
Network Working Group J. Mattsson
Internet-Draft J. Fornehed
Intended status: Standards Track G. Selander
Expires: April 21, 2016 F. Palombini
 Ericsson
 October 19, 2015

 Controlling Actuators with CoAP
 draft-mattsson-core-coap-actuators-00

Abstract

 Being able to trust information from sensors and to securely control
 actuators is essential in a world of connected and networking things
 interacting with the physical world. In this memo we show that just
 using COAP with a security protocol like DTLS or OSCOAP is not
 enough. We describe several serious attacks any on-path attacker can
 do, and discuss tougher requirements and mechanisms to mitigate the
 attacks. While this document is focused on actuators, one of the
 attacks applies equally well to sensors using DTLS.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Mattsson, et al. Expires April 21, 2016 [Page 1]

Internet-Draft CoAP Actuators October 2015

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Attacks . 2
 2.1. The Block Attack . 3
 2.2. The Request Delay Attack 4
 2.3. The Response Delay and Mismatch Attack 7
 2.4. The Relay Attack . 10
 3. The Repeat Option . 11
 4. IANA Considerations . 13
 5. Security Considerations 13
 6. References . 13
 6.1. Normative References 14
 6.2. Informative References 14
 Authors’ Addresses . 14

1. Introduction

 Being able to trust information from sensors and to securely control
 actuators is essential in a world of connected and networking things
 interacting with the physical world. One protocol used to interact
 with sensors and actuators is the Constrained Application Protocol
 (CoAP). Any Internet-of-Things (IoT) deployment valuing security and
 privacy would use a security protocol such as DTLS [RFC6347] or
 OSCOAP [I-D.selander-ace-object-security] to protect CoAP, but we
 show that this is not enough. We describe several serious attacks
 any on-path attacker (i.e. not only "trusted" intermediaries) can do,
 and discusses tougher requirements and mechanisms to mitigate the
 attacks. The request delay attack (valid for both DTLS and OSCOAP
 and described in Section 2.2) lets an attacker control an actuator at
 a much later time than the client anticipated. The response delay
 and mismatch attack (valid for DTLS and described in Section 2.3)
 lets an attacker respond to a client with a response meant for an
 older request. In Section 3, a new CoAP Option, the Repeat Option,
 mitigating the delay attack in specified.

2. Attacks

 Internet-of-Things (IoT) deployments valuing security and privacy,
 MUST use a security protocol such as DTLS or OSCOAP to protect CoAP.
 This is especially true for deployments of actuators where attacks
 often (but not always) have serious consequences. The attacks

Mattsson, et al. Expires April 21, 2016 [Page 2]

Internet-Draft CoAP Actuators October 2015

 described in this section are made under the assumption that CoAP is
 already protected with a security protocol such as DTLS or OSCOAP, as
 an attacker otherwise can easily forge false requests and responses.

2.1. The Block Attack

 An on-path attacker can block the delivery of any number of requests
 or responses. The attack can also be performed by an attacker
 jamming the lower layer radio protocol. This is true even if a
 security protocol like DTLS or OSCOAP is used. Encryption makes
 selective blocking of messages harder, but not impossible or even
 infeasible. With DTLS, proxies have access to the complete CoAP
 message, and with OSCOAP, the CoAP header and several CoAP options
 are not encrypted. In both security protocols, the IP-addresses,
 ports, and CoAP message lengths are available to all on-path
 attackers, which may be enough to determine the server, resource, and
 command. The block attack is illustrated in Figure 1 and 2.

 Client Foe Server
 | | |
 +----->X | Code: 0.03 (PUT)
 | PUT | | Token: 0x47
 | | | Uri-Path: lock
 | | | Payload: 1 (Lock)
 | | |

 Figure 1: Blocking a Request

 Where ’X’ means the attacker is blocking delivery of the message.

 Client Foe Server
 | | |
 +------------>| Code: 0.03 (PUT)
 | | PUT | Token: 0x47
 | | | Uri-Path: lock
 | | | Payload: 1 (Lock)
 | | |
 | X<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x47
 | | |

 Figure 2: Blocking a Response

 While blocking requests to, or responses from, a sensor is just a
 denial of service attack, blocking a request to, or a response from,
 an actuator results in the client losing information about the
 server’s status. If the actuator e.g. is a lock (door, car, etc.),
 the attack results in the client not knowing (except by using out-of-

Mattsson, et al. Expires April 21, 2016 [Page 3]

Internet-Draft CoAP Actuators October 2015

 band information) whether the lock is unlocked or locked, just like
 the observer in the famous Schroedinger’s cat thought experiment.
 Due to the nature of the attack, the client cannot distinguish the
 attack from connectivity problems, offline servers, or unexpected
 behavior from middle boxes such as NATs and firewalls.

 Remedy: In actuator deployments where confirmation is important, the
 application MUST notify the user upon reception of the response, or
 warn the user when a response is not received. The application
 SHOULD also indicate to the user that the status of the actuator is
 now uncertain.

2.2. The Request Delay Attack

 An on-path attacker may not only block packets, but can also delay
 the delivery of any packet (request or response) by a chosen amount
 of time. This is true even if DTLS or OSCOAP is used, as long as the
 delayed packet is delivered inside the replay window. The replay
 window has a default length of 64 in DTLS and is application
 dependent in OSCOAP. The attacker can control the replay window by
 blocking some or all other packets. By first delaying a request, and
 then later, after delivery, blocking the response to the request, the
 client is not made aware of the delayed delivery except by the
 missing response. The server has in general, no way of knowing that
 the request was delayed and will therefore happily process the
 request.

 If some wireless low-level protocol is used, the attack can also be
 performed by the attacker simultaneously recording what the client
 transmits while at the same time jamming the server. The request
 delay attack is illustrated in Figure 3.

Mattsson, et al. Expires April 21, 2016 [Page 4]

Internet-Draft CoAP Actuators October 2015

 Client Foe Server
 | | |
 +----->@ | Code: 0.03 (PUT)
 | PUT | | Token: 0x9c
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |

 | | |
 | @----->| Code: 0.03 (PUT)
 | | PUT | Token: 0x9c
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |
 | X<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x9c
 | | |

 Figure 3: Delaying a Request

 Where ’@’ means the attacker is storing and later forwarding the
 message (@ may alternatively be seen as a wormhole connecting two
 points in spacetime).

 While an attacker delaying a request to a sensor is often not a
 security problem, an attacker delaying a request to an actuator
 performing an action is often a serious problem. A request to an
 actuator (for example a request to unlock a lock) is often only meant
 to be valid for a short time frame, and if the request does not reach
 the actuator during this short timeframe, the request should not be
 fulfilled. In the unlock example, if the client does not get any
 response and does not physically see the lock opening, the user is
 likely to walk away, calling the locksmith (or the IT-support).

 If a non-zero replay window is used (the default in DTLS and
 unspecified in OSCOAP), the attacker can let the client interact with
 the actuator before delivering the delayed request to the server
 (illustrated in Figure 4). In the lock example, the attacker may
 store the first "unlock" request for later use. The client will
 likely resend the request with the same token. If DTLS is used, the
 resent packet will have a different sequence number and the attacker
 can forward it. If OSCOAP is used, resent packets will have the same
 sequence number and the attacker must block them all until the client
 sends a new message with a new sequence number (not shown in
 Figure 4). After a while when the client has locked the door again,
 the attacker can deliver the delayed "unlock" message to the door, a
 very serious attack.

Mattsson, et al. Expires April 21, 2016 [Page 5]

Internet-Draft CoAP Actuators October 2015

 Client Foe Server
 | | |
 +----->@ | Code: 0.03 (PUT)
 | PUT | | Token: 0x9c
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |
 +------------>| Code: 0.03 (PUT)
 | PUT | | Token: 0x9c
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |
 <-------------+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x9c
 | | |

 | | |
 +------------>| Code: 0.03 (PUT)
 | PUT | | Token: 0x7a
 | | | Uri-Path: lock
 | | | Payload: 1 (Lock)
 | | |
 <-------------+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x7a
 | | |
 | @----->| Code: 0.03 (PUT)
 | | PUT | Token: 0x9c
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |
 | X<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x9c
 | | |

 Figure 4: Delaying Request with Reordering

 While the second attack (Figure 4) can be mitigated by using a replay
 window of length zero, the first attack (Figure 3) cannot. A
 solution must enable the server to verify that the request was
 received within a certain time frame after it was sent. This can be
 accomplished with either a challenge-response pattern or by
 exchanging timestamps. Security solutions based on timestamps
 require exactly synchronized time, and this is hard to control with
 complications such as time zones and daylight saving. Even if the
 clocks are synchronized at one point in time, they may easily get
 out-of-sync and an attacker may even be able to affect the client or
 the server time in various ways such as setting up a fake NTP server,
 broadcasting false time signals to radio controlled clocks, or expose

Mattsson, et al. Expires April 21, 2016 [Page 6]

Internet-Draft CoAP Actuators October 2015

 one of them to a strong gravity field. As soon as client falsely
 believes it is time synchronized with the server, delay attacks are
 possible. A challenge response mechanism is much more failure proof
 and easy to analyze. One such mechanism, the CoAP Repeat Option, is
 specified in Section 3.

 Remedy: The CoAP Repeat Option specified in Section 3 SHALL be used
 for controlling actuators unless another application specific
 challenge-response or timestamp mechanism is used.

2.3. The Response Delay and Mismatch Attack

 The following attack can be performed if CoAP is protected by a
 security protocol where the response is not bound to the request in
 any way except by the CoAP token. This would include most general
 security protocols, such as DTLS and IPsec, but not OSCOAP. The
 attacker performs the attack by delaying delivery of a response until
 the client sends a request with the same token. As long as the
 response is inside the replay window (which the attacker can make
 sure by blocking later responses), the response will be accepted by
 the client as a valid response to the later request. CoAP [RFC7252]
 does not give any guidelines for the use of token with DTLS, except
 that the tokens currently "in use" SHOULD (not SHALL) be unique.

 The attack can be performed by an attacker on the wire, or an
 attacker simultaneously recording what the server transmits while at
 the same time jamming the client. The response delay and mismatch
 attack is illustrated in Figure 5.

Mattsson, et al. Expires April 21, 2016 [Page 7]

Internet-Draft CoAP Actuators October 2015

 Client Foe Server
 | | |
 +------------>| Code: 0.03 (PUT)
 | PUT | | Token: 0x77
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |
 | @<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x77
 | | |

 | | |
 +----->X | Code: 0.03 (PUT)
 | PUT | | Token: 0x77
 | | | Uri-Path: lock
 | | | Payload: 0 (Lock)
 | | |
 <------@ | Code: 2.04 (Changed)
 | 2.04 | | Token: 0x77
 | | |

 Figure 5: Delaying and Mismatching Response to PUT

 If we once again take a lock as an example, the security consequences
 may be severe as the client receives a response message likely to be
 interpreted as confirmation of a locked door, while the received
 response message is in fact confirming an earlier unlock of the door.
 As the client is likely to leave the (believed to be locked) door
 unattended, the attacker may enter the home, enterprise, or car
 protected by the lock.

 The same attack may be performed on sensors, also this with serious
 consequences. As illustrated in Figure 6, an attacker may convince
 the client that the lock is locked, when it in fact is not. The
 "Unlock" request may be also be sent by another client authorized to
 control the lock.

Mattsson, et al. Expires April 21, 2016 [Page 8]

Internet-Draft CoAP Actuators October 2015

 Client Foe Server
 | | |
 +------------>| Code: 0.01 (GET)
 | GET | | Token: 0x77
 | | | Uri-Path: lock
 | | |
 | @<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0x77
 | | | Payload: 1 (Locked)
 | | |
 +------------>| Code: 0.03 (PUT)
 | PUT | | Token: 0x34
 | | | Uri-Path: lock
 | | | Payload: 1 (Unlock)
 | | |
 | X<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x34
 | | |
 +----->X | Code: 0.01 (GET)
 | GET | | Token: 0x77
 | | | Uri-Path: lock
 | | |
 <------@ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x77
 | | | Payload: 1 (Locked)
 | | |

 Figure 6: Delaying and Mismatching Response to GET

 As illustrated in Figure 7, an attacker may even mix responses from
 different resources as long as the two resources share the same DTLS
 connection on some part of the path towards the client. This can
 happen if the resources are located behind a common gateway, or are
 served by the same CoAP proxy. An on-path attacker (not necessarily
 a DTLS endpoint such as a proxy) may e.g. deceive a client that the
 living room is on fire by responding with an earlier delayed response
 from the oven (temperatures in degree Celsius).

Mattsson, et al. Expires April 21, 2016 [Page 9]

Internet-Draft CoAP Actuators October 2015

 Client Foe Server
 | | |
 +------------>| Code: 0.01 (GET)
 | GET | | Token: 0x77
 | | | Uri-Path: oven/temperature
 | | |
 | @<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0x77
 | | | Payload: 225
 | | |

 | | |
 +----->X | Code: 0.01 (GET)
 | GET | | Token: 0x77
 | | | Uri-Path: livingroom/temperature
 | | |
 <------@ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x77
 | | | Payload: 225
 | | |

 Figure 7: Delaying and Mismatching Response from other resource

 OSCOAP is not susceptible to these attacks since it provides a secure
 binding between request and response messages.

 Remedy: If CoAP is protected with a security protocol not providing
 bindings between requests and responses (e.g. DTLS) the client MUST
 NOT reuse any tokens for a given source/destination which the client
 has not received responses to. The easiest way to accomplish this is
 to implement the token as a counter and never reuse any tokens at
 all, this approach SHOULD be followed.

2.4. The Relay Attack

 Yet another type of attack can be performed in deployments where
 actuator actions are triggered automatically based on proximity and
 without any user interaction, e.g. a car (the client) constantly
 polling for the car key (the server) and unlocking both doors and
 engine as soon as the car key responds. An attacker (or pair of
 attackers) may simply relay the CoAP messages out-of-band, using for
 examples some other radio technology. By doing this, the actuator
 (i.e. the car) believes that the client is close by and performs
 actions based on that false assumption. The attack is illustrated in
 Figure 8. In this example the car is using an application specific
 challenge-response mechanism transferred as CoAP payloads.

Mattsson, et al. Expires April 21, 2016 [Page 10]

Internet-Draft CoAP Actuators October 2015

 Client Foe Foe Server
 | | | |
 +----->| +----->| Code: 0.02 (POST)
 | POST | | POST | Token: 0x3a
 | | | | Uri-Path: lock
 | | | | Payload: JwePR2iCe8b0ux (Challenge)
 | | | |
 |<-----+ |<-----+ Code: 2.04 (Changed)
 | 2.04 | | 2.04 | Token: 0x3a
 | | | | Payload: RM8i13G8D5vfXK (Response)
 | | | |

 Figure 8: Relay Attack (the client is the actuator)

 The consequences may be severe, and in the case of a car, lead to the
 attacker unlocking and driving away with the car, an attack that
 unfortunately is happening in practice.

 Remedy: Getting a response over a short-range radio MUST NOT be taken
 as proof of proximity and therefore MUST NOT be used to take actions
 based on such proximity. Any automatically triggered mechanisms
 relying on proximity MUST use other stronger mechanisms to guarantee
 proximity. Mechanisms that MAY be used are: measuring the round-trip
 time and calculate the maximum possible distance based on the speed
 of light, or using radio with an extremely short range like NFC
 (centimeters instead of meters). Another option is to including
 geographical coordinates (from e.g. GPS) in the messages and
 calculate proximity based on these, but in this case the location
 measurements MUST be very precise and the system MUST make sure that
 an attacker cannot influence the location estimation, something that
 is very hard in practice.

3. The Repeat Option

 The Repeat Option is a challenge-response mechanism for CoAP, binding
 a resent request to an earlier 4.03 forbidden response. The
 challenge (for the client) is simply to echo the Repeat Option value
 in a new request. The Repeat Option enables the server to verify the
 freshness of a request, thus mitigating the Delay Attack described in
 Section 2.2. An example message flow is illustrated in Figure 9.

Mattsson, et al. Expires April 21, 2016 [Page 11]

Internet-Draft CoAP Actuators October 2015

 Client Server
 | |
 +----->| Code: 0.03 (PUT)
 | PUT | Token: 0x41
 | | Uri-Path: lock
 | | Payload: 0 (Unlock)
 | |
 |<-----+ t0 Code: 4.03 (Forbidden)
 | 4.03 | Token: 0x41
 | | Repeat: 0x6c880d41167ba807
 | |
 +----->| t1 Code: 0.03 (PUT)
 | PUT | Token: 0x42
 | | Uri-Path: lock
 | | Repeat: 0x6c880d41167ba807
 | | Payload: 0 (Unlock)
 | |
 |<-----+ Code: 2.04 (Changed)
 | 2.04 | Token: 0x42
 | |

 Figure 9: The Repeat Option

 The Repeat Option may be used for all Methods and Response Codes. In
 responses, the value MUST be a (pseudo-)random bit string with a
 length of at least 64 bits. A new (pseudo-)random bit string MUST be
 generated for each response. In requests, the Repeat Option MUST
 echo the value from a previously received response.

 The Repeat Option is critical, Safe-to-Forward, not part of the
 Cache-Key, and not repeatable.

 Upon receiving a request without the Repeat Option to a resource with
 freshness requirements, the server sends a 4.03 Forbidden response
 with a Repeat Option and stores the option value and the response
 transmit time t0.

 Upon receiving a 4.03 Forbidden response with the Repeat Option, the
 client SHOULD resend the request, echoing the Repeat Option value.

 Upon receiving a request with the Repeat Option, the server verifies
 that the option value equals the previously sent value; otherwise the
 request is not processed further. The server calculates the round-
 trip time RTT = (t1 - t0), where t1 is the request receive time. The
 server MUST only accept requests with a round-trip time below a
 certain threshold T, i.e. RTT < T, otherwise the request is not
 processed further, and an error message MAY be sent. The threshold T
 is application specific.

Mattsson, et al. Expires April 21, 2016 [Page 12]

Internet-Draft CoAP Actuators October 2015

 An attacker able to control the server’s clock with high precision,
 could still be able to perform a delay attack by moving the server’s
 clock back in time, thus making the measured round-trip time smaller
 than the actual round-trip time. The times t0 and t1 MUST therefore
 be measured with a steady clock (one that cannot be adjusted).

 EDITORS NOTE: The mechanism described above gives the server
 freshness guarantee independently of what the client does. The
 disadvantages are that the mechanism always takes two round-trips and
 that the server has to save the option value and the time t0. Other
 solutions involving time may be discussed:

 o The server may simply send the client the current time in its
 timescale, i.e. a timestamp (option value = t0). The client may
 then use this timestamp to estimate the current time in the
 servers timescale when sending future requests (i.e. not echoing).
 This approach has the benefit of reducing round-trips and server
 state, but has the security problems discussed in Section 2.2.

 o The server may instead of a pseudorandom value send an encrypted
 timestamp (option value = E(k, t0)). CTR-mode would from a
 security point be like sending (value = t0). ECB-mode or CCM-mode
 would work, but would expand the value length. With CCM, the
 server might also bind the option value to request (value =
 AEAD(k, t0, parts of request)). This approach does not reduce the
 number of round-trips but eliminates server state.

4. IANA Considerations

 This document defines the following Option Number, whose value have
 been assigned to the CoAP Option Numbers Registry defined by
 [RFC7252].

 +--------+------------------+
 | Number | Name |
 +--------+------------------+
 | 29 | Repeat |
 +--------+------------------+

5. Security Considerations

 The whole document can be seen as security considerations for CoAP.

6. References

Mattsson, et al. Expires April 21, 2016 [Page 13]

Internet-Draft CoAP Actuators October 2015

6.1. Normative References

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

6.2. Informative References

 [I-D.selander-ace-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "June 29, 2015", draft-selander-ace-object-security-02
 (work in progress), June 2015.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

Authors’ Addresses

 John Mattsson
 Ericsson AB
 SE-164 80 Stockholm
 Sweden

 Email: john.mattsson@ericsson.com

 John Fornehed
 Ericsson AB
 SE-164 80 Stockholm
 Sweden

 Email: john.fornehed@ericsson.com

 Goran Selander
 Ericsson AB
 SE-164 80 Stockholm
 Sweden

 Email: goran.selander@ericsson.com

Mattsson, et al. Expires April 21, 2016 [Page 14]

Internet-Draft CoAP Actuators October 2015

 Francesca Palombini
 Ericsson AB
 SE-164 80 Stockholm
 Sweden

 Email: francesca.palombini@ericsson.com

Mattsson, et al. Expires April 21, 2016 [Page 15]

