
CoRE C. Bormann
Internet-Draft Universitaet Bremen TZI
Intended status: Standards Track October 19, 2015
Expires: April 21, 2016

 CoAP FETCH Method
 draft-bormann-core-coap-fetch-00

Abstract

 Similar to HTTP, the existing Constrained Application Protocol (CoAP)
 GET method only allows the specification of a URI and request
 parameters in CoAP options, not the transfer of a request payload
 detailing the request. This leads to some applications to using POST
 where actually a cacheable, idempotent, safe request is desired.

 The present proposal adds a new CoAP method, FETCH, to perform the
 equivalent of a GET with a request body.

 This specification is inspired by I-D.snell-search-method, which
 updates the definition and semantics of the HTTP SEARCH request
 method previously defined by RFC5323. However, there is no intention
 to limit FETCH to search-type operations, and the resulting
 properties may not be the same as those of HTTP SEARCH. For now, we
 therefore prefer to discuss the proposal under a different name, for
 which we have chosen the GET synonym FETCH.

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2016.

Bormann Expires April 21, 2016 [Page 1]

Internet-Draft CoAP FETCH Method October 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1. Introduction . 2
 2. FETCH . 3
 2.1. The Content-Format Option 4
 2.2. Working with Observe 4
 2.3. Working with Block 5
 2.4. Discussion . 5
 3. Security Considerations 5
 4. IANA Considerations . 5
 5. Acknowledgements . 5
 6. References . 5
 6.1. Normative References 5
 6.2. Informative References 6
 Author’s Address . 6

1. Introduction

 The CoAP GET method [RFC7252] is used to obtain the representation of
 a resource, where the resource is specified by a URI and additional
 request parameters can additionally shape the representation. This
 has been modelled after the HTTP GET operation and the REST model in
 general.

 In HTTP, a resource is often used to search for information, and
 existing systems varyingly use the HTTP GET and POST methods to
 perform a search. Often a POST method is used solely to enable
 supplying a larger set of parameters to the search than can be
 comfortably transferred in the URI with a GET request.
 [I-D.snell-search-method] proposes a SEARCH method that is similar to
 GET in most properties but enables sending a request body as with
 POST.

 A major problem with GET is that the information that controls the
 request needs to be bundled up in some unspecified way into the URI.

Bormann Expires April 21, 2016 [Page 2]

Internet-Draft CoAP FETCH Method October 2015

 Using the request body for this information has a number of
 advantages:

 o The client can specify a media type (and a content encoding),
 enabling the server to unambiguously interpret the request
 parameters in the context of that media type. Also, the request
 body is not limited by the character set limitations of URIs,
 enabling a more natural (and more efficient) representation of
 certain domain-specific parameters.

 o The request parameters are not limited by the maximum size of the
 URI. In HTTP, that is a problem as the practical limit for this
 size varies. In CoAP, another problem is that the block-wise
 transfer is not available for transferring large URI options in
 multiple rounds.

 As an alternative to using GET, many implementations make use of the
 POST method to perform extended requests, even if they are
 semantically idempotent, safe, and even cacheable, to be able to pass
 along the input parameters within the request payload as opposed to
 using the request URI.

 The FETCH method provides a solution that spans the gap between the
 use of GET and POST. As with POST, the input to the FETCH operation
 is passed along within the payload of the request rather than as part
 of the request URI. Unlike POST, however the semantics of the FETCH
 method are more specifically defined.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

2. FETCH

 The CoAP FETCH method is used to obtain a representation of a
 resource, giving a number of request parameters. Unlike the CoAP GET
 method, which requests that a server return a representation of the
 resource identified by the effective request URI (as defined by
 [RFC7252]), the FETCH method is used by a client to ask the server to
 produce a representation based on the request parameters (described
 by the request options and payload) based on the resource specified
 by the effective request URI. The payload returned in response to a
 FETCH cannot be assumed to be a complete representation of the
 resource identified by the effective request URI.

 The body of the request defines the request parameters.
 Implementations MAY use a request body of any content type with the

Bormann Expires April 21, 2016 [Page 3]

Internet-Draft CoAP FETCH Method October 2015

 FETCH method; it is outside the scope of this document how
 information about admissible content types is obtained by the client
 (although we can hint that form relations ([I-D.hartke-core-apps])
 might be the preferred way).

 FETCH requests are both safe and idempotent with regards to the
 resource identified by the request URI. That is, the performance of
 a fetch is not expected to alter the state of the targeted resource.
 (However, while processing a search request, a server can be expected
 to allocate computing and memory resources or even create additional
 server resources through which the response to the search can be
 retrieved.)

 A successful response to a FETCH request is expected to provide some
 indication as to the final disposition of the requested operation.
 If the response includes a body payload, the payload is expected to
 describe the results of the FETCH operation.

 Depending on the response code as defined by [RFC7252] the response
 to a FETCH request is cacheable; the request payload is part of the
 cache key. Specifically, 2.05 "Content" response codes, the
 responses for which are cacheable, are a usual way to respond to a
 FETCH request. (Note that this aspect differs markedly from
 [I-D.snell-search-method].) (Note also that caches that cannot use
 the request payload as part of the request key will not be able to
 cache responses to FETCH requests at all.) The Max-Age option in the
 response has equivalent semantics to its use in a GET.

 The semantics of the FETCH method change to a "conditional FETCH" if
 the request message includes an If-Match, or If-None-Match option
 ([RFC7252]). A conditional FETCH requests that the query be
 performed only under the circumstances described by the conditional
 option(s). It is important to note, however, that such conditions
 are evaluated against the state of the target resource itself as
 opposed to the results of the FETCH operation. [[This needs some
 additional text on what an ETag on a FETCH result means.]]

2.1. The Content-Format Option

 A FETCH request MUST include a Content-Format option to specify the
 media type and content encoding of the request body.

2.2. Working with Observe

 The Observe option [RFC7641] can be used with a FETCH request as it
 can be used with a GET request.

Bormann Expires April 21, 2016 [Page 4]

Internet-Draft CoAP FETCH Method October 2015

2.3. Working with Block

 The Block1 option [I-D.ietf-core-block] can be used with a FETCH
 request as it would be used with a POST request; the Block2 option
 can then be used as with GET or POST.

2.4. Discussion

 One property of FETCH that may be non-obvious is that a FETCH request
 cannot be generated from a link alone, but also needs a way to
 generate the request payload. Again, form relations
 ([I-D.hartke-core-apps]) may be able to fill parts of this gap.

3. Security Considerations

 The FETCH method is subject to the same general security
 considerations as all CoAP methods as described in [RFC7252].

4. IANA Considerations

 IANA is requested to add an entry to the sub-registry "CoAP Method
 Codes":

 | Code | Name | Reference |
 +------+--------+-----------+
 | 0.07 | FETCH | [RFCthis] |

 The FETCH method is idempotent and safe, and it returns the same
 response codes that GET can return, plus 4.15 "Unsupported Content-
 Format" with the same semantics as with POST.

5. Acknowledgements

 Most of the text in this I-D was stolen, e.g. from
 [I-D.snell-search-method] or from [I-D.vanderstok-core-patch]. Thank
 you!

 Klaus Hartke found a number of problems while quickly checking an
 earlier version of this document.

6. References

6.1. Normative References

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Block-wise transfers in CoAP",
 draft-ietf-core-block-18 (work in progress), September
 2015.

Bormann Expires April 21, 2016 [Page 5]

Internet-Draft CoAP FETCH Method October 2015

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, DOI 10.17487/
 RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641, DOI 10.17487/
 RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

6.2. Informative References

 [I-D.hartke-core-apps]
 Hartke, K., "CoRE Application Descriptions", draft-hartke-
 core-apps-02 (work in progress), August 2015.

 [I-D.snell-search-method]
 Reschke, J., Malhotra, A., and J. Snell, "HTTP SEARCH
 Method", draft-snell-search-method-00 (work in progress),
 April 2015.

 [I-D.vanderstok-core-patch]
 Stok, P. and A. Sehgal, "Patch Method for Constrained
 Application Protocol (CoAP)", draft-vanderstok-core-
 patch-02 (work in progress), October 2015.

Author’s Address

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

Bormann Expires April 21, 2016 [Page 6]

