
DNSOP W. Hardaker
Internet-Draft Parsons
Intended status: Best Current Practice O. Gudmundsson
Expires: February 12, 2017 CloudFlare
 S. Krishnaswamy
 Parsons
 August 11, 2016

 DNSSEC Roadblock Avoidance
 draft-ietf-dnsop-dnssec-roadblock-avoidance-05.txt

Abstract

 This document describes problems that a Validating DNS resolver,
 stub-resolver or application might run into within a non-compliant
 infrastructure. It outlines potential detection and mitigation
 techniques. The scope of the document is to create a shared approach
 to detect and overcome network issues that a DNSSEC software/system
 may face.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 12, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Hardaker, et al. Expires February 12, 2017 [Page 1]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Notation . 3
 1.2. Background . 3
 1.3. Implementation experiences 4
 1.3.1. Test Zone Implementation 4
 2. Goals . 5
 3. Detecting DNSSEC Non-Compliance 5
 3.1. Determining DNSSEC support in recursive resolvers 6
 3.1.1. Supports UDP answers 6
 3.1.2. Supports TCP answers 6
 3.1.3. Supports EDNS0 7
 3.1.4. Supports the DO bit 7
 3.1.5. Supports the AD bit DNSKEY algorithm 5 and 8 7
 3.1.6. Returns RRsig for signed answer 8
 3.1.7. Supports querying for DNSKEY records 8
 3.1.8. Supports querying for DS records 8
 3.1.9. Supports negative answers with NSEC records 9
 3.1.10. Supports negative answers with NSEC3 records 9
 3.1.11. Supports queries where DNAME records lead to an
 answer . 10
 3.1.12. Permissive DNSSEC 10
 3.1.13. Supports Unknown RRtypes 10
 3.2. Direct Network Queries 10
 3.2.1. Support for Remote UDP Over Port 53 11
 3.2.2. Support for Remote UDP With Fragmentation 11
 3.2.3. Support for Outbound TCP Over Port 53 11
 3.3. Support for DNSKEY and DS combinations 12
 4. Aggregating The Results 12
 4.1. Resolver capability description 12
 5. Roadblock Avoidance . 13
 5.1. Partial Resolver Usage 16
 5.1.1. Known Insecure Lookups 16
 5.1.2. Partial NSEC/NSEC3 Support 16
 6. Start-Up and Network Connectivity Issues 16
 6.1. What To Do . 17
 7. Quick Test . 17
 7.1. Test negative answers Algorithm 5 18
 7.2. Test Algorithm 8 . 18
 7.3. Test Algorithm 13 . 18
 7.4. Fails when DNSSEC does not validate 18
 8. Security Considerations 18

Hardaker, et al. Expires February 12, 2017 [Page 2]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

 9. IANA Considerations . 18
 10. Acknowledgments . 18
 11. Normative References . 19
 Authors’ Addresses . 19

1. Introduction

 This document describes problems observable during DNSSEC ([RFC4034],
 [RFC4035]) deployment that derive from non-compliant infrastructure.
 It poses potential detection and mitigation techniques.

1.1. Notation

 In this document a "Host Validator" can either be a validating stub-
 resolver, such as library that an application has linked in, or a
 validating resolver daemon running on the same machine. It may or
 may not be trying to use upstream caching resolvers during its own
 resolution process; both cases are covered by the tests defined in
 this document.

 The sub-variant of this is a "Validating Forwarding Resolver", which
 is a resolver that is configured to use upstream Resolvers when
 possible. A Validating Forward Resolver also needs to perform the
 tests outlined in this document before using an upstream recursive
 resolver.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Background

 Deployment of DNSSEC validation is hampered by network components
 that make it difficult or sometimes impossible for validating
 resolvers to effectively obtain the DNSSEC data they need. This can
 occur for many different reasons including, but not limited to:

 o Because recursive resolvers and DNS proxies [RFC5625] are not
 fully DNSSEC compliant

 o Because resolvers are not DNSSEC aware

 o Because "middle-boxes" actively block, modify and/or restrict
 outbound traffic to the DNS port (53) either UDP and/or TCP .

 o In-path network components do not allow UDP fragments

Hardaker, et al. Expires February 12, 2017 [Page 3]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

 This document talks about ways that a Host Validator can detect the
 state of the network it is attached to, and ways to hopefully
 circumvent the problems associated with the network defects it
 discovers. The tests described in this document may be performed on
 any validating resolver to detect and prevent problems. While these
 recommendations are mainly aimed at Host Validators it it prudent to
 perform these tests from regular Validating Resolvers before enabling
 just to make sure things work.

 There are situations where a host can not talk directly to a
 Resolver; the tests below can not address how to overcome that, and
 inconsistent results can be seen in such cases. This can happen, for
 instance, when there are DNS proxies/forwarders between the user and
 the actual resolvers.

1.3. Implementation experiences

 Multiple lessons learned from multiple implementations led to the
 development of this document, including (in alphabetical order)
 DNSSEC-Tools’ DNSSEC-Check, DNSSEC_Resolver_Check, dnssec-trigger,
 FCC_Grade.

 Detecting lack of support for specified DNSKEY algorithms and DS
 digest algorithms is outside the scope of this document but the
 document provides information on how to do that, see sample test
 tool: https://github.com/ogud/DNSSEC_ALG_Check

 This document does describe compliance tests for algorithms 5, 7 and
 13 with DS digest algorithms 1 and 2.

1.3.1. Test Zone Implementation

 In this document, the "test.example.com" domain is used to refer to
 DNS records which contain test records that have known DNSSEC
 properties associated with them. For example, the "badsign-
 a.test.example.com" domain is used below to refer to a DNS A record
 where the signatures published for it are invalid (i.e., they are
 "bad signatures" that should cause a validation failure).

 At the time of this publication, the "test.dnssec-tools.org" domain
 implements all of these test records. Thus, it may be possible to
 replace "test.example.com" in this document with "test.dnssec-
 tools.org" when performing real-world tests.

Hardaker, et al. Expires February 12, 2017 [Page 4]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

2. Goals

 This document is intended to show how a Host Validator can detect the
 capabilities of a recursive resolver, and work around any problems
 that could potentially affect DNSSEC resolution. This enables the
 Host Validator to make use of the caching functionality of the
 recursive resolver, which is desirable in that it decreases network
 traffic and improves response times.

 A Host Validator has two choices: it can wait to determine that it
 has problems with a recursive resolver based on the results that it
 is getting from real-world queries issued to it, or it can
 proactively test for problems (Section 3) to build a work around list
 ahead of time (Section 5). There are pros and cons to both of these
 paths that are application specific, and this document does not
 attempt to provide guidance about whether proactive tests should or
 should not be used. Either way, DNSSEC roadblock avoidance
 techniques ought to be used when needed and if possible.

 Note: Besides being useful for Host Validators, the same tests can be
 used for a recursive resolver to check if its upstream connections
 hinder DNSSEC validation.

3. Detecting DNSSEC Non-Compliance

 A Host Validator may choose to determine early-on what roadblocks
 exist that may hamper its ability to perform DNSSEC look-ups. This
 section outlines tests that can be done to test certain features of
 the surrounding network.

 These tests should be performed when a resolver determines its
 network infrastructure has changed. Certainly a resolver should
 perform these tests when first starting, but MAY also perform these
 tests when they’ve detected network changes (e.g. address changes, or
 network reattachment, etc).

 NOTE: when performing these tests against an address, we make the
 following assumption about that address: It is a uni-cast address or
 an any-cast [RFC4786] cluster where all servers have identical
 configuration and connectivity.

 NOTE: when performing these tests we also assume that the path is
 clear of "DNS interfering" middle-boxes, like firewalls, proxies,
 forwarders. Presence of such infrastructure can easily make a
 recursive resolver appear to be improperly performing. It is beyond
 the scope of the document as how to work around such interference,
 although the tests defined in this document may indicate when such
 misbehaving middle-ware is causing interference.

Hardaker, et al. Expires February 12, 2017 [Page 5]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

 NOTE: This document specifies two sets of tests to perform: a
 comprehensive one and a fast one. The fast one will detect most
 common problems, thus if the fast one passes then the comprehensive
 MAY be considered passed as well.

3.1. Determining DNSSEC support in recursive resolvers

 Ideally, a Host Validator can make use of the caching present in
 recursive resolvers. This section discusses the tests that a
 recursive resolver MUST pass in order to be fully usable as a DNS
 cache.

 Unless stated otherwise, all of the following tests SHOULD have the
 Recursion Desired (RD) flag set when sending out a query and SHOULD
 be sent over UDP. Unless otherwise stated, the tests MUST NOT have
 the DO bit set or utilize any of the other DNSSEC related
 requirements, like EDNS0, unless otherwise specified. The tests are
 designed to check for support of one feature at a time.

3.1.1. Supports UDP answers

 Purpose: This tests basic DNS over UDP functionality to a resolver.

 Test: A DNS request is sent to the resolver under test for an A
 record for a known existing domain, such as good-a.test.example.com.

 SUCCESS: A DNS response was received that contains an A record in the
 answer section. (The data itself does not need to be checked.)

 Note: an implementation MAY chose to not perform the rest of the
 tests if this test fails, as it is highly unlikely that the resolver
 under test will pass any of the remaining tests.

3.1.2. Supports TCP answers

 Purpose: This tests basic TCP functionality to a resolver.

 Test: A DNS request is sent over TCP to the resolver under test for
 an A record for a known existing domain, such as good-
 a.test.example.com.

 SUCCESS: A DNS response was received that contains an A record in the
 answer section. (The data itself does not need to be checked.)

Hardaker, et al. Expires February 12, 2017 [Page 6]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

3.1.3. Supports EDNS0

 Purpose: Test whether a resolver properly supports the EDNS0
 extension option.

 Pre-requisite: "Supports UDP or TCP".

 Test: Send a request to the resolver under test for an A record for a
 known existing domain, such as good-a.test.example.com, with an EDNS0
 OPT record in the additional section.

 SUCCESS: A DNS response was received that contains an EDNS0 option
 with version number 0.

3.1.4. Supports the DO bit

 Purpose: This tests whether a resolver has minimal support of the DO
 bit.

 Pre-requisite: "Supports EDNS0".

 Test: Send a request to the resolver under test for an A record for a
 known existing domain such as good-a.test.example.com. Set the DO
 bit in the outgoing query.

 SUCCESS: A DNS response was received that contains the DO bit set.

 Note: this only tests that the resolver sets the DO bit in the
 response. Later tests will determine if the DO bit was actually made
 use of. Some resolvers successfully pass this test because they
 simply copy the unknown flags into the response. These resolvers
 will fail the later tests.

3.1.5. Supports the AD bit DNSKEY algorithm 5 and 8

 Purpose: This tests whether the resolver is a validating resolver.

 Pre-requisite: "Supports the DO bit".

 Test: Send requests to the resolver under test for an A record for a
 known existing domain in a DNSSEC signed zone which is verifiable to
 a configured trust anchor, such as good-a.test.example.com using the
 root’s published DNSKEY or DS record as a trust anchor. Set the DO
 bit in the outgoing query. This test should be done twice, once for
 a zone that contains algorithm 5 (RSASHA1) and another for algorithm
 8 (RSASHA256).

Hardaker, et al. Expires February 12, 2017 [Page 7]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

 SUCCESS: A DNS response was received that contains the AD bit set for
 algorithm 5 (RSASHA1).

 BONUS: The AD bit is set for a resolver that supports Algorithm 8
 RSASHA256

3.1.6. Returns RRsig for signed answer

 Purpose: This tests whether a resolver will properly return RRSIG
 records when the DO bit is set.

 Pre-requisite: "Supports the DO bit".

 Test: Send a request to the resolver under test for an A record for a
 known existing domain in a DNSSEC signed zone, such as good-
 a.test.example.com. Set the DO bit in the outgoing query.

 SUCCESS: A DNS response was received that contains at least one RRSIG
 record.

3.1.7. Supports querying for DNSKEY records

 Purpose: This tests whether a resolver can query for and receive a
 DNSKEY record from a signed zone.

 Pre-requisite: "Supports the DO bit."

 Test: Send a request to the resolver under test for an DNSKEY record
 which is known to exist in a signed zone, such as test.example.com/
 DNSKEY. Set the DO bit in the outgoing query.

 SUCCESS: A DNS response was received that contains a DNSKEY record in
 the answer section.

 Note: Some DNSKEY RRset’s are large and if the network path has
 problems with large answers this query may result in either false
 positive or false negative. In general the DNSKEY queried for should
 be small enough to fit into a 1220 byte answer, to avoid false
 negative result when TCP is disabled. However, querying many zones
 will result in answers greater than 1220 bytes so DNS over TCP MUST
 be available for DNSSEC use in general.

3.1.8. Supports querying for DS records

 Purpose: This tests whether a resolver can query for and receive a DS
 record from a signed zone.

 Pre-requisite: "Supports the DO bit."

Hardaker, et al. Expires February 12, 2017 [Page 8]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

 Test: Send a request to the resolver under test for an DS record
 which is known to exist in a signed zone, such as test.example.com/
 DS. Set the DO bit in the outgoing query.

 SUCCESS: A DNS response was received that contains a DS record in the
 answer section.

3.1.9. Supports negative answers with NSEC records

 Purpose: This tests whether a resolver properly returns NSEC records
 for a non-existing domain in a DNSSEC signed zone.

 Pre-requisite: "Supports the DO bit."

 Test: Send a request to the resolver under test for an A record which
 is known to not exist in an NSEC signed zone, such as non-
 existent.test.example.com. Set the DO bit in the outgoing query.

 SUCCESS: A DNS response was received that contains an NSEC record.

 Note: The query issued in this test MUST be sent to a NSEC signed
 zone. Getting back appropriate NSEC3 records does not indicate a
 failure, but a bad test.

3.1.10. Supports negative answers with NSEC3 records

 Purpose: This tests whether a resolver properly returns NSEC3 records
 ([RFC5155]) for a non-existing domain in a DNSSEC signed zone.

 Pre-requisite: "Supports the DO bit."

 Test: Send a request to the resolver under test for an A record which
 is known to be non-existent in a zone signed using NSEC3, such as
 non-existent.nsec3-ns.test.example.com. Set the DO bit in the
 outgoing query.

 SUCCESS: A DNS response was received that contains an NSEC3 record.

 Bonus: If the AD bit is set, this validator supports algorithm 7
 RSASHA1-NSEC3-SHA1

 Note: The query issued in this test MUST be sent to a NSEC3 signed
 zone. Getting back appropriate NSEC records does not indicate a
 failure, but a bad test.

Hardaker, et al. Expires February 12, 2017 [Page 9]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

3.1.11. Supports queries where DNAME records lead to an answer

 Purpose: This tests whether a resolver can query for an A record in a
 zone with a known DNAME referral for the record’s parent.

 Test: Send a request to the resolver under test for an A record which
 is known to exist in a signed zone within a DNAME referral child
 zone, such as good-a.dname-good-ns.test.example.com.

 SUCCESS: A DNS response was received that contains a DNAME in the
 answer section. An RRSIG MUST also be received in the answer section
 that covers the DNAME record.

3.1.12. Permissive DNSSEC

 Purpose: To see if a validating resolver is ignoring DNSSEC
 validation failures.

 Pre-requisite: Supports the AD bit.

 Test: ask for data from a broken DNSSEC delegation such as badsign-
 a.test.example.com.

 SUCCESS: A reply was received with the Rcode set to SERVFAIL

3.1.13. Supports Unknown RRtypes

 Purpose: Some DNS Resolvers/gateways only support some RRtypes. This
 causes problems for applications that need recently defined types.

 Pre-requisite: "Supports UDP or TCP".

 Test: Send a request for recently defined type or unknown type in the
 20000-22000 range, that resolves to a server that will return an
 answer for all types, such as alltypes.example.com (a server today
 that supports this: alltypes.res.dnssecready.org)

 SUCCESS: A DNS response was retrieved that contains the type
 requested in the answer section.

3.2. Direct Network Queries

 If need be, a Host Validator may need to make direct queries to
 authoritative servers or known Open Recursive Resolvers in order to
 collect data. To do that, a number of key network features MUST be
 functional.

Hardaker, et al. Expires February 12, 2017 [Page 10]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

3.2.1. Support for Remote UDP Over Port 53

 Purpose: This tests basic UDP functionality to outside the local
 network.

 Test: A DNS request is sent to a known distant authoritative server
 for a record known to be within that server’s authoritative data.
 Example: send a query to the address of ns1.test.example.com for the
 good-a.test.example.com/A record.

 SUCCESS: A DNS response was received that contains an A record in the
 answer section.

 Note: an implementation can use the local resolvers for determining
 the address of the name server that is authoritative for the given
 zone. The recursive bit MAY be set for this request, but does not
 need to be.

3.2.2. Support for Remote UDP With Fragmentation

 Purpose: This tests if the local network can receive fragmented UDP
 answers

 Pre-requisite: Local UDP traffic > 1500 in size is possible

 Test: A DNS request is sent over UDP to a known distant DNS address
 asking for a record that has answer larger than 2000 bytes. For
 example, send a query for the test.example.com/DNSKEY record with the
 DO bit set in the outgoing query.

 Success: A DNS response was received that contains the large answer.

 Note: A failure in getting large answers over UDP is not a serious
 problem if TCP is working.

3.2.3. Support for Outbound TCP Over Port 53

 Purpose: This tests basic TCP functionality to outside the local
 network.

 Test: A DNS request is sent over TCP to a known distant authoritative
 server for a record known to be within that server’s authoritative
 data. Example: send a query to the address of ns1.test.example.com
 for the good-a.test.example.com/A record.

 SUCCESS: A DNS response was received that contains an A record in the
 answer section.

Hardaker, et al. Expires February 12, 2017 [Page 11]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

 Note: an implementation can use the local resolvers for determining
 the address of the name server that is authoritative for the given
 zone. The recursive bit MAY be set for this request, but does not
 need to be.

3.3. Support for DNSKEY and DS combinations

 Purpose: These tests can check what algorithm combinations are
 supported.

 Pre-requisite: At least one of above tests has returned the AD bit
 set proving that the upstream is validating

 Test: A DNS request is sent over UDP to the resolver under test for a
 known combination of the DS algorithm number (N) and DNSKEY algorithm
 number (M) of the example form ds-N.alg-M-nsec.test.example.com.
 Examples:

 ds-2.alg-13-nsec.test.example.com TXT
 or
 ds-4.alg-13-nsec3.test.example.com TXT.

 SUCCESS: a DNS response is received with the AD bit set and with a
 matching record type in the answer section.

 Note: for algorithms 6 and 7, NSEC is not defined thus query for alg-
 M-nsec3 is required. Similarly NSEC3 is not defined for algorithms
 1, 3 and 5. Furthermore algorithms 2, 4, 9, 11 do not currently have
 definitions for signed zones.

4. Aggregating The Results

 Some conclusions can be drawn from the results of the above tests in
 an "aggregated" form. This section defines some labels to assign to
 a resolver under test given the results of the tests run against
 them.

4.1. Resolver capability description

 This section will group and label certain common results

 Resolvers are classified into following broad behaviors:

 Validator: The resolver passes all DNSSEC tests and had the AD bit
 appropriately set.

 DNSSEC Aware: The resolver passes all DNSSEC tests, but does not
 appropriately set the AD bit on answers, indicating it is not

Hardaker, et al. Expires February 12, 2017 [Page 12]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

 validating. A Host Validator will function fine using this
 resolver as a forwarder.

 Non-DNSSEC capable: The resolver is not DNSSEC aware and will make
 it hard for a Host Validator to operate behind it. It MAY be
 usable for querying for data that is in known insecure sections of
 the DNS tree.

 Not a DNS Resolver: This is a improperly behaving resolver and not
 should not be used at all.

 While it would be great if all resolvers fell cleanly into one of the
 broad categories above, that is not the case. For that reason it is
 necessary to augment the classification with more descriptive result,
 this is done by adding the word "Partial" in front of Validator/
 DNSSEC Aware classifications, followed by sub-descriptors of what is
 not working.

 Unknown: Failed the Unknown test

 DNAME: Failed the DNAME test

 NSEC3: Failed the NSEC3 test

 TCP: TCP not available

 SlowBig: UDP is size limited but TCP fallback works

 NoBig: TCP not available and UDP is size limited

 Permissive: Passes data known to fail validation

5. Roadblock Avoidance

 The goal of this document is to tie the above tests and aggregations
 to avoidance practices; however the document does not specify exactly
 how to do that.

 Once we have determined what level of support is available in the
 network, we can determine what must be done in order to effectively
 act as a validating resolver. This section discusses some of the
 options available given the results from the previous sections.

 The general fallback approach can be described by the following
 sequence:

Hardaker, et al. Expires February 12, 2017 [Page 13]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

 If the resolver is labeled as "Validator" or "DNSSEC aware":

 Send queries through this resolver and perform local
 validation on the results.

 If validation fails, try the next resolver

 Else if the resolver is labeled "Not a DNS Resolver" or
 "Non-DNSSEC capable":

 Mark it as unusable and try next resolver

 Else if no more resolvers are configured and if direct queries
 are supported:

 1. Try iterating from the Root

 2. If the answer is SECURE/BOGUS:
 Return the result of the iteration

 3. If the answer is INSECURE:
 Re-query "Non-DNSSEC capable" servers and return
 answers from them w/o the AD bit set to the client.

 This will increase the likelihood that split-view unsigned
 answers are found.

 Else:

 Return an error code and log a failure

 While attempting resolution through a particular recursive name
 server with a particular transport method that worked, any transport-
 specific parameters MUST be remembered in order to avoid any
 unnecessary fallback attempts.

 Transport-specific parameters MUST also be remembered for each
 authoritative name server that is queried while performing an
 iterative mode lookup.

 Any transport settings that are remembered for a particular name
 server MUST be periodically refreshed; they should also be refreshed
 when an error is encountered as described below.

 For a stub resolver, problems with the name server can manifest
 themselves under the following types of error conditions:

Hardaker, et al. Expires February 12, 2017 [Page 14]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

 o No Response, error response or missing DNSSEC meta-data

 o Illegal Response: An illegal response is received, which prevents
 the validator from fetching all necessary records required for
 constructing an authentication chain. This could result when
 referral loops are encountered, when any of the antecedent zone
 delegations are lame, when aliases are erroneously followed for
 certain RRtypes (such as SOA, DNSKEYs or DS records), or when
 resource records for certain types (e.g. DS) are returned from a
 zone that is not authoritative for such records.

 o Bogus Response: A Bogus Response is received, when the
 cryptographic assertions in the authentication chain do not
 validate properly.

 For each of the above error conditions a validator MAY adopt the
 following dynamic fallback technique, preferring a particular
 approach if it is known to work for a given name server or zone from
 previous attempts.

 o No response, error response, or missing DNSSEC meta-data:

 * Re-try with different EDNS0 sizes (4096, 1492, None)

 * Re-try with TCP only

 * Perform an iterative query starting from the Root if the
 previous error was returned from a lookup that had recursion
 enabled.

 * Re-try using an alternative transport method, if this
 alternative method is known (configured) to be supported by the
 nameserver in question.

 o Illegal Response

 * Perform an iterative query starting from the Root if the
 previous error was returned from a lookup that had recursion
 enabled.

 * Check if any of the antecedent zones up to the closest
 configured trust anchor are provably insecure.

 o Bogus Response

 * Perform an iterative query starting from the Root if the
 previous error was returned from a lookup that had recursion
 enabled.

Hardaker, et al. Expires February 12, 2017 [Page 15]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

 For each fallback technique, attempts to multiple potential name
 servers should be skewed such that the next name server is tried when
 the previous one encounters an error, a timeout is reached, or
 whichever is earlier.

 The validator SHOULD remember, in its zone-specific fallback cache,
 any broken behavior identified for a particular zone for a duration
 of that zone’s SOA negative TTL.

 The validator MAY place name servers that exhibit broken behavior
 into a blacklist, and bypass these name servers for all zones that
 they are authoritative for. The validator MUST time out entries in
 this name server blacklist periodically, where this interval could be
 set to be the same as the DNSSEC BAD cache default TTL.

5.1. Partial Resolver Usage

 It may be possible to use Non-DNSSEC Capable caching resolvers in
 careful ways if maximum optimization is desired. This section
 describes some of the advanced techniques that could be used to use a
 resolver in at least a minimal way. Most of the time this would be
 unnecessary, except in the case where none of the resolvers are fully
 compliant and thus the choices would be to use them at least
 minimally or not at all (and no caching benefits would be available).

5.1.1. Known Insecure Lookups

 If a resolver is Non-DNSSEC Capable but a section of the DNS tree has
 been determined to be Provably Insecure [RFC4035], then queries to
 this section of the tree MAY be sent through Non-DNSSEC Capable
 caching resolver.

5.1.2. Partial NSEC/NSEC3 Support

 Resolvers that understand DNSSEC generally, and understand NSEC but
 not NSEC3 are partially usable. These resolvers generally also lack
 support for Unknown types, rendering them mostly useless and to be
 avoided.

6. Start-Up and Network Connectivity Issues

 A number of scenarios will produce either short-term or long-term
 connectivity issues with respect to DNSSEC validation. Consider the
 following cases:

 Time Synchronization: Time synchronization problems can occur when
 a device which has been off for a period of time and the clock is
 no longer in close synchronization with "real time" or when a

Hardaker, et al. Expires February 12, 2017 [Page 16]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

 device always has clock set to the same time during start-up.
 This will cause problems when the device needs to resolve their
 source of time synchronization, such as "ntp.example.com".

 Changing Network Properties: A newly established network
 connection may change state shortly after a HTTP-based pay-wall
 authentication system has been used. This especially common in
 hotel, airport and coffee-shop style networks, where DNSSEC,
 validation and even DNS are not functional until the user proceeds
 through a series of forced web pages used to enable their network.
 The tests in Section 3 will produce very different results before
 and after the network authorization has succeeded. APIs exist on
 many operating systems to detect initial network device status
 changes, such as right after DHCP has finished, but few (none?)
 exist to detect that authentication through a pay-wall has
 succeeded.

 There are only two choices when situations like this happen:

 Continue to perform DNSSEC processing, which will likely result in
 all DNS requests failing. This is the most secure route, but
 causes the most operational grief for users.

 Turn off DNSSEC support until the network proves to be usable.
 This allows the user to continue using the network, at the
 sacrifice of security. It also allows for a denial of security-
 service attack if a man-in-the-middle can convince a device that
 DNSSEC is impossible.

6.1. What To Do

 If the Host Validator detects that DNSSEC resolution is not possible
 it SHOULD log the event and/or SHOULD report an error to the user.
 In the case there is no user, then no reporting can be performed and
 thus the device MAY have a policy of action, like continue or fail.
 Until middle boxes allow DNSSEC protected information to traverse
 them consistently, software implementations may need to offer this
 choice to let users pick the security level they require. Note that
 continuing without DNSSEC protection in the absence of a notification
 or report could lead to situations where users assume a level of
 security that does not exist.

7. Quick Test

 The quick tests defined below make the assumption that the questions
 to be asked are of a real resolver and the only real question is:
 "how complete is the DNSSEC support?". This quick test as been
 implemented in few programs developed at IETF hackthons at IETF-91

Hardaker, et al. Expires February 12, 2017 [Page 17]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

 and IETF-92. The programs use a common grading method. For each
 question that returns expected answer the resolver gets a point. If
 the AD bit is set as expected the resolver gets a second point.

7.1. Test negative answers Algorithm 5

 Query: realy-doesnotexist.test.example.com. A

 Answer: RCODE= NXDOMAIN, Empty Answer, Authority: NSEC proof

7.2. Test Algorithm 8

 Query: alg-8-nsec3.test.example.com. SOA

 Answer: RCODE= 0, Answer: SOA record

7.3. Test Algorithm 13

 Query: alg-13-nsec.test.example.com. SOA

 Answer: RCODE= 0, Answer: SOA record

7.4. Fails when DNSSEC does not validate

 Query: dnssec-failed.test.example.com. SOA

 Answer: RCODE= SERVFAIL, empty answer, and authority, AD=0

8. Security Considerations

 This document discusses problems that may occur while deploying the
 DNSSEC protocol. It describes what may be possible to help detect
 and mitigate these problems. Following the outlined suggestions will
 result in a more secure DNSSEC operational environment than if DNSSEC
 was simply disabled.

9. IANA Considerations

 No IANA actions are required.

10. Acknowledgments

 We thank the IESG and DNSOP working group members for their extensive
 comments and suggestions.

Hardaker, et al. Expires February 12, 2017 [Page 18]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

11. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, March 2005.

 [RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, March 2005.

 [RFC4786] Abley, J. and K. Lindqvist, "Operation of Anycast
 Services", BCP 126, RFC 4786, DOI 10.17487/RFC4786,
 December 2006, <http://www.rfc-editor.org/info/rfc4786>.

 [RFC5155] Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNS
 Security (DNSSEC) Hashed Authenticated Denial of
 Existence", RFC 5155, March 2008.

 [RFC5625] Bellis, R., "DNS Proxy Implementation Guidelines",
 BCP 152, RFC 5625, DOI 10.17487/RFC5625, August 2009,
 <http://www.rfc-editor.org/info/rfc5625>.

Authors’ Addresses

 Wes Hardaker
 Parsons
 P.O. Box 382
 Davis, CA 95617
 US

 Email: ietf@hardakers.net

 Olafur Gudmundsson
 CloudFlare
 San Francisco, CA 94107
 USA

 Email: olafur+ietf@cloudflare.com

Hardaker, et al. Expires February 12, 2017 [Page 19]

Internet-Draft DNSSEC Roadblock Avoidance August 2016

 Suresh Krishnaswamy
 Parsons
 7110 Samuel Morse Dr
 Columbia, MD 21046
 US

 Email: suresh@tislabs.com

Hardaker, et al. Expires February 12, 2017 [Page 20]

Network Working Group J. Abley
Internet-Draft Dyn, Inc.
Updates: 1034, 1035 (if approved) October 9, 2015
Intended status: Standards Track
Expires: April 11, 2016

 Ordering of RRSets in DNS Messages
 draft-jabley-dnsop-ordered-answers-00

Abstract

 The existing Domain Name System (DNS) specifications lack some
 clarity in their description of the process by which individual
 sections of a DNS message are constructed.

 This document updates RFC 1034 and RFC 1035 to provide a clearer
 specification, consistent with deployed implementations.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 11, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Abley Expires April 11, 2016 [Page 1]

Internet-Draft Ordering of RRSets in DNS Messages October 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Terminology . 3
 2. Introduction . 4
 3. Updates to RFC 1034 . 5
 4. Updates to RFC 1035 . 6
 5. Security Considerations 7
 6. IANA Considerations . 8
 7. Acknowledgements . 9
 8. References . 10
 8.1. Normative References 10
 8.2. Informative References 10
 Appendix A. Editorial Notes 11
 A.1. Venue . 11
 A.2. Change History . 11
 A.2.1. draft-jabley-dnsop-ordered-answers-00 11
 Author’s Address . 12

Abley Expires April 11, 2016 [Page 2]

Internet-Draft Ordering of RRSets in DNS Messages October 2015

1. Terminology

 This document uses terminology specific to the Domain Name System
 (DNS), descriptions of which can be found in
 [I-D.ietf-dnsop-dns-terminology].

 In an exchange of DNS messages between two hosts, this document
 refers to the host sending a DNS request as the initiator, and the
 host sending a DNS response as the responder.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY" and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Abley Expires April 11, 2016 [Page 3]

Internet-Draft Ordering of RRSets in DNS Messages October 2015

2. Introduction

 [RFC1034] specifies an algorithm for use by responders when
 constructing response to a DNS QUERY. This algorithm in some cases
 can result in multiple RRSets being included in a single section of a
 DNS message, e.g. when handling CNAME resource records.

 Many responder implementations have interpreted the direction to copy
 or store particular RRSets in the answer section of a DNS response to
 mean "append", treating each section as an ordered list of RRSets.
 Many initiators, in particular stub resolvers, are known to rely upon
 that interpretation when processing DNS responses received from
 responders.

 Some DNS implementations employ algorithms in other sections that aim
 to optimise processing of responses received by initiators, e.g.
 NAPTR before SRV before A/AAAA in the additional section of a
 response. This behaviour has not been observed to cause any
 interoperability problems, and is explicitly permitted by this
 document.

 This document updates [RFC1035] to specify that the answer section in
 a DNS message is an ordered list of RRSets, but that other sections
 may be constructed differently, and clarifies the directions provided
 in [RFC1034] to match the observed behaviour and expectations of
 deployed software.

Abley Expires April 11, 2016 [Page 4]

Internet-Draft Ordering of RRSets in DNS Messages October 2015

3. Updates to RFC 1034

 [RFC1034] specifies the algorithms by which sections of a DNS
 response are constructed by a responder. For example, step 3 of the
 algorithm described in [RFC1034] section 4.3.2 contains the direction
 "copy all RRs which match QTYPE into answer section".

 In this case, and in all other cases where [RFC1034] specifies that
 particular RRSets be included in the answer section of a DNS message,
 the section MUST be treated as an ordered list of RRSets. When it is
 necessary to include new RRSets in a section of a DNS message that is
 under construction, those RRSets MUST be appended. The receiver of a
 DNS message MAY refuse to process DNS messages that have been
 constructed differently.

 When constructing other sections of a DNS message, each section MAY
 be treated as a non-ordered list, and a receiver of a DNS message
 MUST NOT reject a DNS message on the basis of the order of RRSets in
 those sections.

Abley Expires April 11, 2016 [Page 5]

Internet-Draft Ordering of RRSets in DNS Messages October 2015

4. Updates to RFC 1035

 In a DNS message, the answer section MUST be considered to be an
 ordered set of RRSets; all other sections MUST be considered to be a
 non-ordered set.

 DNS implementations MUST construct each section in a DNS response
 according to the algorithms specified in [RFC1034], as clarified in
 Section 3 of this document.

Abley Expires April 11, 2016 [Page 6]

Internet-Draft Ordering of RRSets in DNS Messages October 2015

5. Security Considerations

 The recommendations contained in this document have no known security
 implications.

Abley Expires April 11, 2016 [Page 7]

Internet-Draft Ordering of RRSets in DNS Messages October 2015

6. IANA Considerations

 This document has no IANA actions.

Abley Expires April 11, 2016 [Page 8]

Internet-Draft Ordering of RRSets in DNS Messages October 2015

7. Acknowledgements

 The contributions of Mark Andrews and Paul Vixie to this document are
 acknowledged.

Abley Expires April 11, 2016 [Page 9]

Internet-Draft Ordering of RRSets in DNS Messages October 2015

8. References

8.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <http://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <http://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

8.2. Informative References

 [I-D.ietf-dnsop-dns-terminology]
 Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", draft-ietf-dnsop-dns-terminology-05 (work in
 progress), September 2015.

Abley Expires April 11, 2016 [Page 10]

Internet-Draft Ordering of RRSets in DNS Messages October 2015

Appendix A. Editorial Notes

 This section (and sub-sections) to be removed prior to publication.

A.1. Venue

 An appropriate forum for discussion of this draft is the dnsop
 working group.

A.2. Change History

A.2.1. draft-jabley-dnsop-ordered-answers-00

 Initial draft circulated for comment.

Abley Expires April 11, 2016 [Page 11]

Internet-Draft Ordering of RRSets in DNS Messages October 2015

Author’s Address

 Joe Abley
 Dyn, Inc.
 103-186 Albert Street
 London, ON N6A 1M1
 Canada

 Phone: +1 519 670 9327
 Email: jabley@dyn.com

Abley Expires April 11, 2016 [Page 12]

Network Working Group J. Abley
Internet-Draft Dyn, Inc.
Updates: 1035 (if approved) O. Gudmundsson
Intended status: Standards Track M. Majkowski
Expires: April 14, 2016 CloudFlare Inc.
 October 12, 2015

 Providing Minimal-Sized Responses to DNS Queries with QTYPE=ANY
 draft-jabley-dnsop-refuse-any-01

Abstract

 The Domain Name System (DNS) specifies a query type (QTYPE) "ANY".
 The operator of an authoritative DNS server might choose not to
 respond to such queries for reasons of local policy, motivated by
 security, performance or other reasons.

 The DNS specification does not include specific guidance for the
 behaviour of DNS servers or clients in this situation. This document
 aims to provide such guidance.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 14, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Abley, et al. Expires April 14, 2016 [Page 1]

Internet-Draft Minimal Responses for ANY Queries October 2015

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Terminology . 3
 2. Introduction . 4
 3. Motivations . 5
 4. General Approach . 6
 5. Behaviour of DNS Responders 7
 6. Behaviour of DNS Initiators 8
 7. HINFO Considerations . 9
 8. Changes to RFC 1035 . 10
 9. Security Considerations 11
 10. IANA Considerations . 12
 11. Acknowledgements . 13
 12. References . 14
 12.1. Normative References 14
 12.2. Informative References 14
 Appendix A. Editorial Notes 15
 A.1. Venue . 15
 A.2. Change History . 15
 A.2.1. draft-jabley-dnsop-refuse-any-01 15
 A.2.2. draft-jabley-dnsop-refuse-any-00 15
 Authors’ Addresses . 16

Abley, et al. Expires April 14, 2016 [Page 2]

Internet-Draft Minimal Responses for ANY Queries October 2015

1. Terminology

 This document uses terminology specific to the Domain Name System
 (DNS), descriptions of which can be found in
 [I-D.ietf-dnsop-dns-terminology].

 In this document, "ANY Query" refers to a DNS query with QTYPE=ANY.
 An "ANY Response" is a response to such a query.

 In an exchange of DNS messages between two hosts, this document
 refers to the host sending a DNS request as the initiator, and the
 host sending a DNS response as the responder.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY" and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Abley, et al. Expires April 14, 2016 [Page 3]

Internet-Draft Minimal Responses for ANY Queries October 2015

2. Introduction

 The Domain Name System (DNS) specifies a query type (QTYPE) "ANY".
 The operator of an authoritative DNS server might choose not to
 respond to such queries for reasons of local policy, motivated by
 security, performance or other reasons.

 The DNS specification [RFC1034] [RFC1035] does not include specific
 guidance for the behaviour of DNS servers or clients in this
 situation. This document aims to provide such guidance.

Abley, et al. Expires April 14, 2016 [Page 4]

Internet-Draft Minimal Responses for ANY Queries October 2015

3. Motivations

 ANY queries are legitimately used for debugging and checking the
 state of a DNS server for a particular owner name. ANY queries are
 sometimes used as a attempt to reduce the number of queries needed to
 get information, e.g. to obtain MX, A and AAAA RRSets for a mail
 domain in a single query, although there is no documented guidance
 available for this use case and some implementations have been
 observed that appear not to function as perhaps their developers
 expected.

 ANY queries are also frequently used to exploit the amplification
 potential of DNS servers using spoofed source addresses and UDP
 transport (see [RFC5358]). Having the ability to return small
 responses to such queries makes DNS servers less attractive
 amplifiers.

 ANY queries are sometimes used to help mine authoritative-only DNS
 servers for zone data, since they return all RRSets for a particular
 owner name. A DNS zone maintainer might prefer not to send full ANY
 responses to reduce the potential for such information leaks.

 Some authoritative-only DNS server implementations require additional
 processing in order to send a conventional ANY response, and avoiding
 that processing expense may be desirable.

Abley, et al. Expires April 14, 2016 [Page 5]

Internet-Draft Minimal Responses for ANY Queries October 2015

4. General Approach

 This proposal provides a mechanism for an authority server to signal
 that conventional ANY queries are not supported for a particular
 QNAME, and to do so in such a way that is both compatible with and
 triggers desirable behaviour by unmodified clients (e.g. DNS
 resolvers).

 Alternative proposals for dealing with ANY queries have been
 discussed. One approach proposed using a new RCODE to signal that an
 authortitaive server did not answer ANY queries in the standard way.
 This approach was found to have an undesirable effect on both
 resolvers and authoritative-only servers; resolvers receiving an
 unknown RCODE caused them to re-send the same query to all available
 authoritative servers, rather than suppress future such ANY queries
 for the same QNAME.

 This proposal avoids that outcome by returning a non-empty RRSet in
 the ANY response, providing resolvers with something to cache and
 effectively suppressing repeat queries to the same or different
 authority servers.

 This proposal specifies two different modes of behaviour by DNS
 responders, and operators are free to choose whichever mechanism best
 suits their environment.

 1. A DNS responder may choose to search for an owner name that
 matches the QNAME and, if that name owns multiple RRs, return
 just one of them.

 2. A DNS responder for whom a search for an owner name with an
 existing resource record is expensive may instead synthesise an
 HINFO resource record and return that instead. See Section 7 for
 discussion of the use of HINFO.

Abley, et al. Expires April 14, 2016 [Page 6]

Internet-Draft Minimal Responses for ANY Queries October 2015

5. Behaviour of DNS Responders

 A DNS responder which receives an ANY query MAY decline to provide a
 conventional response, and MAY instead send a response with a single
 RRSet in the answer section.

 The RRSet returned in the answer section of the response MAY be a
 single RRSet owned by the name specified in the QNAME. Where
 mulitple RRSets exist, the responder MAY choose a small one to reduce
 its amplification potential.

 If there is no CNAME present at the owner name matching the QNAME,
 the resource record returned in the response MAY instead synthesised,
 in which case a single HINFO resource record should be returned. The
 CPU field of the HINFO RDATA SHOULD be set to RFCXXXX [note to RFC
 Editor, replace with RFC number assigned to this document]. The OS
 field of the HINFO RDATA SHOULD be set to the null string to minimise
 the size of the response.

 The TTL encoded for a synthesised RR SHOULD be chosen by the operator
 of the DNS responder to be large enough to suppress frequent
 subsequent ANY queries from the same initiator with the same QNAME,
 understanding that a TTL that is too long might make policy changes
 relating to ANY queries difficult to change in the future. The
 specific value used is hence a familiar balance when choosing TTLs
 for any RR in any zone, and should be specified according to local
 policy.

 If the DNS query includes DO=1 and the QNAME corresponds to a zone
 that is known by the responder to be signed, a valid RRSIG for the
 RRSets in the answer section MUST be returned.

 Except as described in this section, the DNS responder MUST follow
 the standard algorithms when constructing a response.

Abley, et al. Expires April 14, 2016 [Page 7]

Internet-Draft Minimal Responses for ANY Queries October 2015

6. Behaviour of DNS Initiators

 XXX consider whether separate text here is required depending on
 whether the initiator is a non-caching stub resolver or a caching
 recursive resolver.

 A DNS initator which sends a query with QTYPE=ANY and receives a
 response containing an HINFO, as described in Section 5, MAY cache
 the HINFO response in the normal way. Such cached HINFO resource
 records SHOULD be retained in the cache following normal caching
 semantics, as it would with any other response received from a DNS
 responder.

 A DNS initiator MAY suppress queries with QTYPE=ANY in the event that
 the local cache contains a matching HINFO resource record with
 RDATA.CPU field, as described in Section 5.

Abley, et al. Expires April 14, 2016 [Page 8]

Internet-Draft Minimal Responses for ANY Queries October 2015

7. HINFO Considerations

 In the case where a zone that contains HINFO RRSets is served from an
 authority server that does not provide conventional ANY responses, it
 is possible that the HINFO RRSet in an ANY response, once cached by
 the initiator, might suppress subsequent queries from the same
 initiator with QTYPE=HINFO. The use of HINFO in this proposal would
 hence have effectively masked the HINFO RRSet present in the zone.

 Authority-server operators who serve zones that rely upon
 conventional use of the HINFO RRType might sensibly choose not to
 deploy the mechanism described in this document.

 The HINFO RRType is believed to be rarely used in the DNS at the time
 of writing, based on observations made both at recursive servers and
 authority servers.

Abley, et al. Expires April 14, 2016 [Page 9]

Internet-Draft Minimal Responses for ANY Queries October 2015

8. Changes to RFC 1035

 It is important to note that returning a subset of available RRSets
 when processing an ANY query is legitimate and consistent with
 [RFC1035]; ANY does not mean ALL.

 This document describes optional behaviour for both DNS initators and
 responders, and implementation of the guidance provided by this
 document is OPTIONAL.

Abley, et al. Expires April 14, 2016 [Page 10]

Internet-Draft Minimal Responses for ANY Queries October 2015

9. Security Considerations

 Queries with QTYPE=ANY are frequently observed as part of reflection
 attacks, since a relatively small query can be used to elicit a large
 response; this is a desirable characteristic if the goal is to
 maximise the amplification potential of a DNS server as part of a
 volumetric attack. The ability of a DNS operator to suppress such
 responses on a particular server makes that server a less useful
 amplifier.

 The optional behaviour described in this document to reduce the size
 of responses to queries with QTYPE=ANY is compatible with the use of
 DNSSEC by both initiator and responder.

Abley, et al. Expires April 14, 2016 [Page 11]

Internet-Draft Minimal Responses for ANY Queries October 2015

10. IANA Considerations

 This document has no IANA actions.

Abley, et al. Expires April 14, 2016 [Page 12]

Internet-Draft Minimal Responses for ANY Queries October 2015

11. Acknowledgements

 Evan Hunt and David Lawrence provided valuable observations.

Abley, et al. Expires April 14, 2016 [Page 13]

Internet-Draft Minimal Responses for ANY Queries October 2015

12. References

12.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <http://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <http://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

12.2. Informative References

 [I-D.ietf-dnsop-dns-terminology]
 Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", draft-ietf-dnsop-dns-terminology-05 (work in
 progress), September 2015.

 [RFC5358] Damas, J. and F. Neves, "Preventing Use of Recursive
 Nameservers in Reflector Attacks", BCP 140, RFC 5358,
 DOI 10.17487/RFC5358, October 2008,
 <http://www.rfc-editor.org/info/rfc5358>.

Abley, et al. Expires April 14, 2016 [Page 14]

Internet-Draft Minimal Responses for ANY Queries October 2015

Appendix A. Editorial Notes

 This section (and sub-sections) to be removed prior to publication.

A.1. Venue

 An appropriate forum for discussion of this draft is the dnsop
 working group.

A.2. Change History

A.2.1. draft-jabley-dnsop-refuse-any-01

 Make signing of RRSets in answers from signed zones mandatory.

 Document the option of returning an existing RRSet in place of a
 synthesised one.

A.2.2. draft-jabley-dnsop-refuse-any-00

 Initial draft circulated for comment.

Abley, et al. Expires April 14, 2016 [Page 15]

Internet-Draft Minimal Responses for ANY Queries October 2015

Authors’ Addresses

 Joe Abley
 Dyn, Inc.
 103-186 Albert Street
 London, ON N6A 1M1
 Canada

 Phone: +1 519 670 9327
 Email: jabley@dyn.com

 Olafur Gudmundsson
 CloudFlare Inc.

 Email: olafur@cloudflare.com

 Marek Majkowski
 CloudFlare Inc.

 Email: marek@cloudflare.com

Abley, et al. Expires April 14, 2016 [Page 16]

Internet Engineering Task Force M. Sivaraman
Internet-Draft Internet Systems Consortium
Intended status: Experimental S. Kerr
Expires: January 21, 2016 L. Song
 Beijing Internet Institute
 July 20, 2015

 DNS message fragments
 draft-muks-dns-message-fragments-00

Abstract

 This document describes a method to transmit DNS messages over
 multiple UDP datagrams by fragmenting them at the application layer.
 The objective is to allow authoriative servers to successfully reply
 to DNS queries via UDP using multiple smaller datagrams, where larger
 datagrams may not pass through the network successfully.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Sivaraman, et al. Expires January 21, 2016 [Page 1]

Internet-Draft DNS message fragments July 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Background . 2
 1.2. Motivation . 3
 2. DNS Message Fragmentation Method 4
 2.1. Client Behavior . 4
 2.2. Server Behavior . 4
 2.3. Other Notes . 6
 3. The ALLOW-FRAGMENTS EDNS(0) Option 7
 3.1. Wire Format . 7
 3.2. Option Fields . 7
 3.2.1. Maximum Fragment Size 7
 3.3. Presentation Format 7
 4. The FRAGMENT EDNS(0) Option 7
 4.1. Wire Format . 7
 4.2. Option Fields . 7
 4.2.1. Fragment Identifier 7
 4.2.2. Fragment Count 8
 4.3. Presentation Format 8
 5. Network Considerations 8
 5.1. Background . 8
 5.2. Implementation Requirements 9
 6. Open Issues and Discussion 9
 7. Security Considerations 11
 8. IANA Considerations . 11
 9. Acknowledgements . 11
 10. References . 11
 Appendix A. Change History (to be removed before publication) . 12
 Authors’ Addresses . 13

1. Introduction

1.1. Background

 [RFC1035] describes how DNS messages are to be transmitted over UDP.
 A DNS query message is transmitted using one UDP datagram from client
 to server, and a corresponding DNS reply message is transmitted using
 one UDP datagram from server to client.

 The upper limit on the size of a DNS message that can be transmitted
 thus depends on the maximum size of the UDP datagram that can be
 transmitted successfully from the sender to the receiver. Typically
 any size limit only matters for DNS replies, as DNS queries are
 usually small.

Sivaraman, et al. Expires January 21, 2016 [Page 2]

Internet-Draft DNS message fragments July 2015

 As a UDP datagram is transmitted in a single IP PDU, in theory the
 size of a UDP datagram (including various lower internet layer
 headers) can be as large as 64 KiB. But practically, if the datagram
 size exceeds the path MTU, then the datagram will either be
 fragmented at the IP layer, or worse dropped, by a forwarder. In the
 case of IPv6, DNS packets are fragmented by the sender only. If a
 packet’s size exceeds the path MTU, a Packet Too Big (PTB) ICMP
 message will be received by sender without any clue to the sender to
 reply again with a smaller sized message, due to the stateless
 feature of DNS. In addition, IP-level fragmentation caused by large
 DNS response packet will introduce risk of cache poisoning
 [Fragment-Poisonous], in which the attacker can circumvent some
 defense mechanisms (like port, IP, and query randomization
 [RFC5452]).

 As a result, a practical DNS payload size limitation is necessary.
 [RFC1035] limited DNS message UDP datagram lengths to a maximum of
 512 bytes. Although EDNS(0) [RFC6891] allows an initiator to
 advertise the capability of receiving lager packets (up to 4096
 bytes), it leads to fragmentation because practically most packets
 are limited to 1500 byte size due to host Ethernet interfaces, or
 1280 byte size due to minimum IPv6 MTU in the IPv6 stack [RFC3542].

 According to DNS specifications [RFC1035], if the DNS response
 message can not fit within the packet’s size limit, the response is
 truncated and the initiator will have to use TCP as a fallback to re-
 query to receive large response. However, not to mention the high
 setup cost introduced by TCP due to additional roundtrips, some
 firewalls and middle boxes even block TCP/53 which cause no responses
 to be received as well. It becomes a significant issue when the DNS
 response size inevitably increases with DNSSEC deployment.

 In this memo, DNS message fragmentation attempts to work around
 middle box misbehavior by splitting a single DNS message across
 multiple UDP datagrams. Note that to avoid DNS amplification and
 reflection attacks, DNS cookies [I-D.ietf-dnsop-cookies] is a
 mandatory requirement when using DNS message fragments.

1.2. Motivation

 It is not a new topic regarding large DNS packets(>512B) issue
 [I-D.ietf-dnsop-respsize], starting from introduction of IPv6,
 EDNS(0) [SAC016], and DNSSEC deployment [SAC035]. In current
 production networks, using DNSSEC with longer DNSKEYs (ZSK>1024B and
 KSK>2048B) will result in response packets no smaller than 1500B
 [T-DNS]. Especially during the KSK rollover process, responses to
 the query of DNSKEY RRset will be enlarged as they contain both the
 new and old KSK.

Sivaraman, et al. Expires January 21, 2016 [Page 3]

Internet-Draft DNS message fragments July 2015

 When possible, we should avoid dropped packets as this means the
 client must wait for a timeout, which incurs a high cost. For
 example, a validator behind a firewall suffers waiting till the
 timeout with no response, if the firewall drops large EDNS(0) packets
 and IP fragments. It may even cause disaster when the validator can
 not recieve response for new trust anchor KSK due to the extreme case
 of bad middle boxes which also drop TCP/53.

 Since UDP requires fewer packets on the wire and less state on
 servers than TCP, in this memo we propose continuing to use UDP for
 transmission but fragment the larger DNS packets into smaller DNS
 packets at the application layer. We would like the fragments to
 easily go through middle boxes and avoid falling back to TCP.

2. DNS Message Fragmentation Method

2.1. Client Behavior

 Clients supporting DNS message fragmentation add an EDNS option to
 their queries, which declares their support for this feature.

 If a DNS reply is received that has been fragmented, it will consist
 of multiple DNS message fragments (each transmitted in a respective
 UDP packet), and every fragment contain an EDNS option which says how
 many total fragments there are, and the identifier of the fragment
 that the current packet represents. The client collects all of the
 fragments and uses them to reconstruct the full DNS message. Clients
 MUST maintain a timeout when waiting for the fragments to arrive.

 Clients that support DNS message fragments MUST be able to reassemble
 fragments into a DNS message of any size, up to the maximum of 64KiB.

 The client MAY save information about what sizes of packets have been
 received from a given server. If saved, this information MUST have a
 limited duration.

 Any DNSSEC validation is performed on the reassembled DNS message.

2.2. Server Behavior

 Servers supporting DNS message fragmentation will look for the EDNS
 option which declares client support for the feature. If not
 present, the server MUST NOT use DNS message fragmentation. The
 server MUST check that DNS cookies are supported. [**FIXME**]
 Implementation of the first request case, where no existing
 established cookie is available needs discussion; we want to avoid
 additional round-trips here. Shane: don’t cookies already handle
 this case?

Sivaraman, et al. Expires January 21, 2016 [Page 4]

Internet-Draft DNS message fragments July 2015

 The server prepares the response DNS message normally. If the
 message exceeds the maximum UDP payload size specified by the client,
 then it should fragment the message into multiple UDP datagrams.

 Each fragment contains an identical DNS header with TC=1, possibly
 varying only in the section counts. Setting the TC flag in this way
 insures that clients which do not support DNS fragments can fallback
 to TCP transparently.

 As many RR are included in each fragment as are possible without
 going over the desired size of the fragment. An EDNS option is added
 to every fragment, that includes both the fragment identifier and the
 total number of fragments.

 The server needs to know how many total fragments there are to insert
 into each fragment. A simple approach would be to generate all
 fragments, and then count the total number at the end, and update the
 previously-generated fragments with the total number of fragments.
 Other techniques may be possible.

 The server MUST limit the number of fragments that it uses in a
 reply. (See "Open Issues and Discussion" for remaining work.)

 The server MUST NOT exceed the maximum fragment size requested by a
 client.

 The server should use the following sizes for each fragment in the
 sequence in IPv4:

 +-------------+---------------------------------+
 | Fragment ID | Size |
 +-------------+---------------------------------+
 | 1 | min(512, client_specified_max) |
 | 2 | min(1460, client_specified_max) |
 | 3 | min(1480, client_specified_max) |
 | N | min(1480, client_specified_max) |
 +-------------+---------------------------------+

 The rationale is that the first packet will always get through, since
 if a 512 octet packet doesn’t work, DNS cannot function. We then
 increase to sizes that are likely to get through. 1460 is the 1500
 octet Ethernet packet size, minus the IP header overhead and enough
 space to support tunneled traffic. 1480 is the 1500 octet Ethernet
 packet size, minus the IP header overhead. [**FIXME**] Why not add
 1240 here? Shane answers: 1280 is not any kind of limit in IPv4, as
 far as I know.

Sivaraman, et al. Expires January 21, 2016 [Page 5]

Internet-Draft DNS message fragments July 2015

 The server should use the following sizes for each packet in the
 sequence in IPv6:

 +-------------+---------------------------------+
 | Fragment ID | Size |
 +-------------+---------------------------------+
 | 1 | min(1240, client_specified_max) |
 | 2 | min(1420, client_specified_max) |
 | 3 | min(1460, client_specified_max) |
 | N | min(1460, client_specified_max) |
 +-------------+---------------------------------+

 Like with IPv4, the idea is that the first packet will always get
 through. In this case we use the IPv6-mandated 1280 octets, minus
 the IP header overhead. We then increase to 1420, which is the 1500
 octet Ethernet packet size, minus the IP header overhead and enough
 space to support tunneled traffic. 1460 is the 1500 octet Ethernet
 packet size, minus the IP header overhead.

2.3. Other Notes

 o The FRAGMENT option MUST NOT be present in DNS query messages,
 i.e., when QR=0. If a DNS implementation notices the FRAGMENT
 option in a DNS query message, it MUST ignore it.

 o In DNS reply messages, the FRAGMENT option MUST NOT be present in
 datagrams when truncation is not done, i.e., when TC=0. If a DNS
 implementation notices the FRAGMENT option in a DNS reply message
 fragment datagram that is not truncated, i.e, when TC=0, it MUST
 drop all DNS reply message fragment datagrams received so far
 (awaiting assembly) for that message’s corresponding question
 tuple (server IP, port, message ID) without using any data from
 them. [**FIXME**] Dropping fragments to be received yet will be
 problematic for implementations, but dropping fragments received
 so far ought to be sufficient.

 o More than one FRAGMENT option MUST NOT be present in a DNS reply
 message fragment datagram. If a DNS implementation notices
 multiple FRAGMENT options in a DNS reply message fragment
 datagram, it MUST drop all reply datagrams received for that
 message’s corresponding question tuple (server IP, port, message
 ID) without using any data from them. [**FIXME**] Dropping
 fragments to be received yet will be problematic for
 implementations, but dropping fragments received so far ought to
 be sufficient.

Sivaraman, et al. Expires January 21, 2016 [Page 6]

Internet-Draft DNS message fragments July 2015

3. The ALLOW-FRAGMENTS EDNS(0) Option

 ALLOW-FRAGMENTS is an EDNS(0) [RFC6891] option that a client uses to
 inform a server that it supports fragmented responses. [**FIXME**]
 Why not simply use the FRAGMENT option here with count=0,
 identifier=ignored and avoid using another option code? Shane: There
 are no shortage of options. Plus, if we want to include a maximum
 fragment size value in the ALLOW-FRAGMENTS then we really need a
 separate option.

3.1. Wire Format

 TBD.

3.2. Option Fields

3.2.1. Maximum Fragment Size

 The Maximum Fragment Size field is represented as an unsigned 16-bit
 integer. This is the maximum size used by any given fragment the
 server returns. [**FIXME**] This field’s purpose has to be explained.
 Shane: discussed in the discussion section now.

3.3. Presentation Format

 As with other EDNS(0) options, the ALLOW-FRAGMENTS option does not
 have a presentation format.

4. The FRAGMENT EDNS(0) Option

 FRAGMENT is an EDNS(0) [RFC6891] option that assists a client in
 gathering the various fragments of a DNS message from multiple UDP
 datagrams. It is described in a previous section. Here, its syntax
 is provided.

4.1. Wire Format

 TBD.

4.2. Option Fields

4.2.1. Fragment Identifier

 The Fragment Identifier field is represented as an unsigned 8-bit
 integer. The first fragment is identified as 1. Values in the range
 [1,255] can be used to identify the various fragments. Value 0 is
 used for signalling purposes.

Sivaraman, et al. Expires January 21, 2016 [Page 7]

Internet-Draft DNS message fragments July 2015

4.2.2. Fragment Count

 The Fragment Count field is represented as an unsigned 8-bit integer.
 It contains the number of fragments in the range [1,255] that make up
 the DNS message. Value 0 is used for signalling purposes.

4.3. Presentation Format

 As with other EDNS(0) options, the FRAGMENT option does not have a
 presentation format.

5. Network Considerations

5.1. Background

 TCP-based application protocols co-exist well with competing traffic
 flows in the internet due to congestion control methods such as in
 [RFC5681] that are present in TCP implementations.

 UDP-based application protocols have no restrictions in lower layers
 to stop them from flooding datagrams into a network and causing
 congestion. So applications that use UDP have to check themselves
 from causing congestion so that their traffic is not disruptive.

 In the case of [RFC1035], only one reply UDP datagram was sent per
 request UDP datagram, and so the lock-step flow control automatically
 ensured that UDP DNS traffic didn’t lead to congestion. When DNS
 clients didn’t hear back from the server, and had to retransmit the
 question, they typically paced themselves by using methods such as a
 retransmission timer based on a smoothed round-trip time between
 client and server.

 Due to the message fragmentation described in this document, when a
 DNS query causes multiple DNS reply datagrams to be sent back to the
 client, there is a risk that without effective control of flow, DNS
 traffic could cause problems to competing flows along the network
 path.

 Because UDP does not guarantee delivery of datagrams, there is a
 possibility that one or more fragments of a DNS message will be lost
 during transfer. This is especially a problem on some wireless
 networks where a rate of datagrams can continually be lost due to
 interference and other environmental factors. With larger numbers of
 message fragments, the probability of fragment loss increases.

Sivaraman, et al. Expires January 21, 2016 [Page 8]

Internet-Draft DNS message fragments July 2015

5.2. Implementation Requirements

 TBD.

6. Open Issues and Discussion

 1. Resolver behavior

 We need some more discussion of resolver behavior in general, at
 least to the point of making things clear to an implementor.

 2. The use of DNS fragments mechanism

 Is this mechanism designed for all DNS transactions, or only
 used in some event or special cases like a key rollover process?
 If the mechanism is designed for general DNS transactions, when
 is it triggered and how is it integrated with existing patterns?

 One option is that DNS fragments mechanism works as a backup
 with EDNS, and triggered only when a larger packet fails in the
 middle. It will be orthogonal with TCP which provide additional
 context that TC bit will be used in server side.

 3. What is the size of fragments?

 Generally speaking the number of fragment increases if fragment
 size is small (512 bytes, or other empirical value), which makes
 the mechanism less efficient. If the size can changed
 dynamically according to negotiation or some detection, it will
 introduce more cost and round trip time.

 4. What happens if a client that does not support DNS fragments
 receives an out-of-order or partial fragment?

 We need to consider what happens when a client that does not
 support DNS fragments gets a partial response, possibly even out
 of order.

 5. We should explain risk of congestion, packet loss, etc. when
 introducing the limit on the number of fragments. We might also
 set specific upper limits for number of fragments.

Sivaraman, et al. Expires January 21, 2016 [Page 9]

Internet-Draft DNS message fragments July 2015

 6. EDNS buffer sizes vs. maximum fragmentation sizes

 Mukund: We need further discussion about the sizes; also an
 upper limit for each *fragment* has to be the client’s UDP
 payload size as it is the driver and it alone knows the ultimate
 success/failure of message delivery. So if it sets a maximum
 payload size of 1200, there’s no point in trying 1460. Clients
 that support DNS message fragments (and signal support using the
 EDNS option) should adapt their UDP payload size discovery
 algorithm to work with this feature, as the following splits on
 sizes will assist PMTU discovery.

 Shane: I think we need to separate the EDNS maximum UDP payload
 size from the maximum fragment size. I think that it is quite
 likely that (for example) we will want to restrict each fragment
 to 1480 bytes, but that the EDNS buffer size might remain at 4
 kibibytes.

 7. TSIG should be addressed

 We need to document how to handle TSIG, even though this is not
 likely to be a real-world issue. Probably each fragment should
 be TSIG signed, as this makes it harder for an attacker to
 inject bogus packets that a client will have to process.

 8. RR splitting should be addressed

 We need to document whether or not RR can be split. Probably it
 makes sense not to allow this, although this will reduce the
 effectiveness of the fragmentation, as the units that can be
 packed into each fragment will be bigger.

 9. We need to document that some messages may not be possible to
 split.

 Some messages may be too large to split. A trivial example is a
 TXT record that is larger than the buffer size. Probably the
 best behavior here is to truncate.

 10. DNSSEC checks

Sivaraman, et al. Expires January 21, 2016 [Page 10]

Internet-Draft DNS message fragments July 2015

 DNSSEC checks should be done on the final reassembled packet.
 This needs to be documented.

 11. Name compression

 Name compression should be done on the each fragment separately.
 This needs to be documented.

 12. OPT-RR

 Some OPT-RR seem to be oriented at the entire message, others
 make more sense per packet. This needs to be sorted out. Also
 we need to investigate the edge case where fragments have
 conflicting options (Mukund thinks that we can copy the approach
 in the EDNS specification and use the same rules about
 conflicting OPT-RR that it uses.)

7. Security Considerations

 To avoid DNS amplification or reflection attacks, DNS cookies
 [I-D.ietf-dnsop-cookies] must be used. The DNS cookie EDNS option is
 identical in all fragments that make up a DNS message. The
 duplication of the same cookie values in all fragments that make up
 the message is not expected to introduce a security weakness in the
 case of off-path attacks.

8. IANA Considerations

 The ALLOW-FRAGMENTS and FRAGMENT EDNS(0) options require option codes
 to be assigned for them.

9. Acknowledgements

 Thanks to Stephen Morris, JINMEI Tatuya, Paul Vixie, Mark Andrews,
 and David Dragon for reviewing a pre-draft proposal and providing
 support, comments and suggestions.

10. References

 [Fragment-Poisonous]
 Herzberg, A. and H. Shulman, "Fragmentation Considered
 Poisonous", 2012.

Sivaraman, et al. Expires January 21, 2016 [Page 11]

Internet-Draft DNS message fragments July 2015

 [I-D.ietf-dnsop-cookies]
 Eastlake, D. and M. Andrews, "Domain Name System (DNS)
 Cookies", draft-ietf-dnsop-cookies-04 (work in progress),
 July 2015.

 [I-D.ietf-dnsop-respsize]
 Vixie, P., Kato, A., and J. Abley, "DNS Referral Response
 Size Issues", draft-ietf-dnsop-respsize-15 (work in
 progress), February 2014.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [RFC1123] Braden, R., "Requirements for Internet Hosts - Application
 and Support", STD 3, RFC 1123, October 1989.

 [RFC3542] Stevens, W., Thomas, M., Nordmark, E., and T. Jinmei,
 "Advanced Sockets Application Program Interface (API) for
 IPv6", RFC 3542, May 2003.

 [RFC5452] Hubert, A. and R. van Mook, "Measures for Making DNS More
 Resilient against Forged Answers", RFC 5452, January 2009.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC6891] Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891, April 2013.

 [SAC016] ICANN Security and Stability Advisory Committee, "Testing
 Firewalls for IPv6 and EDNS0 Support", 2007.

 [SAC035] ICANN Security and Stability Advisory Committee, "DNSSEC
 Impact on Broadband Routers and Firewalls", 2008.

 [T-DNS] Zhu, L., Hu, Z., and J. Heidemann, "T-DNS: Connection-
 Oriented DNS to Improve Privacy and Security (extended)",
 2007, <http://www.isi.edu/˜johnh/PAPERS/Zhu14b.pdf>.

Appendix A. Change History (to be removed before publication)

 o draft-muks-dns-message-fragments-00
 Initial draft.

Sivaraman, et al. Expires January 21, 2016 [Page 12]

Internet-Draft DNS message fragments July 2015

Authors’ Addresses

 Mukund Sivaraman
 Internet Systems Consortium
 950 Charter Street
 Redwood City, CA 94063
 US

 Email: muks@isc.org
 URI: http://www.isc.org/

 Shane Kerr
 Beijing Internet Institute
 2/F, Building 5, No.58 Jinghai Road, BDA
 Beijing 100176
 CN

 Email: shane@biigroup.cn
 URI: http://www.biigroup.com/

 Linjian Song
 Beijing Internet Institute
 2/F, Building 5, No.58 Jinghai Road, BDA
 Beijing 100176
 CN

 Email: songlinjian@gmail.com
 URI: http://www.biigroup.com/

Sivaraman, et al. Expires January 21, 2016 [Page 13]

Internet Engineering Task Force M. Sivaraman
Internet-Draft Internet Systems Consortium
Intended status: Experimental October 13, 2015
Expires: April 15, 2016

 DNS message checksums
 draft-muks-dnsop-dns-message-checksums-01

Abstract

 This document describes a method for a client to be able to verify
 that IP-layer PDU fragments of a UDP DNS message have not been
 spoofed by an off-path attacker.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 15, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Sivaraman Expires April 15, 2016 [Page 1]

Internet-Draft DNS message checksums October 2015

Table of Contents

 1. Introduction . 2
 2. DNS message checksum method 3
 3. The CHECKSUM EDNS(0) option 4
 3.1. Wire format . 4
 3.2. Option fields . 4
 3.2.1. NONCE . 4
 3.2.2. ALGORITHM . 5
 3.2.3. DIGEST . 5
 3.3. Presentation format 5
 4. Checksum computation . 5
 5. Security considerations 6
 6. IANA considerations . 6
 7. Acknowledgements . 7
 8. References . 7
 8.1. Normative references 7
 8.2. Informative references 8
 Appendix A. Checksum algorithms 8
 Appendix B. Change history (to be removed before publication) . 8
 Author’s Address . 9

1. Introduction

 [RFC1035] describes how DNS messages are to be transmitted over UDP.
 A DNS query message is transmitted using one UDP datagram from client
 to server, and a corresponding DNS reply message is transmitted using
 one UDP datagram from server to client.

 As a UDP datagram is transmitted in a single IP PDU, in theory the
 size of a UDP datagram (including various lower internet layer
 headers) can be as large as 64 KiB. But practically, if the datagram
 size exceeds the path MTU, then the datagram will either be
 fragmented at the IP layer, or dropped by a forwarder. In the case
 of IPv4, DNS datagrams may be fragmented by a sender or a forwarder.
 In the case of IPv6, DNS datagrams are fragmented by the sender only.

 IP-layer fragmentation for large DNS response datagrams introduces
 risk of cache poisoning by off-path attackers [Fragment-Poisonous] in
 which an attacker can circumvent some defense mechanisms like source
 port and query ID randomization [RFC5452].

 This memo introduces the concept of a DNS message checksum which may
 be used to stop the effects of such off-path attacks.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Sivaraman Expires April 15, 2016 [Page 2]

Internet-Draft DNS message checksums October 2015

2. DNS message checksum method

 Clients supporting DNS message checksums add an EDNS option to their
 queries, which signals their support for this feature.

 The CHECKSUM EDNS option contains 3 fields: NONCE, ALGORITHM, and
 DIGEST. These fields are described in Section 3.

 It is OPTIONAL for a client to add a CHECKSUM EDNS option to DNS
 query messages. If it adds such an option, it MUST set the NONCE
 field to a random value. The ALGORITHM field MUST be set to 0 and
 the DIGEST field MUST be left empty. The entire NONCE field MUST be
 randomly generated (i.e., in no predictable sequence and the random
 value must fill all bits of the field) for each query for which the
 client uses a CHECKSUM EDNS option. The client is expected to
 remember the per-query NONCE field’s value to be used in verifying
 the reply to this query message.

 A client MUST NOT send multiple DNS query messages with the NONCE set
 to a fixed unchanging value. Instead, it must not send the option at
 all.

 The server SHOULD add a CHECKSUM EDNS option in the reply message to
 a corresponding query that arrived with this option present. The
 NONCE field MUST be copied verbatim from the query message to the
 corresponding reply message. A checksum is computed over the DNS
 reply message as described in Section 4 and the ALGORITHM and DIGEST
 fields MUST be set using the resulting checksum as given in
 Section 3. The server is at liberty to choose any checksum algorithm
 it wants to from the list of supported algorithms given in
 Appendix A.

 If a server receives a query containing a CHECKSUM EDNS option with
 an ALGORITHM field that is not set to 0, it MUST ignore this option
 and process the request as if there were no CHECKSUM EDNS option in
 the query.

 When a client receives a reply message for which it sent a CHECKSUM
 EDNS option in the corresponding query, it SHOULD look for the
 presence of the CHECKSUM EDNS option in the reply.

 The client may handle the lack of a CHECKSUM EDNS option in the reply
 as it chooses to. It is currently not specified, but may be updated
 in the future.

 If a client receives a reply containing a CHECKSUM EDNS option with
 an unknown ALGORITHM value, it MUST ignore this option and handle the
 reply as if there were no CHECKSUM EDNS option in it. From the

Sivaraman Expires April 15, 2016 [Page 3]

Internet-Draft DNS message checksums October 2015

 previous paragraph, it follows that the client behavior in this case
 is also currently not specified, but may be updated in the future.

 If a CHECKSUM EDNS option is present in the reply, the client SHOULD
 first check and ensure that the NONCE field contains the same nonce
 value that was sent in the corresponding query message. If the value
 in the NONCE field is different, the reply message MUST be discarded.
 Afterwards, the client SHOULD proceed to compute a checksum over the
 reply message as described in Section 4 using the checksum algorithm
 in the ALGORITHM field. It SHOULD then compare the checksum value
 with the value that was received in the DIGEST field for equality.
 If they are not equal, the reply message MUST be discarded. If they
 are equal, the reply message can be used normally as the client
 intends to use it.

3. The CHECKSUM EDNS(0) option

 CHECKSUM is an EDNS(0) [RFC6891] option that is used to transmit a
 digest of a DNS message in replies. Client and server behavior are
 described in Section 2. In this section, the option’s syntax is
 provided.

3.1. Wire format

 The following describes the wire format of the OPTION-DATA field
 [RFC6891] of the CHECKSUM EDNS option. All CHECKSUM option fields
 must be represented in network byte order.

 +--------------+------------------+--------------------+
 | Option field | Type | Field size |
 +--------------+------------------+--------------------+
 | NONCE | unsigned integer | 64 bits (8 octets) |
 | ALGORITHM | unsigned integer | 8 bits (1 octet) |
 | DIGEST | byte array | Variable length |
 +--------------+------------------+--------------------+

3.2. Option fields

3.2.1. NONCE

 The NONCE field is represented as an unsigned 64-bit integer in
 network byte order. It MUST be randomly computed for each query
 message which a client sends out, and is copied verbatim from the
 query to the corresponding reply DNS message by the server.

Sivaraman Expires April 15, 2016 [Page 4]

Internet-Draft DNS message checksums October 2015

3.2.2. ALGORITHM

 The ALGORITHM field is represented as an unsigned 8-bit integer in
 network byte order. In query messages, it MUST be set to 0. In
 reply messages, it MUST contain the numeric value of the algorithm
 used to compute the DIGEST field. A list of algorithms and their
 values is given in Appendix A.

3.2.3. DIGEST

 The DIGEST field is represented as a variable-length sequence of
 octets present after the NONCE and ALGORITHM fields. Its size is
 implicitly computed from the value in the OPTION-LENGTH field
 [RFC6891] for the CHECKSUM EDNS option minus the size of the NONCE
 and ALGORITHM fields. In query messages, it MUST be empty. In reply
 messages, it MUST contain the digest of the reply message which is
 computed as described in Section 4.

3.3. Presentation format

 As with other EDNS(0) options, the CHECKSUM EDNS option does not have
 a presentation format.

4. Checksum computation

 To generate the checksum digest to be placed in the DIGEST field,
 first the entire DNS message must be prepared (rendered) along with
 the CHECKSUM option embedded in it to the point that it is ready to
 be sent out on the wire. In this CHECKSUM option, initially the
 DIGEST field must be filled with zero values and its size must be
 reserved equal to the size expected for the digest from the checksum
 algorithm intended to be used. The NONCE field MUST be set to the
 value of the nonce from the query DNS message. The ALGORITHM field
 MUST be set to the checksum algorithm intended to be used. After
 this, the whole message contents (from the start of the DNS message
 header onwards) must be input to the checksum algorithm and the
 calculated checksum must be patched into the DIGEST field, space for
 which was reserved before.

 To verify the checksum digest from a DNS message that was received,
 first the DIGEST field is copied to a temporary location and the
 DIGEST field in the message is patched with zero values. After this,
 the whole message contents (from the start of the DNS message header
 onwards) must be input to the checksum algorithm specified in the
 ALGORITHM field. The calculated checksum must be compared for
 equality with the checksum originally received in the DIGEST field,
 the content of which was earlier saved to a temporary location. If
 both are equal, the checksum matches.

Sivaraman Expires April 15, 2016 [Page 5]

Internet-Draft DNS message checksums October 2015

5. Security considerations

 The methods in this memo are designed to thwart off-path spoofing
 attacks which may lead to cache-poisoning, including the specific
 case when IP-layer PDU fragmentation occurs.

 The CHECKSUM EDNS option is not designed to offer any protection
 against on-path attackers. Very little can be done without using
 shared-secret or public key cryptography for this case.

 Checksum computation may increase resource usage on servers and
 clients. It is thus desirable to use fast checksum algorithms that
 meet the requirements of Appendix A.

 The entropy source used for generating random values for use in the
 NONCE field may be chosen similarly to provide ample security to
 verify a short-lived DNS message.

 The NONCE field effectively extends the ID field [RFC1035] in the DNS
 message header.

 As a side-effect of using checksums, resolver cache poisoning attacks
 are made more difficult due to the presence of the NONCE field.

 There is a risk of downgrade attack when the IP fragment containing
 the CHECKSUM EDNS option is spoofed, deleting this option. This risk
 would exist until the presence of the CHECKSUM option in replies is
 made mandatory when a corresponding option is sent in the query.
 This can be made so right from the start, or after an adoption
 period. At that time, it may be stated that a client that does not
 receive a CHECKSUM EDNS option in a reply would discard the reply
 message and retry the query using TCP.

 The CHECKSUM EDNS option cannot prevent some kinds of attack such as
 response and NS blocking and NS pinning as described in
 [Fragment-Poisonous].

6. IANA considerations

 This document defines a new EDNS(0) option, titled CHECKSUM (see
 Section 3), assigned a value of <TBD> from the DNS EDNS0 Option Codes
 (OPT) space [to be removed upon publication:
 https://www.iana.org/assignments/dns-parameters/dns-
 parameters.xhtml#dns-parameters-11].

Sivaraman Expires April 15, 2016 [Page 6]

Internet-Draft DNS message checksums October 2015

 +------+----------+--------+--+
 | Valu | Name | Status | Reference |
 | e | | | |
 +------+----------+--------+--+
 | TBD | CHECKSUM | TBD | [draft-muks-dnsop-dns-message- |
 | | | | checksums] |
 +------+----------+--------+--+

 The CHECKSUM EDNS(0) option also defines an 8-bit ALGORITHM field,
 for which IANA is to create and maintain a new sub-registry entitled
 "DNS message checksum algorithms" under the Domain Name System (DNS)
 Parameters. Initial values for the DNS message checksum algorithms
 registry are given in Appendix A; future assignments are to be made
 through Expert Review as in BCP 26 [RFC5226]. Assignments consist of
 a DNS message checksum algorithm name and its associated value.

7. Acknowledgements

 Tomek Mrugalski offered tips on draft naming and upload process. Joe
 Abley reviewed the draft and pointed out some nits that were not
 detected automatically. Ray Bellis, Robert Edmonds, Tony Finch, Paul
 Hoffman, Evan Hunt, Paul Vixie, and Paul Wouters reviewed drafts and
 sent in comments and opinions. Mark Andrews mentioned an alternate
 method at the same time (on an internal mailing list) to address
 spoofing issues that provided further support to the idea that
 CHECKSUM was worth pursuing.

8. References

8.1. Normative references

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <http://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5452] Hubert, A. and R. van Mook, "Measures for Making DNS More
 Resilient against Forged Answers", RFC 5452, DOI 10.17487/
 RFC5452, January 2009,
 <http://www.rfc-editor.org/info/rfc5452>.

Sivaraman Expires April 15, 2016 [Page 7]

Internet-Draft DNS message checksums October 2015

 [RFC6891] Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891, DOI 10.17487/
 RFC6891, April 2013,
 <http://www.rfc-editor.org/info/rfc6891>.

8.2. Informative references

 [Fragment-Poisonous]
 Herzberg, A. and H. Shulman, "Fragmentation Considered
 Poisonous", 2012.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

Appendix A. Checksum algorithms

 The ALGORITHM field as specified in Section 3 identifies the checksum
 algorithm that is used to compute the checksum digest for a DNS
 message.

 The following table lists the currently defined checksum algorithm
 types. Candidate checksum algorithms that are chosen for inclusion
 in this list MUST be one-way cryptographic hash functions that may be
 used by a client to securely verify a short-lived DNS message with a
 maximum message size constraint of 64 KiB.

 +----------+-------+-----------+-------------------------------+
 | Value(s) | Name | Length | Status, Remarks |
 +----------+-------+-----------+-------------------------------+
 | 0 | EMPTY | 0 octets | Empty digest (query only) |
 | 1 | SHA-1 | 20 octets | Mandatory |
 | 2-239 | | | Unassigned |
 | 240-254 | | | Reserved for experimental use |
 | 255 | | | Reserved |
 +----------+-------+-----------+-------------------------------+

Appendix B. Change history (to be removed before publication)

 o draft-muks-dnsop-dns-message-checksums-01
 Reduced NONCE field to 8 bytes. Reduced ALGORITHM field to 1
 byte. Added note about risk of downgrade attack. Expanded IANA
 considerations section and algorithms appendix. Described
 behaviors further. Added notes on picking a suitable checksum
 algorithm. Updated cross references, language and grammar.

 o draft-muks-dnsop-dns-message-checksums-00

Sivaraman Expires April 15, 2016 [Page 8]

Internet-Draft DNS message checksums October 2015

 Initial draft (renamed version). Removed the NONCE-COPY field as
 it is no longer necessary. Doubled the size of the NONCE field to
 128 bits. Added sample checksum algorithms. Fixed incorrect
 reference, language and grammar.

Author’s Address

 Mukund Sivaraman
 Internet Systems Consortium
 950 Charter Street
 Redwood City, CA 94063
 US

 Email: muks@mukund.org
 URI: http://www.isc.org/

Sivaraman Expires April 15, 2016 [Page 9]

Network Working Group O. Gudmundsson
Internet-Draft CloudFlare
Intended status: Informational P. Wouters
Expires: April 17, 2016 Red Hat
 October 15, 2015

 Managing DS records from parent via CDS/CDNSKEY
 draft-ogud-dnsop-maintain-ds-00

Abstract

 RFC7344 specifies how DNS trust can be maintained in-band between
 parent and child. There are two features missing in that
 specification: initial trust setup and removal of trust anchor. This
 document addresses both these omissions.

 Changing a domain’s DNSSEC status can be a complicated matter
 involving many parties. Some of these parties, such as the DNS
 operator, might not even be known by all organisations involved. The
 inability to enable or disable DNSSEC via in-band signalling is seen
 as a problem or liability that prevents DNSSEC adoption at large
 scale. This document adds a method for in-band signalling of DNSSEC
 status changes.

 Initial trust is considered a much harder problem, this document will
 seek to clarify and simplify the initial acceptance policy.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 17, 2016.

Gudmundsson & Wouters Expires April 17, 2016 [Page 1]

Internet-Draft DS-maintain-ds October 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Removing DS . 3
 1.2. Introducing DS . 3
 1.3. Notation . 3
 1.4. Terminology . 4
 2. The Three Uses of CDS . 4
 2.1. The meaning of CDS ? 4
 3. Enabling DNSSEC via CDS/CDNSKEY 5
 3.1. Accept policy via authenticated channel 5
 3.2. Accept with extra checks 5
 3.3. Accept after delay 5
 3.4. Accept with challenge 6
 4. DNSSEC Delete Algorithm 6
 5. Security considerations 7
 6. IANA considerations . 7
 7. References . 7
 7.1. Normative References 7
 7.2. Informative References 8
 Appendix A. Acknowledgements 8
 Authors’ Addresses . 8

1. Introduction

 CDS/CDNSKEY [RFC7344] records are used to signal changes in trust
 anchors, this is a great way to maintain delegations when the DNS
 operator has no other way to inform the parent that changes are
 needed. RFC7344 contains no "delete" signal for the child to tell
 the parent that it wants to change the DNSSEC security of its domain.

 [RFC7344] punted the Initial Trust establishment question and left it
 to each parent to come up with an acceptance policy.

Gudmundsson & Wouters Expires April 17, 2016 [Page 2]

Internet-Draft DS-maintain-ds October 2015

1.1. Removing DS

 This document introduces the delete option for both CDS and CDNSKEY.
 to allow a child to signal the parent to turn off DNSSEC. When a
 domain is moved from one DNS operator to another one, sometimes it is
 necessary to turn off DNSSEC to facilitate the change of DNS
 operator. Common scenarios include:

 1 moving from a DNSSEC operator to a non-DNSSEC capable one or one
 that does not support the same algorithms as the old one.

 2 moving to one that cannot/does-not-want to do a proper DNSSEC
 rollover.

 3 the domain holder does not want DNSSEC.

 4 when moving between two DNS operators that use disjoint sets of
 algorithms to sign the zone, thus algorithm roll can not be
 performed.

 Whatever the reason, the lack of a "remove my DNSSEC" option is
 turning into the latest excuse as why DNSSEC cannot be deployed.

 Turing off DNSSEC reduces the security of the domain and thus should
 only be done carefully, and that decision should be fully under the
 child domain’s control.

1.2. Introducing DS

 The converse issue is how does a child domain instruct the parent it
 wants to have a DS record added. This problem is not as hard as many
 have assumed, given a few simplifying assumptions. This document
 makes the assumption that there are reasonable policies that can be
 applied and will allow automation of trust introduction.

 Not being able to enable trust via an easily automated mechanism is
 hindering DNSSEC at scale by anyone that does not have automated
 access to its parent’s "registry".

1.3. Notation

 When this document uses the word CDS it implies that the same applies
 to CDNSKEY and vice versa, the only difference between the two
 records is how information is represented.

 When the document uses the word "parent" it implies an entity that is
 authorized to insert into parent zone information about this child
 domain. Which entity this is exactly does not matter. It could be

Gudmundsson & Wouters Expires April 17, 2016 [Page 3]

Internet-Draft DS-maintain-ds October 2015

 the Registrar or Reseller that the child domain was purchased from.
 It could be the Registry that the domain is registered in when
 allowed. It could be some other entity when the RRR framework is not
 used.

 We use RRR to mean Registry Registrar Reseller in the context of DNS
 domain markets.

1.4. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. The Three Uses of CDS

 In general there are three operations that a domain wants to
 influence on its parent:

 1 Roll over KSK, this means updating the DS records in the parent to
 reflect the new set of KSK’s at the child. This could be an ADD
 operation, a Delete operation on one or more records while keeping
 at least one DS RR, or a full Replace operation

 2 Turn off DNSSEC validation, i.e. delete all the DS records

 3 Enable DNSSEC validation, i.e. place initial DS RRset in the
 parent.

 Operation 1 is covered in [RFC7344], operations 2 and 3 are defined
 in this document. In many people’s minds, those two later operations
 carry more risk than the first one. This document argues that 2 is
 identical to 1 and the final one is different (but not that
 different).

2.1. The meaning of CDS ?

 The fundamental question is what is the semantic meaning of
 publishing a CDS RRset in a zone? We offer the following
 interpretation:

 "Publishing a CDS or CDNSKEY record signifies to the parent that the
 child is ready for the corresponding DS records to be synchronized.
 Every parent or parental agent should have an acceptance policy of
 these records for the three different use cases involved: Initial DS
 publication, Key rollover, and Returning to Insecure."

Gudmundsson & Wouters Expires April 17, 2016 [Page 4]

Internet-Draft DS-maintain-ds October 2015

 In short, the CDS RRset is an instruction to the parent to modify DS
 RRset if the CDS and DS RRsets differ. The acceptance policy for CDS
 in the rollover case is "seeing" according to [RFC7344]. The
 acceptance policy in the Delete case is just seeing a CDS RRset with
 the delete operation specified in this document.

3. Enabling DNSSEC via CDS/CDNSKEY

 There are number of different models for managing initial trust, but
 in the general case, the child wants to enable global validation for
 the future. Thus during the period from the time the child publishes
 the CDS until the corresponding DS is published is the period that
 DNS answers for the child could be forged. The goal is to keep this
 period as short as possible.

 One important case is how a 3rd party DNS operator can upload its
 DNSSEC information to the parent, so the parent can publish a DS
 record for the child. In this case there is a possibility of setting
 up some kind of authentication mechanism and submission mechanism
 that is outside the scope of this document.

 Below are some policies that parents can use. These policies assume
 that the notifications are can be authenticated and/or identified.

3.1. Accept policy via authenticated channel

 In this case the parent is notified via UI/API that CDS exists, the
 parent retrieves the CDS and inserts the DS record as requested, if
 the request comes over an authenticated channel.

3.2. Accept with extra checks

 In this case the parent checks that the source of the notification is
 allowed to request the DS insertion. The checks could include
 whether this is a trusted entity, whether the nameservers correspond
 to the requestor, whether there have been any changes in registration
 in the last few days, etc, or the parent can send a notification
 requesting an confirmation.

 The end result is that the CDS is accepted at the end of the checks
 or when the out-of-band confirmation is received.

3.3. Accept after delay

 In this case, if the parent deems the request valid, it starts
 monitoring the CDS records at the child nameservers over period of
 time to make sure nothing changes. After number of checks,

Gudmundsson & Wouters Expires April 17, 2016 [Page 5]

Internet-Draft DS-maintain-ds October 2015

 preferably from different vantage points, the parent accepts the CDS
 records as a valid signal to update.

3.4. Accept with challenge

 In this case the parent instructs the requestor to insert some record
 into the child domain to prove it has the ability to do so (i.e., it
 is the operator of the zone).

4. DNSSEC Delete Algorithm

 The DNSKEY algorithm registry contains two reserved values: 0 and
 255[RFC4034]. The CERT record [RFC4398] defines the value 0 to mean
 the algorithm in the CERT record is not defined in DNSSEC.

 [rfc-editor remove before publication] For this reason, using the
 value 0 in CDS/CDNSKEY delete operations is potentially problematic,
 but we propose that here anyway as the risk is minimal. The
 alternative is to reserve one DNSSEC algorithm number for this
 purpose. [rfc-editor end remove]

 Right now, no DNSSEC validator understands algorithm 0 as a valid
 signature algorithm, thus if the validator sees a DNSKEY or DS record
 with this value, it will treat it as unknown. Accordingly, the zone
 is treated as unsigned unless there are other algorithms present.

 In the context of CDS and CDNSKEY records, DNSSEC algorithm 0 is
 defined and means the entire DS set MUST be removed. The contents of
 the records MUST contain only the fixed fields as show below.

 1 CDS 0 0 0

 2 CDNSKEY 0 3 0

 There is no keying material payload in the records, just the command
 to delete all DS records. This record is signed in the same way as
 CDS/CDNSKEY is signed.

 Strictly speaking the CDS record could be "CDS X 0 X" as only the
 DNSKEY algorithm is what signals the delete operation, but for
 clarity the "0 0 0" notation is mandated, this is not a definition of
 DS Digest algorithm 0. Same argument applies to "CDNSKEY 0 3 0".

 Once the parent has verified the CDS/CDNSKEY record and it has passed
 other acceptance tests, the DS record MUST be removed. At this point
 the child can start the process of turning DNSSEC off.

Gudmundsson & Wouters Expires April 17, 2016 [Page 6]

Internet-Draft DS-maintain-ds October 2015

5. Security considerations

 This document is about avoiding validation failures when a domain
 moves from one DNS operator to another one. Turing off DNSSEC
 reduces the security of the domain and thus should only be done as a
 last resort.

 In most cases it is preferable that operators collaborate on the
 rollover by doing a KSK+ZSK rollover as part of the handoff, but that
 is not always possible. This document addresses the case where
 unsigned state is needed.

 Users SHOULD keep in mind that re-establishing trust in delegation
 can be hard and take a long time thus before going to unsigned all
 options SHOULD be considered.

 A parent should ensure that when it is allowing a child to become
 securely delegated, that it has a reasonable assurance that the CDS/
 CDNSKEY that is used to bootstrap the security on is visible from a
 geographically and network topology diverse view. It should also
 ensure the the zone would validate if the parent published the DS
 record. A parent zone might also consider sending an email to its
 contact addresses to give the child a warning that security will be
 enabled after a certain about of wait time - thus allowing a child
 administrator to cancel the request.

 This document does not introduce any new problems, but like Negative
 Trust Anchor[I-D.ietf-dnsop-negative-trust-anchors], it addresses
 operational reality.

6. IANA considerations

 This document updates the following IANA registries: "DNS Security
 Algorithm Numbers"

 Algorithm 0 adds a reference to this document.

7. References

7.1. Normative References

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <http://www.rfc-editor.org/info/rfc4034>.

Gudmundsson & Wouters Expires April 17, 2016 [Page 7]

Internet-Draft DS-maintain-ds October 2015

 [RFC7344] Kumari, W., Gudmundsson, O., and G. Barwood, "Automating
 DNSSEC Delegation Trust Maintenance", RFC 7344, DOI
 10.17487/RFC7344, September 2014,
 <http://www.rfc-editor.org/info/rfc7344>.

7.2. Informative References

 [I-D.ietf-dnsop-negative-trust-anchors]
 Ebersman, P., Kumari, W., Griffiths, C., Livingood, J.,
 and R. Weber, "Definition and Use of DNSSEC Negative Trust
 Anchors", draft-ietf-dnsop-negative-trust-anchors-13 (work
 in progress), August 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4398] Josefsson, S., "Storing Certificates in the Domain Name
 System (DNS)", RFC 4398, DOI 10.17487/RFC4398, March 2006,
 <http://www.rfc-editor.org/info/rfc4398>.

Appendix A. Acknowledgements

 This document is generated using the mmark tool that Miek Gieben has
 developed.

Authors’ Addresses

 Olafur Gudmundsson
 CloudFlare

 Email: olafur+ietf@cloudflare.com

 Paul Wouters
 Red Hat

 Email: pwouters@redhat.com

Gudmundsson & Wouters Expires April 17, 2016 [Page 8]

Internet Engineering Task Force P. Spacek
Internet-Draft Red Hat, Inc.
Intended status: Standards Track August 27, 2015
Expires: February 28, 2016

 Clarifications to the Dynamic Updates in the Domain Name System (DNS
 UPDATE) specification
 draft-spacek-dnsop-update-clarif-01

Abstract

 This document clarifies interaction among Dynamic Updates in the
 Domain Name System (DNS UPDATE), Classless IN-ADDR.ARPA delegation,
 and Secure Domain Name System (DNS) Dynamic Update in the presence of
 CNAME/DNAME redirections.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 28, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Spacek Expires February 28, 2016 [Page 1]

Internet-Draft DNS UPDATE clarifications August 2015

Table of Contents

 1. Introduction . 2
 2. Document Conventions . 2
 3. Problem Description . 3
 4. Clarification to Requestor Behaviour 3
 5. IANA Considerations . 4
 6. Security Considerations 4
 7. Normative References . 4
 Author’s Address . 5

1. Introduction

 This document clarifies interaction among Dynamic Updates in the
 Domain Name System (DNS UPDATE) [RFC2136], Classless IN-ADDR.ARPA
 delegation [RFC2317], and Secure Domain Name System (DNS) Dynamic
 Update [RFC3007].

 It was identified that common implementations using DNS update
 protocol often ignore existence of CNAME/DNAME redirections and, as a
 result, fail to update records if redirection is used. One common
 example is failure to update PTR records in classless IN-ADDR.ARPA
 zones.

 [RFC2317] describes how to use the CNAME records in IN-ADDR.ARPA DNS
 zones to split administrative control over IN-ADDR.ARPA data for
 classless networks. The described method is perfectly compatible
 with standard DNS resolution but DNS update requests need special
 handling described in this document.

 This clarification is applicable to parties wanting to update records
 in IN-ADDR.ARPA and other zones without changing existing CNAME/DNAME
 redirections. A typical example are PTR record updates in zones
 which might potentially use [RFC2317]. This clarification is not
 applicable to cases where the purpose of the DNS update is to change
 CNAME/DNAME redirection.

2. Document Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Terms "requestor", "update message", and names of update message’s
 sections are used in the same sense as in [RFC2136].

 Examples involving IN-ADDR.ARPA zone and PTR records are referring to
 [RFC2317].

Spacek Expires February 28, 2016 [Page 2]

Internet-Draft DNS UPDATE clarifications August 2015

3. Problem Description

 The problem described herein typically occurs when an implementation
 intends to update resource records resolvable by using particular
 owner name while keeping all CNAME/DNAME redirections intact. In
 other words, the purpose of the update is to change resource records
 associated with terminal node of (potential) chain of redirections
 starting at a known owner name.

 Typically, this is the case when the resource records are associated
 with a known owner name or an owner name that is derived from data
 obtained outside of DNS. For example, implementations often
 translate IPv4 address to DNS owner name using the algorithm from
 [RFC1034] section 5.2.1.4:

 192.0.2.1 -> 1.2.0.192.in-addr.arpa.

 The problem is that implementations often use this original node name
 in an Update Message without checking for redirections. If the
 original owner name contains redirection, then this behavior results
 in an attempt to add or delete another record to or from a node that
 already contains the CNAME record, and the update fails.

 Such inappropriately constructed update request will be silently
 ignored in accordance with [RFC2136] section 3.4.2.2. Alternatively,
 an error will be reported to the requestor if the non-existence of
 the CNAME record was added as a prerequisite to the Update Message.

4. Clarification to Requestor Behaviour

 Please see applicability note in Introduction (Section 1, Paragraph
 4).

 A Requestor MUST resolve (canonicalize) the original owner name (e.g.
 the one derived from an IPv4 address) to a canonical owner name
 before constructing the Update Message. The requestor MUST follow
 whole chain of redirections until the terminal node of the chain is
 reached and use canonical name found at the terminal node.
 Implementations MUST detect infinite loops.

 Canonical owner name MUST be used instead of the original owner name
 in the resulting Update Message:

 o All names used in the Prerequisite and Update sections MUST be
 canonicalized as specified above. Only prerequisites concerning
 the CNAME or DNAME records are an exception to this rule and
 should not be canonicalized.

Spacek Expires February 28, 2016 [Page 3]

Internet-Draft DNS UPDATE clarifications August 2015

 o ZNAME in the Zone Section has to contain the name of the zone that
 encloses the canonical owner names.

 o An implementation MAY chose to use canonicalized names in RDATA
 and an Additional Section. This is an application specific
 decision.

5. IANA Considerations

 This draft does not involve IANA Considerations.

6. Security Considerations

 Canonicalization process changes the owner name which is going to be
 affected by the update. An active attacker might interfere with the
 canonicalization process and trick the requestor to update a node of
 the attacker’s choice if the canonicalization process is not secured
 by using DNSSEC or by other means.

 Security properties of DNS updates using only DNS UPDATE [RFC2136]
 without any security mechanisms on top of it are vulnerable anyway
 because an active attacker can very well modify the update message
 itself.

 Canonicalization generally increases overall risk for implementations
 of Secure DNS Dynamic Update [RFC3007] because an attacker might have
 a chance to modify the owner name in an Update Message before the
 message is signed by the requestor. An implementation might decide
 to accept canonicalized names only on condition that the overall
 security status of the canonicalization process is sufficient
 according to the local policy. Because the chain of redirections
 might involve multiple DNS zones, implementations MUST use the lowest
 security status from all links in the chain of redirections when
 doing security decisions.

 For example, a strict implementation might accept canonicalized names
 only on condition that all redirections were secured by DNSSEC and
 the security state of all redirections was "secure". Another
 implementation might decide that security checks on a server side are
 sufficient, so requestors will accept canonical names obtained using
 insecure protocols. In case of PTR records, a server might require
 the TCP transport and map an IP address of the requestor to the
 canonical owner name and/or check data in an Update Message with the
 requestor’s identity.

7. Normative References

Spacek Expires February 28, 2016 [Page 4]

Internet-Draft DNS UPDATE clarifications August 2015

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, November 1987.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2136] Vixie, P., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",
 RFC 2136, April 1997.

 [RFC2317] Eidnes, H., de Groot, G., and P. Vixie, "Classless IN-
 ADDR.ARPA delegation", BCP 20, RFC 2317, March 1998.

 [RFC3007] Wellington, B., "Secure Domain Name System (DNS) Dynamic
 Update", RFC 3007, November 2000.

Author’s Address

 Petr Spacek
 Red Hat, Inc.

 Email: pspacek@redhat.com

Spacek Expires February 28, 2016 [Page 5]

Internet Engineering Task Force D. Wessels
Internet-Draft Verisign Labs
Intended status: Standards Track July 29, 2015
Expires: January 30, 2016

 The EDNS Key Tag Option
 draft-wessels-edns-key-tag-00

Abstract

 The DNS Security Extensions (DNSSEC) were developed to provide origin
 authentication and integrity protection for DNS data by using digital
 signatures. These digital signatures can be verified by building a
 chain-of-trust starting from a trust anchor and proceeding down to a
 particular node in the DNS. This document specifies a way for
 validating end-system resolvers to signal to a server which keys are
 referenced in their chain-of-trust. The extensions allow zone
 administrators to monitor the progress of rollovers in a DNSSEC-
 signed zone.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 30, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Wessels Expires January 30, 2016 [Page 1]

Internet-Draft EDNS Key Tag Option July 2015

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Requirements Terminology 3
 3. Terminology . 3
 4. Option Format . 4
 5. Use By Queriers . 4
 5.1. Stub Resolvers . 5
 5.1.1. Validating Stub Resolvers 5
 5.1.2. Non-validating Stub Resolvers 6
 5.2. Recursive Resolvers . 6
 5.2.1. Validating Recursive Resolvers 6
 5.2.2. Non-validating Recursive Resolvers 6
 6. Use By Responders . 6
 7. IANA Considerations . 7
 8. Security Considerations . 7
 9. Privacy Considerations . 7
 10. Acknowledgments . 8
 11. References . 8
 11.1. Normative References 8
 11.2. Informative References 9
 Author’s Address . 9

Wessels Expires January 30, 2016 [Page 2]

Internet-Draft EDNS Key Tag Option July 2015

1. Introduction

 The DNS Security Extensions (DNSSEC) [RFC4033], [RFC4034] and
 [RFC4035] were developed to provide origin authentication and
 integrity protection for DNS data by using digital signatures.
 DNSSEC uses Key Tags to efficiently match signatures to the keys from
 which they are generated. The Key Tag is a 16-bit value computed
 from the RDATA portion of a DNSKEY RR using a formula not unlike a
 ones-complement checksum. RRSIG RRs contain a Key Tag field whose
 value is equal to the Key Tag of the DNSKEY RR that validates the
 signature.

 Likewise, Delegation Signer (DS) RRs also contain a Key Tag field
 whose value is equal to the Key Tag of the DNSKEY RR to which it
 refers.

 This draft sets out to specify a way for validating end-system
 resolvers to tell a server in a DNS query which DNSSEC key(s) they
 would use to validate the expected response. This is done using the
 new EDNS option specified below in Section 4 for use in the OPT
 meta-RR [RFC6891]. This new EDNS option code is OPTIONAL to
 implement and use.

 This proposed EDNS option serves to measure the acceptance and use of
 new trust anchors and key signing keys (KSKs). This signaling option
 can be used by zone administrators as a gauge to measure the
 successful deployment of new keys. This is of particular interest
 for the DNS root zone in the event of key and/or algorithm rollovers
 which relies on [RFC5011] to automatically update a validating end-
 system’s trust anchor.

 This draft does not seek to introduce another process for rolling
 keys or updating trust anchors. Rather, this document specifies a
 means by which a client query can signal the set of keys that a
 client uses for DNSSEC validation.

2. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Terminology

Wessels Expires January 30, 2016 [Page 3]

Internet-Draft EDNS Key Tag Option July 2015

 Trust Anchor: A configured DNSKEY RR or DS RR hash of a DNSKEY RR.
 A validating security-aware resolver uses this public key or hash
 as a starting point for building the authentication chain to a
 signed DNS response. In general, a validating resolver will have
 to obtain the initial values of its trust anchors via some secure
 or trusted means outside the DNS protocol. Presence of a trust
 anchor also implies that the resolver should expect the zone to
 which the trust anchor points to be signed. (quoted from [RFC4033]
 Section 2)

 Key Tag: A 16-bit integer that identifies and enables efficient
 selection of DNSSEC public keys. A Key Tag value can be computed
 over the RDATA of a DNSKEY RR. The Key Tag field in the RRSIG and
 DS records can be used to help select the corresponding DNSKEY RR
 efficiently when more than one candidate DNSKEY RR is available.
 For most algorithms the Key Tag is a simple 16-bit modular sum of
 the DNSKEY RDATA. See [RFC4034] Appendix B.

4. Option Format

 The edns-key-tag option is encoded as follows:

 0 8 16
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | OPTION-CODE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | OPTION-LENGTH |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | KEY-TAG |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ... /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 where:

 OPTION-CODE: The EDNS0 option code assigned to edns-key-tag, [TBD].

 OPTION-LENGTH: The value 2 x number of key-tag values present.

 KEY-TAG: One or more 16-bit Key Tag values ([RFC4034], Appendix B).

5. Use By Queriers

 A validating end-system resolver sets the edns-key-tag option in the
 OPT meta-RR when sending a DNSKEY query. The validating end-system
 resolver SHOULD also set the DNSSEC OK bit [RFC4034] to indicate that

Wessels Expires January 30, 2016 [Page 4]

Internet-Draft EDNS Key Tag Option July 2015

 it wishes to receive DNSSEC RRs in the response.

 A DNS client MUST NOT include the edns-key-tag option for non-DNSKEY
 queries.

 The KEY-TAG value(s) included in the edns-key-tag option represent
 the Key Tag of the Trust Anchor or DNSKEY RR that will be used to
 validate the expected response. When the client sends a DNSKEY
 query, the edns-key-tag option represents the Key Tag(s) of the
 KSK(s) of the zone for which the server is authoritative. A
 validating end-system resolver learns the Key Tag(s) of the KSK(s)
 from the zone’s DS record(s) (found in the parent), or from a
 configured trust anchor.

 A DNS client SHOULD include the edns-key-tag option when issuing a
 DNSKEY query for a zone corresponding to a configured Trust Anchor.

 A DNS client MAY include the edns-key-tag option when issuing a
 DNSKEY query for a non-Trust Anchor zone (i.e., Key Tags learned via
 DS records). Since some DNSSEC validators implement bottom-up
 validation, non-Trust Anchor Key Tags zone might not be known at the
 time of the query. Such a validator can include the edns-key-tag
 option based on previously cached data.

 A DNS client MUST NOT include Key Tag(s) for keys which are not
 learned via either configured Trust Anchor or DS records.

 Since the edns-key-tag option is only set in the query, if a client
 sees these options in the response, no action needs to be taken and
 the client MUST ignore the option values.

5.1. Stub Resolvers

 Typically, stub resolvers rely on an upstream recursive server (or
 cache) to provide a response. Optimal setting of the edns-key-tag
 option depends on whether the stub resolver elects to perform its own
 validation.

5.1.1. Validating Stub Resolvers

 A validating stub resolver sets the DNSSEC OK (DO) bit [RFC4034] to
 indicate that it wishes to receive additional DNSSEC RRs (i.e., RRSIG
 RRs) in the response. Such validating resolvers SHOULD include the
 edns-key-tag option in the OPT RR when sending a DNSKEY query.

Wessels Expires January 30, 2016 [Page 5]

Internet-Draft EDNS Key Tag Option July 2015

5.1.2. Non-validating Stub Resolvers

 The edns-key-tag option MUST NOT be included by non-validating stub
 resolvers.

5.2. Recursive Resolvers

5.2.1. Validating Recursive Resolvers

 A validating recursive resolver sets the edns-key-tag option when
 performing recursion based on relevant keys it knows and any edns-
 key-tag values in the stub client query. When the recursive server
 receives a query with the option set, the recursive server SHOULD set
 the edns-key-tag list for any outgoing iterative queries for that
 resolution chain to a union of the stub client’s Key Tag(s) and the
 validating recursive resolver’s Key Tag(s). For example, if the
 recursive resolver’s Key Tag list is (19036, 12345) and the stub’s
 list is (19036, 34567), the final edns-key-tag list would be (19036,
 12345, 34567).

 If the client included the DO and Checking Disabled (CD) bits, but
 did not include the edns-key-tag option in the query, the validating
 recursive resolver MAY include the option with its own Key Tag values
 in full.

 Validating recursive resolvers MUST NOT set the edns-key-tag option
 in the final response to the stub client.

5.2.2. Non-validating Recursive Resolvers

 Recursive resolvers that do not validate responses SHOULD copy the
 edns-key-tag option seen in received queries, as they represent the
 wishes of the validating downstream resolver that issued the original
 query.

6. Use By Responders

 An authoritative name server receiving queries with the edns-key-tag
 option MAY log or otherwise collect the Key Tag values to provide
 information to the zone operator.

 A responder MUST NOT include the edns-key-tag option in any DNS
 response.

Wessels Expires January 30, 2016 [Page 6]

Internet-Draft EDNS Key Tag Option July 2015

7. IANA Considerations

 The IANA is directed to assign an EDNS0 option code for the edns-key-
 tag option from the DNS EDNS0 Option Codes (OPT) registry as follows:

 +-------+--------------+----------+-----------------+
 | Value | Name | Status | Reference |
 +-------+--------------+----------+-----------------+
 | [TBA] | edns-key-tag | Optional | [This document] |
 +-------+--------------+----------+-----------------+

8. Security Considerations

 This document specifies a way for a client to signal its trust anchor
 knowledge to a cache or server. The signals are optional codes
 contained in the OPT meta-RR used with EDNS. The goal of these
 options is to signal new trust anchor uptake in client code to allow
 zone administrators to know when it is possible to complete a key
 rollover in a DNSSEC-signed zone.

 There is a possibility that an eavesdropper or server could infer the
 validator in use by a client by the Key Tag list seen in queries.
 This may allow an attacker to find validators using old, possibly
 broken, keys. It could also be used to identify the validator or
 narrow down the possible validator implementations in use by a
 client, which could have a known vulnerability that could be
 exploited by the attacker.

 Consumers of data collected from the edns-key-tag option are advised
 that provided Key Tag values might be "made up" by some DNS clients
 with malicious or at least mischievous intentions.

 DNSSEC does not require keys in a zone to have unique Key Tags.
 During a rollover there is a small possibility that an old key and a
 new key will have identical Key Tag values. Zone operators relying
 on the edns-key-tag mechanism SHOULD take care to ensure that new
 keys have unique Key Tag values.

9. Privacy Considerations

 This proposal adds additional "signaling" to DNS queries in the form
 of Key Tag values. While Key Tag values themselves are not
 considered private information, it may be possible for an
 eavesdropper to use Key Tag values as a fingerprinting technique to
 identify particular DNS validating clients. This may be especially
 true if the validator is configured with trust anchor for zones in

Wessels Expires January 30, 2016 [Page 7]

Internet-Draft EDNS Key Tag Option July 2015

 addition to the root zone.

 A validating end-system resolver need not transmit the edns-key-tag
 option in every applicable query. Due to privacy concerns, such a
 resolver MAY choose to transmit the edns-key-tag option for a subset
 of queries (e.g., every 25th time), or by random chance with a
 certain probability (e.g., 5%).

 Implementations of this specification MAY be administratively
 configured to only transmit the edns-key-tag option for certain
 zones. For example, the software’s configuration file may specify a
 list of zones for which use of the option is allowed or denied.
 Since the primary motivation for this specification is to provide
 operational measurement data for root zone key rollovers, it is
 RECOMMENDED that implementations at least include the edns-key-tag
 option for root zone DNSKEY queries.

10. Acknowledgments

 This document was inspired by and borrows heavily from [RFC6975] by
 Scott Rose and Steve Crocker. The author would like to thank to
 Casey Deccio and Burt Kalisky for early feedback.

11. References

11.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <http://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <http://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <http://www.rfc-editor.org/info/rfc4033>.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.

Wessels Expires January 30, 2016 [Page 8]

Internet-Draft EDNS Key Tag Option July 2015

 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <http://www.rfc-editor.org/info/rfc4034>.

 [RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
 <http://www.rfc-editor.org/info/rfc4035>.

 [RFC6891] Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891, DOI 10.17487/
 RFC6891, April 2013,
 <http://www.rfc-editor.org/info/rfc6891>.

11.2. Informative References

 [RFC5011] StJohns, M., "Automated Updates of DNS Security (DNSSEC)
 Trust Anchors", STD 74, RFC 5011, DOI 10.17487/RFC5011,
 September 2007, <http://www.rfc-editor.org/info/rfc5011>.

 [RFC6975] Crocker, S. and S. Rose, "Signaling Cryptographic
 Algorithm Understanding in DNS Security Extensions
 (DNSSEC)", RFC 6975, DOI 10.17487/RFC6975, July 2013,
 <http://www.rfc-editor.org/info/rfc6975>.

Author’s Address

 Duane Wessels
 Verisign Labs
 12061 Bluemont Way
 Reston, VA 20190

 Phone: +1 703 948-3200
 Email: dwessels@verisign.com
 URI: http://verisigninc.com

Wessels Expires January 30, 2016 [Page 9]

	draft-ietf-dnsop-dnssec-roadblock-avoidance-05
	draft-jabley-dnsop-ordered-answers-00
	draft-jabley-dnsop-refuse-any-01
	draft-muks-dns-message-fragments-00
	draft-muks-dnsop-dns-message-checksums-01
	draft-ogud-dnsop-maintain-ds-00
	draft-spacek-dnsop-update-clarif-01
	draft-wessels-edns-key-tag-00

