
 +----->| | Code: 0.01 (GET)
 | GET | | Token: 0x83
 | | | Object-Security: ["seq":"15b7",
 | | | "cid":"34e3c5fdca1509bd",
 | | | {"glucose"}, <Tag>]
 | | |
 | +----->| Code: 0.01 (GET)
 | | GET | Token: 0xbe
 | | | Object-Security: ["seq":"15b7",
 | | | "cid":"34e3c5fdca1509bd",
 | | | {"glucose"}, <Tag>]
 | | |
 | | |
 | |<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0xbe
 | | | Object-Security:
 | | | Payload: ["seq":"32c9",
 | | | "cid":"c09bda155fd34e3c",
 | | | {220}, <Tag>]
 | | |
 |<-----+ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x83
 | | | Object-Security:
 | | | Payload: ["seq":"32c9",
 | | | "cid":"c09bda155fd34e3c",
 | | | {220}, <Tag>]
 | | |

 Figure 8: CoAP GET protected with OSCOAP. The bracket { ... }
 indicates encrypted data.

Selander, et al. Expires April 21, 2016 [Page 36]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 Since the request message (GET) does not support payload, the OSCOAP
 object is carried in the Object-Security option. Since the response
 message (Content) supports payload, the Object-Security option is
 empty and the OSCOAP object is carried in the payload.

 The Context Identifier is a hint to the receiver indicating which
 security context was used to encrypt and integrity protect the
 message, and may be used as an identifier for the AEAD secret key.
 One key is used for each direction of the message transfer.

 The server and client can verify that the Sequence Number has not
 been received and used with this key before, and the client
 additionally verifies the freshness of the response, i.e. that the
 response message is generated as an answer to the received request
 message (see Section 7).

D.2. Payload Protection

 This section gives examples that illustrate Object Security of
 Content (OSCON), see Appendix C). The assumption here is that only
 the intended receiver(s) has the relevant security context related to
 the resource. In case of a closed group of recipients of the same
 object, e.g. in Information-Centric Networking or firmware update
 distribution, it may be necessary to support symmetric key encryption
 in combination with digital signature.

D.2.1. Proxy Caching

 This example outlines how a proxy forwarding request and response of
 one client can cache a response whose payload is a OSCON object, and
 serve this response to another client request, such that both clients
 can verify integrity and non-replay.

Selander, et al. Expires April 21, 2016 [Page 37]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 Client1 Proxy Server

 | | |
 | | |
 +----->| | Code: 0.01 (GET)
 | GET | | Token: 0x83
 | | | Proxy-Uri: example.com/temp
 | | |
 | | |
 | +----->| Code: 0.01 (GET)
 | | GET | Token: 0xbe
 | | | Uri-Host: example.com
 | | | Uri-Path: temp
 | | |
 | | |
 | |<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0xbe
 | | | Payload: ["seq":"15b7",
 | | | "cid":"c09bda155fd34e3c",
 | | | "471 F", <Tag>]
 | | |
 |<-----+ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x83
 | | | Payload: ["seq":"15b7",
 | | | "cid":"c09bda155fd34e3c",
 | | "471 F", <Tag>]
 Client2 | |
 | |
 | | |
 | | |
 +----->| | Code: 0.01 (GET)
 | GET | | Token: 0xa1
 | | | Proxy-Uri: example.com/temp
 | | |
 |<-----+ | Code: 2.05 (Content)
 | 2.05 | | Token: 0xa1
 | | | Payload: ["seq":"15b7",
 | | | "cid":"c09bda155fd34e3c",
 | | | "471 F", <Tag>]

 Figure 9: Proxy caching protected with Object Security of Content
 (OSCON)

D.2.2. Publish-Subscribe

 This example outlines a publish-subscribe setting where the payload
 is encrypted, integrity and replay protected end-to-end between
 Publisher and Subscriber. The example applies for example to closed

Selander, et al. Expires April 21, 2016 [Page 38]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 user groups of a single data source and illustrates a subscription
 registration and a later publication of birch pollen count of 300 per
 cubic meters. The PubSub Broker can define the Observe count
 arbitrarily (as could any intermediary node, even in OSCOAP), but
 cannot manipulate the Sequence Number without being possible to
 detect.

 Sub- PubSub- Pub-
 scriber Broker lisher

 | | |
 +----->| | Code: 0.01 (GET)
 | GET | | Token: 0x72
 | | | Uri-Path: ps
 | | | Uri-Path: birch-pollen
 | | | Observe: 0 (register)
 | | |
 | | |
 |<-----+ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x72
 | | | Observe: 1
 | | | Payload: ["seq":"15b7",
 | | | "cid":"c09bda155fd34e3c",
 | | | {"270"}, <Tag>]
 | | |
 | | |
 | | |
 | |<-----+ Code: 0.03 (PUT)
 | | PUT | Token: 0x1f
 | | | Uri-Path: ps
 | | | Uri-Path: birch-pollen
 | | | Payload: ["seq":"15b8",
 | | | "cid":"c09bda155fd34e3c",
 | | | {"300"}, <Tag>]
 | | |
 | +----->| Code: 2.04 (Changed)
 | | 2.04 | Token: 0x1f
 | | |
 | | |
 |<-----+ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x72
 | | | Observe: 2
 | | | Payload: ["seq":"15b8",
 | | | "cid":"c09bda155fd34e3c",
 | | | {"300"}, <Tag>]

 Figure 10: Publish-subscribe protected with OSCON. The bracket { ...
 } indicates encrypted data.

Selander, et al. Expires April 21, 2016 [Page 39]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 This example deviates from encryption by default (see Section 8) just
 to illustrate Integrity Protection only in the case of OSCON. If
 there is no compelling reason why the payload should be in plaintext,
 then encryption MUST be used.

D.2.3. Transporting Authorization Information

 This example outlines the transportation of authorization information
 from a node producing (Authorization Server, AS) to a node consuming
 (Resource Server, RS) such information. Authorization information
 may for example be an authorization decision with respect to a Client
 (C) accessing a Resource to be enforced by RS, see e.g.
 [I-D.ietf-ace-actors] or [I-D.seitz-ace-core-authz]. Here, C is
 clearly not trusted with modifying the information, but may need to
 be involved in mediating the authorization information to the RS, for
 example, because AS and RS does not have direct connectivity. So
 end-to-end security is required and object security ("access tokens")
 is the natural candidate.

 This example considers the authorization information to be
 encapsulated in a OSCON object, generated by AS. How C accesses the
 OSCON object is out of scope for this example, it may e.g. be using
 CoAP. C then requests RS to configure the authorization information
 in the OSCON object by doing POST to /authz-info. This particular
 resource has a default access policy that only new messages signed by
 AS are authorized. RS thus verifies the integrity and sequence
 number by using the existing security context for the AS, and
 responds accordingly, a) or b), see Figure 11.

Selander, et al. Expires April 21, 2016 [Page 40]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 Authz Resource
 Server Client Server
 | | |
 | | | Client accesses Access Token:
 +- - ->| | ["seq":"142",
 | | | "cid":"c09bda1534e3c5fdc09bd",
 | | | <AuthzInfo>, <Tag>]
 | | |
 | +----->| Code: 0.02 (POST)
 | | POST | Token: 0xac
 | | | Uri-Path: authz-info
 | | | Payload: ["seq":"142",
 | | | "cid":"c09bda1534e3c5fdc09bd",
 | | | <AuthzInfo>, <Tag>]

 a)
 | | |
 | |<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0xac
 | | |

 b)
 | | |
 | |<-----+ Code: 4.01 (Unauthorized)
 | | 4.01 | Token: 0xac
 | | |

 Figure 11: Protected Transfer of Access Token using OSCON

Authors’ Addresses

 Goeran Selander
 Ericsson
 Farogatan 6
 Kista 16480
 Sweden

 Email: goran.selander@ericsson.com

 John Mattsson
 Ericsson
 Farogatan 6
 Kista 16480
 Sweden

 Email: john.mattsson@ericsson.com

Selander, et al. Expires April 21, 2016 [Page 41]

Internet-Draft Object Security of CoAP (OSCOAP) October 2015

 Francesca Palombini
 Ericsson
 Farogatan 6
 Kista 16480
 Sweden

 Email: francesca.palombini@ericsson.com

 Ludwig Seitz
 SICS Swedish ICT
 Scheelevagen 17
 Lund 22370
 Sweden

 Email: ludwig@sics.se

Selander, et al. Expires April 21, 2016 [Page 42]

