
SFC R. Penno
Internet-Draft C. Pignataro
Intended status: Standards Track C. Yen
Expires: October 31, 2016 E. Wang
 K. Leung
 Cisco Systems
 D. Dolson
 Sandvine
 April 29, 2016

 Packet Generation in Service Function Chains
 draft-penno-sfc-packet-03

Abstract

 Service Functions (e.g., Firewall, NAT, Proxies and Intrusion
 Prevention Systems) generate packets in the reverse flow direction to
 the source of the current in-process packet/flow. In this document
 we discuss and propose how to support this required functionality
 within the SFC framework.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 31, 2016.

Penno, et al. Expires October 31, 2016 [Page 1]

Internet-Draft SFC packet reverse April 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Problem Statement . 3
 3. Definitions and Acronyms 3
 4. Assumptions . 4
 5. Service Function Behavior 5
 5.1. SF receives Reverse Forwarding Information 6
 5.2. SF requests SFF cooperation 7
 5.2.1. OAM Header . 7
 5.2.2. Service Function Forwarder Behavior 8
 5.2.3. Reserved bit . 9
 5.3. Classifier Encodes Information 9
 5.3.1. Symmetric Service Paths 9
 5.3.2. Symmetric Service Paths, Optimized 13
 5.3.3. Analysis . 15
 5.4. Algorithmic Reversed Path ID Generation 16
 5.4.1. Same Path-ID and Disjoint Index Spaces 16
 5.4.2. Flip Path-Id and Index High Order bits 17
 6. Asymmetric Service Paths 18
 7. Metadata . 21
 7.1. Service-Path-Invariant Metadata 21
 7.2. Service-Path-Default Metadata 21
 7.3. Bidirectional Clonable Metadata 22
 7.4. Unidirectional Clonable Metadata 22
 7.5. Service-Function-Mastered Metadata 23
 7.6. Metadata from Reclassification 23
 8. Other solutions . 23
 9. Implementation . 24
 10. IANA Considerations . 24
 11. Security Considerations 24
 12. Acknowledgements . 24
 13. Changes . 24

Penno, et al. Expires October 31, 2016 [Page 2]

Internet-Draft SFC packet reverse April 2016

 14. References . 24
 14.1. Normative References 24
 14.2. Informative References 25
 Authors’ Addresses . 25

1. Introduction

 Service Functions (e.g., Firewall, NAT, Proxies and Intrusion
 Prevention Systems) generate packets in the reverse flow direction
 destined to the source of the current in-process packet/flow. In
 some cases, devices generate packets without any in-process packet.
 Packet generation is a basic intrinsic functionality and therefore
 needs to be supported in a service function chaining deployment.

2. Problem Statement

 The challenge of this functionality in service chain environments is
 that generated packets need to traverse in the reverse order the same
 Service Functions traversed by original packet that triggered the
 packet generation.

 Although this might seem to be a straightforward problem, on further
 inspection there are a few interesting challenges that need to be
 solved. First and foremost a few requirements need to be met in
 order to allow a packet to make its way through back to its source
 through the service path:

 o A symmetric path ID needs to exist. Symmetric path is discussed
 in [SymmetricPaths]

 o The SF needs to be able to encapsulate such error or proxy packets
 in a encapsulation transport such as VXLAN-GPE
 [I-D.ietf-nvo3-vxlan-gpe] + NSH header [I-D.ietf-sfc-nsh]

 o The SF needs to be able to determine, directly or indirectly, the
 symmetric path ID and associated next service-hop index or,
 alternatively, indicate reverse path for the service path ID in
 the original packet

3. Definitions and Acronyms

 The reader should be familiar with the terms contained in
 [I-D.ietf-sfc-nsh] ,[I-D.ietf-sfc-architecture] and
 [I-D.ietf-nvo3-vxlan-gpe]

Penno, et al. Expires October 31, 2016 [Page 3]

Internet-Draft SFC packet reverse April 2016

4. Assumptions

 We make the following assumption throughout this document

 1. An SF could be connected to more than one SFF directly. In other
 words, a SF can be multi-homed and each connection can use
 different encapsulations.

 2. After forwarding a packet to an SF, the SFF always has
 connectivity to the next hop SFF to complete the path. This
 means the following Figure 1 scenario is not permitted. (SFF2
 cannot complete the forward path which contains SFF3 and
 potentially SFs connected to SFF3.)

 .-. .-.
 / \ / \
 (SF1) (SF2)
 \ / \ / \
 ‘+’ ‘+’ \
 | | \
 | | \
 +--+---+ +--+---+ \+------+
 ...---+ SFF1 +------+ SFF2 | | SFF3 +---...
 +------+ +--+---+ +------+
 |
 |
 +-----...

 RSFP Forward -> SFF1 : SF1 : SFF1 : SFF2 : SF2 : SFF3 : ...

 Figure 1: Arrangement not supported

 3. Forward and reverse paths may be required to utilize different
 service function forwarders. In the Figure 2 below, if SF2 is
 directly connected to SFF2A and SFF2B, there could be a case that
 SFF2A only has the forwarding rules for the forward path, and
 SFF2B only has the forwarding rules for the reverse path.

Penno, et al. Expires October 31, 2016 [Page 4]

Internet-Draft SFC packet reverse April 2016

 .-. .-. .-.
 / \ / \ / \
 (SF1) (SF2) (SF3)
 \ /\ \ /\ \ /\
 ‘+’ \ ‘+’ \ ‘+’ \
 | \ | \ | \
 | | | | | |
 +---+---+ | +-------+ | +---+---+ |
 ...---+ SFF1A +-|-----+ SFF2A +-|-----+ SFF3A +-|---...
 +-------+ | +-------+ | +-------+ |
 | | |
 +---+---+ +---+---+ +---+---+
 ...---+ SFF1B +-------+ SFF2B +-------+ SFF3B +-----...
 +-------+ +-------+ +-------+

 Symmetric Paths:

 RSFP Forward -> SFF1A : SF1 : SFF1A : SFF2A : SF2 :
 SFF2A : SFF3A : SF3 : SFF3A ...
 RSFP Reverse <- SFF1B : SF1 : SFF1B : SFF2B : SF2 :
 SFF2B : SFF3B : SF3 : SFF3B

 Asymmetric Paths (skipping SF2 on reverse):

 RSFP Forward -> SFF1A : SF1 : SFF1A : SFF2A : SF2 : SFF2A :
 SFF3A : SF3 : SFF3A ...
 RSFP Reverse <- SFF1B : SF1 : SFF1B : SFF2B :
 SFF3B : SF3 : SFF3B

 Figure 2: Supported SFF arrangement

 Assumption #2 allows an SF to always bounce a packet back to the SFF
 that originally sent the packet. Due to #3, an SF has to determine
 which SFF to send the generated packet to. It cannot treat generated
 packet the same way as forwarded packet, as in #2.

 These assumptions make sense for certain implementation. However,
 some implementations are free of the constraints in #3, which will
 simplify the SF logic in handling generated traffic.

5. Service Function Behavior

 When a Service Function wants to send packets to the reverse
 direction back to the source it needs to know the symmetric service
 path ID (if it exists) and associated service index. This
 information is not available to Service Functions since they do not

Penno, et al. Expires October 31, 2016 [Page 5]

Internet-Draft SFC packet reverse April 2016

 need to perform a next-hop service lookup. There are four
 recommended approaches to solve this problem and we assume different
 implementations might make different choices.

 1. The SF can receive service path forwarding information in the
 same manner a SFF does.

 2. The SF can send the packet in the forward direction but set
 appropriate bits in the NSH header requesting a SFF to send the
 packet back to the source

 3. The classifier can encode all information the SF needs to send a
 reverse packet in the metadata header

 4. The controller uses a deterministic algorithm when creating the
 associated symmetric path ID and service index.

 We will discuss the ramifications of these approaches in the next
 sections.

5.1. SF receives Reverse Forwarding Information

 This solution is easy to understand but brings a change on how
 traditionally service functions operate. It requires SFs to receive
 and process a subset of the information a SFF does. When a SF wants
 to send a packet to the source, the SF uses information conveyed via
 the control plane to impose the correct NSH header values.

 Advantages:

 o Changes are restricted to SF and controller, no changes to SFF

 o Incremental deployment possible

 o No protocol between SF and SFF, which avoids interoperability
 issues

 o No performance penalty on SFF due to in or out-of-band protocol

 Disadvantages:

 o SFs need to process and understand Rendered Service Path messages
 from controller

 This solution can be characterized by putting the burden on the SF,
 but that brings the advantage of being self-contained (as well as
 providing a mechanism for other features). Also, many SFs have

Penno, et al. Expires October 31, 2016 [Page 6]

Internet-Draft SFC packet reverse April 2016

 policy or classification function which in fact makes them a
 classifier and SF combination in practice.

5.2. SF requests SFF cooperation

 These solutions can be characterized by distributing the burden
 between SF and SFF. In this section we discuss two possible in-band
 solutions: using OAM header and using a reserved bit ’R’ in the NSH
 header.

5.2.1. OAM Header

 When the SF needs to send a packet in the reverse direction it will
 set the OAM bit in the NSH header and use an OAM protocol
 [I-D.penno-sfc-trace] to request that the SFF impose a new, reverse
 path NSH header. Post imposition, the SFF forwards the packet
 correctly.

 SF Reverse Packet Request

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+\
 |Ver|1|C|R|R|R|R|R|R| Length | MD-type=0x1 | OAM Protocol | |
 +-+ |
 | Service Path ID | Service Index | |
 +-+ |
 | Mandatory Context Header | |S
 +-+ |F
 | Mandatory Context Header | |C
 +-+ |
 | Mandatory Context Header | |
 +-+ |
 | Mandatory Context Header | |
 +-+ <
 |Rev. Pkt Req | Original NSH headers (optional) | |O
 +-+ |A
 |M
 /

 (postamble)

 Ver: 1

 OAM Bit: 1

 Length: 6

Penno, et al. Expires October 31, 2016 [Page 7]

Internet-Draft SFC packet reverse April 2016

 MD-Type: 1

 Next Protocol: OAM Protocol

 Rev. Pkt Req: 1 Reverse packet request

 Advantages:

 o SF does not need to process and understand control plane path
 messages.

 o Clear division of labor between SF and SFF.

 o Extensible

 o Original NSH header could be carried inside OAM protocol which
 leaves metadata headers available for SF-SFF communication.

 Disadvantages:

 o SFFs need to process and understand a new OAM message type

 o Possible interoperability issues between SF-SFF

 o SFF Performance penalty

5.2.2. Service Function Forwarder Behavior

 In the case where the SF has all the information to send the packet
 back to the origin no changes are needed at the SFF. When an SF
 requests SFF cooperation the SFF MUST be able to process the OAM
 message used to signal reverse path forwarding.

 o Process/decode OAM message

 o Examine and act on any metadata present in the NSH header

 o Examine its forwarding tables and find the reverse path-id and
 index of the next service-hop

 The reverse path can be found in the Rendered Service Path Yang model
 [RSPYang] that conveyed to the SFF when a path is constructed.

 If a SFF does not understand the OAM message it just forwards the
 packet based on the original path-id and index. Since it is a
 special OAM packet, it tells other SFFs and SFs that they should
 process it differently. For example, a downstream intrusion
 detection SF might not associate flow state with this packet.

Penno, et al. Expires October 31, 2016 [Page 8]

Internet-Draft SFC packet reverse April 2016

5.2.3. Reserved bit

 In this solution the SF sets a reversed bit in the NSH that carries
 the same semantic as in the OAM solution discussed previously. This
 solution is simpler from a SF perspective but requires allocating one
 of the reserved bits. Another issue is that the metadata in the
 original packet might be overwritten by SFs or SFFs in the path.

 When a SFF receives a NSH packet with the reversed bit set, it shall
 look up a preprogrammed table to map the Service Path ID and Index in
 the NSH packet into the reverse Service Path ID and Index. The SFF
 would then use the new reverse ID and Index pair to determine the SF/
 SFF which is in the reverse direction.

 Advantages:

 o No protocol header overhead

 o Limited performance impact on SF

 Disadvantages:

 o Use of a reserved bit

 o SFF Performance penalty

 o Not extensible

5.3. Classifier Encodes Information

 This solution allows the Service Function to send a reverse packet
 without interactions with the controller or SFF, therefore it is very
 attractive. Also, it does not need to have the OAM bit set or use a
 reserved bit. The penalty is that for a MD Type-1 packet a
 significant amount of information (48 bits) need to be encoded in the
 metadata section of the packet and this data cannot be overwritten.
 Ideally this metadata would need to be added by the classifier.

 The Rendered Service Path yang model [RSPYang] already provides all
 the necessary information that a classifier would need to add to the
 metadata header. An explanation of this method is better served with
 an examples.

5.3.1. Symmetric Service Paths

 Figure 3 below shows a simple SFC with symmetric service paths
 comprising three SFs.

Penno, et al. Expires October 31, 2016 [Page 9]

Internet-Draft SFC packet reverse April 2016

 SFP2 Forward........................>

 Forward SI 253 252 251

 +---+ .-. .-. .-. +---+
 | | / \ / \ / \ | |
 | A +-------(SF1)------(SF2)------(SF3)----------+ B |
 | | \ / \ / \ / | |
 +---+ ‘-’ ‘-’ ‘-’ +---+

 Reverse SI 253 254 255

 <....................SFP3 (Reverse of SFP2)....................

 SFP2 Forward -> SF1 : SF2 : SF3
 SFP3 Reverse <- SF1 : SF2 : SF3

 RSP2 Forward -> SF1 : SF2 : SF3
 RSP3 Reverse <- SF1 : SF2 : SF3

 Figure 3: SFC example with symmetric path

 Below we see the JSON objects of the two symmetric paths depicted
 above.

 RENDERED_SERVICE_PATH_RESP_JSON = """
 {
 "rendered-service-paths": {
 "rendered-service-path": [
 {
 "name": "SFC1-SFP1-Path-2-Reverse",
 "transport-type": "service-locator:vxlan-gpe",
 "parent-service-function-path": "SFC1-SFP1",
 "path-id": 3,
 "service-chain-name": "SFC1",
 "starting-index": 255,
 "rendered-service-path-hop": [
 {
 "hop-number": 0,
 "service-index": 255,
 "service-function-forwarder-locator": "eth0",
 "service-function-name": "SF3",
 "service-function-forwarder": "SFF3"
 },
 {
 "hop-number": 1,
 "service-index": 254,

Penno, et al. Expires October 31, 2016 [Page 10]

Internet-Draft SFC packet reverse April 2016

 "service-function-forwarder-locator": "eth0",
 "service-function-name": "SF2",
 "service-function-forwarder": "SFF2"
 },
 {
 "hop-number": 2,
 "service-index": 253,
 "service-function-forwarder-locator": "eth0",
 "service-function-name": "SF1",
 "service-function-forwarder": "SFF1"
 }
],
 "symmetric-path-id": 2
 },
 {
 "name": "SFC1-SFP1-Path-2",
 "transport-type": "service-locator:vxlan-gpe",
 "parent-service-function-path": "SFC1-SFP1",
 "path-id": 2,
 "service-chain-name": "SFC1",
 "starting-index": 253,
 "rendered-service-path-hop": [
 {
 "hop-number": 0,
 "service-index": 253,
 "service-function-forwarder-locator": "eth0",
 "service-function-name": "SF1",
 "service-function-forwarder": "SFF1"
 },
 {
 "hop-number": 1,
 "service-index": 252,
 "service-function-forwarder-locator": "eth0",
 "service-function-name": "SF2",
 "service-function-forwarder": "SFF2"
 },
 {
 "hop-number": 2,
 "service-index": 251,
 "service-function-forwarder-locator": "eth0",
 "service-function-name": "SF3",
 "service-function-forwarder": "SFF3"
 }
],
 "symmetric-path-id": 3
 }
]
 }

Penno, et al. Expires October 31, 2016 [Page 11]

Internet-Draft SFC packet reverse April 2016

 }"""

 We will assume the classifier will encode the following information
 in the metadata:

 o symmetric path-id = 2 (24 bits)

 o symmetric starting index = 253 (8 bits)

 o symmetric number of hops = 3 (8 bits)

 o starting index = 255 (8 bits)

 In the method below we will assume SF will generate a reverse packet
 after decrementing the index of the current packet. We will call
 that current index.

 If SF1 wants to generate a reverse packet it can find the appropriate
 index by applying the following algorithm:

current_index = 252

remaining_hops = symmetric_number_hops - (starting_index - current_index)
remaining_hops = 3 - (255 - 252) = 0
reverse_service_index = symmetric_starting_index - remaining_hops - 1
reverse_service_index = next_service_hop_index = 253 - 0 - 1 = 252
The "-1" is necessary for the service index to point to the next service_hop.

 If SF2 wants to send reverse packet:

 current index = 253

 remaining_hops = 3 - (255 - 253) = 1
 reverse_service_index = next_service_hop_index = 253 - 1 - 1 = 251

 If SF3 wants to send reverse packet:

 current index = 254

 remaining_hops = 3 - (255 - 254) = 2
 reverse_service_index = next_service_hop_index = 253 - 2 - 1 = 250

 The following tables in Figure 4 summarize the service indexes as
 calculated by each SF in the forward and reverse paths respectively.

Penno, et al. Expires October 31, 2016 [Page 12]

Internet-Draft SFC packet reverse April 2016

 Fwd SI = forward Service Index
 Cur SI = Current Service Index
 Gen SI = Service Index for Generated packets

 RSFP1 Forward -
 Number of Hops: 3
 Forward Starting Index: 253
 Reverse Starting Index: 255

 +-------+--------+--------+--------+
 | SF | SF1 | SF2 | SF3 |
 +-------+--------+--------+--------+
 |Fwd SI | 253 | 252 | 251 |
 +-------+--------+--------+--------+
 |Cur SI | 252 | 251 | 250 |
 +-------+--------+--------+--------+
 |Gen SI | 252 | 253 | 254 |
 +-------+--------+--------+--------+

 RSFP1 Reverse -
 Number of Hops: 3
 Reverse Starting Index: 255
 Forward Starting Index: 253

 +-------+--------+--------+--------+
 | SF | SF1 | SF2 | SF3 |
 +-------+--------+--------+--------+
 |Rev SI | 253 | 254 | 255 |
 +-------+--------+--------+--------+
 |Cur SI | 252 | 253 | 254 |
 +-------+--------+--------+--------+
 |Gen SI | 252 | 251 | 250 |
 +-------+--------+--------+--------+

 Figure 4: Service indexes generated by each SF in the symmetric
 forward and reverse paths

5.3.2. Symmetric Service Paths, Optimized

 This approach is effectively the same as Section 5.3.1, but with
 redundant information removed such that the reverse-path information
 can be packed into 32 bits. This approach is obtained by observing
 that the same arithmetic is always done on the same constants of
 starting_index, symmetric_starting_index and symmetric_number_hops.

Penno, et al. Expires October 31, 2016 [Page 13]

Internet-Draft SFC packet reverse April 2016

 As before, we require symmetric paths, meaning there are two paths
 that are exactly the reverse of each other. We assume that the
 classifier at each end has available the following information:

 o symmetric path-id (24 bits)

 o starting index (8 bits)

 o symmetric starting index (8 bits)

 o symmetric number of hops, which is the same in both directions (8
 bits)

 The classifier computes, for each path, a "reverse service offset":

 # Compute using 8-bit, two’s-complement arithmetic:
 # (Overflow or underflow are okay)
 reverse_service_offset = symmetric_starting_index
 + starting_index
 - symmetric_number_of_hops

 This reverse_service_offset is an 8-bit value that is encoded in
 metadata along with the 24 bits of reverse_path_id.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | | Reverse |
 | Reverse Path ID | Service |
 | | Offset |
 +-+

 Metadata format of reverse_info_metadata (32 bits)

 We’ll refer to the 32-bit value as reverse_info_metadata. Any
 Service Function may compute the NSH fields of a reverse packet as
 follows from the NSH fields of a forward packet.

 reverse.NSH.Service_Path_ID =
 forward.NSH.reverse_info_metadata.Reverse_Path_ID
 # Compute using 8-bit two’s-complement arithmetic:
 # (Overflow or underflow are okay)
 reverse.NSH.Service_Index :=
 forward.NSH.reverse_info_metadata.Reverse_Service_Offset
 - forward.NSH.Service_Index - 1
 reverse.NSH.reverse_info_metadata.Reverse_Service_Offset =
 forward.NSH.reverse_info_metadata.Reverse_Service_Offset
 reverse.NSH.reverse_info_metadata.Reverse_Path_ID =
 forward.NSH.Service_Path_ID

Penno, et al. Expires October 31, 2016 [Page 14]

Internet-Draft SFC packet reverse April 2016

 As you can see, this approach has the convenient property that the
 reverse_info_metadata can be determined by a Service Function while
 being agnostic about both forward and reverse paths.

 Using the example of Section 5.3.1, these values are used for the
 SFP2 Forward path:

 o starting_index=253

 o symmetric_starting_index=255

 o symmetric_number_of_hops=3

 o reverse_service_offset=(253+255-3)=249 in 8-bit two’s complement
 arithmetic

 At SF2 on the SFP2 Forward path, where the service index is 251 after
 decrementing the index, the reverse service index is calculated as:

 o reverse_service_index = 249-251-1 = 253 using 8-bit two’s
 complement arithmetic

 This is the correct index to forward to SF1 on SFP3.

5.3.3. Analysis

 Advantages of encoding information in the NSH frame:

 o SF does not need to request SFF cooperation or contact controller

 o No SFF performance impact

 Disadvantages:

 o Metadata overhead in case MD-Type 2 is used or use of a metadata
 slot in case MD-Type 1 is used.

 o Relies on classifier to encode metadata information

 o Requires perfectly symmetrical paths. E.g., one direction cannot
 have more SFs than the other direction.

 o If classifier will encode information it needs to receive and
 process rendered service path information

Penno, et al. Expires October 31, 2016 [Page 15]

Internet-Draft SFC packet reverse April 2016

5.4. Algorithmic Reversed Path ID Generation

 In these proposals no extra storage is required from the NSH and SFF
 does not need to know how to handle the reversed packet nor does it
 know about it. Reverse Path is programmed by Orchestrator and used
 by SF having the need to send upstream traffic.

5.4.1. Same Path-ID and Disjoint Index Spaces

 Instead of defining a new Service Path ID, the same Service Path ID
 is used. The Orchestrator must define the reverse chain of service
 using a different range of Service Path Index. It is also assumed
 that the reverse packet must go through the same number of Services
 as its forward path. It is proposed that Service Path Index (SPI)
 1..127 and 255..129 are the exact mirror of each other.

 Here is an example: SF1, SF2, and SF3 are identified using Service
 Path Index (SPI) 8, 7 and 6 respectively.

 Path 100 Index 8 - SF1

 Path 100 Index 7 - SF2

 Path 100 Index 6 - SF3

 Path 100 Index 5 - Terminate

 At the same time, Orchestrator programs SPI 248, 249 and 250 as SF1,
 SF2 and SF3. Orchestrator also programs SPI 247 as "terminate".
 Reverse-SPI = 256 - SPI.

 Path 100 Index 247 - Terminate

 Path 100 Index 248 (256 - 8) - SF1

 Path 100 Index 249 (256 - 7) - SF2

 Path 100 Index 250 (256 - 6) - SF3

 If SF3 needs to send the packet in reverse direction, it calculates
 the new SPI as 256 - 6 (6 is the SPI of the packet) and obtained 250.
 It then subtract the SPI by 1 and send the packet back to SFF

 Subsequently, SFF received the packet and sees the SPI 249. It then
 diverts the packet to SF2, etc. Eventually, the packet SPI will drop
 to 247 and the SFF will strip off the NSH and deliver the packet.

Penno, et al. Expires October 31, 2016 [Page 16]

Internet-Draft SFC packet reverse April 2016

 The same mechanism works even if SF1 later decided to send back
 another upstream packet. The packet can ping-pong between SF1 and
 SF3 using existing mechanism.

 Note that this mechanism is a special case of Section 5.3.2 wherein
 Reverse_Path_ID is the forward path ID and
 Reverse_Service_Offset=255.

 Advantages:

 o No precious NSH area is consumed

 o SF self-contained solution

 o No SFF performance impact and no cooperation needed

 o No Special Classification required

 Disadvantages:

 o SPI range is reduced and may become incompatible with existing
 topology

 o Assumption that the reverse path Service Functions are the same as
 forward path, only in reverse

 o Reverse paths need to use Service Index = 128 for loop detection
 instead of SI = 0.

 In either case, the SF must have the knowledge through Orchestrator
 that the reverse path has been programmed and the method (SPI only or
 SPI + SPID bit) to use.

 The symmetrization mechanism keep reverse path symmetric as described
 in section 6 can be applied in this method as well.

5.4.2. Flip Path-Id and Index High Order bits

 An alternative to reducing Service Path Index range is to make use of
 a different Service Path ID, e.g. the most significant bit. The bit
 can be flipped when the SF needs to send packet in reverse. However,
 the negation of the SPI is still required, e.g. SPI 6 becomes SPI
 134

 This approach is fully compatible with the current NSH protocol
 standard and provides a fully deterministic way of determining
 reverse paths. It is the recommended approach.

Penno, et al. Expires October 31, 2016 [Page 17]

Internet-Draft SFC packet reverse April 2016

 Advantages:

 o No precious NSH area is consumed

 o SF self-contained solution

 o No SFF performance impact and no cooperation needed

 o No Special Classification required

 Disadvantages:

 o Assumption that the reverse path Service Functions are the same as
 forward path, only in reverse

 o Forward and Reverse Path IDs are algorithmically linked and can
 not be chosen arbitrarily.

6. Asymmetric Service Paths

 In real world the forward and reverse paths can be asymmetric,
 comprising different set of SFs or SFs in different orders. The
 following Figure 5 illustrates an example. The forward path is
 composed of SF1, SF2, SF4 and SF5, while the reverse path skips SF5
 and has SF3 in place of SF2.

Penno, et al. Expires October 31, 2016 [Page 18]

Internet-Draft SFC packet reverse April 2016

 . 249 . . 246 .

 . .-. .. .-. .
 / \ / \ SFP1 Forward....>
 (SF2) 247 (SF5)
 Forward SI 250 / \ / \ / \ /\
 / ‘-’ \ / ‘-’ \
 / \ / \
 +---+ .-./ ‘-./ \ +---+
 | | / \ / \ \ | |
 | A +-------(SF1)----------(SF4)-------------+-------------+ B |
 | | \ / \ / | |
 +---+ ‘-’\ ,-’ +---+
 \ /
 \ .-. /
 Reverse SI 251 \ / \ / 254
 <........... (SF3) SFP2 Reverse.....
 . \ / .
 . ‘-’ .
 . .
 . .
 . 253 .

 SFP1 Forward -> SF1 : SF2 : SF4 : SF5
 SFP2 Reverse <- SF1 : SF3 : SF4

 Figure 5: SFC example with asymmetric paths

 An asymmetric SFC can have completely independent forward and reverse
 paths. An SF’s location in the forward path can be different from
 that in the reverse path. An SF may appear only in the forward path
 but not reverse (and vice-versa). In order to use the same algorithm
 to calculate the service index generated by an SF, one design option
 is to insert special NOP SFs in the rendered service paths so that
 each SF is positioned symmetrically in the forward and reverse
 rendered paths. The SFP corresponding to the example above is:

 SFP1 Forward -> SF1 : SF2 : NOP : SF4 : SF5

 SFP2 Reverse <- SF1 : NOP : SF3 : SF4 : NOP

 The NOP SF is assigned with a sequential service index the same way
 as a regular SF. The SFF receiving a packet with the service path ID

Penno, et al. Expires October 31, 2016 [Page 19]

Internet-Draft SFC packet reverse April 2016

 and service index corresponding to a NOP SF should advance the
 service index till the service index points to a regular SF.
 Implementation can use a loopback interface or other methods on the
 SFF to skip the NOP SFs.

 Once the NOP SF is inserted in the rendered service paths, the
 forward and reverse paths become symmetric. The same algorithm can
 be applied by the SFs to generate service indexes in the opposite
 directional path. The following tables list the service indexes
 corresponding to the example above.

 Fwd SI = forward Service Index
 Cur SI = Current Service Index
 Gen SI = Service Index for Generated packets

 RSP1 Forward -
 Number of hops: 5
 Forward Starting Index: 250
 Reverse Starting Index: 255

 +-------+--------+--------+--------+--------+--------+
 | SF | SF1 | SF2 | NOP | SF4 | SF5 |
 +-------+--------+--------+--------+--------+--------+
 |Fwd SI | 250 | 249 | 248 | 247 | 246 |
 +-------+--------+--------+--------+--------+--------+
 |Cur SI | 249 | 248 | 247 | 246 | 245 |
 +-------+--------+--------+--------+--------+--------+
 |Gen SI | 250 | 251 | N/A | 253 | 254 |
 +-------+--------+--------+--------+--------+--------+

 RSP1 Reverse -
 Number of hops: 5
 Reverse Starting Index: 255
 Forward Starting Index: 250

 +-------+--------+--------+--------+--------+--------+
 | SF | SF1 | NOP | SF3 | SF4 | NOP |
 +-------+--------+--------+--------+--------+--------+
 |Rev SI | 251 | 252 | 253 | 254 | 255 |
 +-------+--------+--------+--------+--------+--------+
 |Cur SI | 250 | 251 | 252 | 253 | 254 |
 +-------+--------+--------+--------+--------+--------+
 |Gen SI | 249 | N/A | 247 | 246 | N/A |
 +-------+--------+--------+--------+--------+--------+

Penno, et al. Expires October 31, 2016 [Page 20]

Internet-Draft SFC packet reverse April 2016

 This symmetrization of asymmetric paths could be performed by a
 controller during path creation.

7. Metadata

 A crucial consideration when generating a packet is which metadata
 should be included in the context headers. In some scenarios if the
 metadata is not present the packet will not reach its intended
 destination. Although one could think of many different ways to
 convey this information, we believe the solution should be simple and
 require little or no new Service Function functionality.

 We assume that a Service Function normally needs to know the
 semantics of the context headers in order to perform its functions.
 But clearly knowing the semantics of the metadata is not enough. The
 issue is that although the SF knows the semantics of the metadata
 when it receives a packet, it might not be able to generate or
 retrieve the correct metadata values to insert in the context headers
 when generating a packet. It is usually the classifier that inserts
 the metadata in the context headers.

7.1. Service-Path-Invariant Metadata

 In order to solve this problem we propose the notion of service-path-
 invariant metadata. This is metadata that is the same for all
 packets traversing a certain path. For example, if all packets
 exiting a service-path need to be routed to a certain VPN, the VPN id
 would be a path-invariant metadata.

 To implement this, the controller needs to configure appropriate
 fixed values of the metadata present in the context headers for each
 path identifier in each Service Function that needs to inject
 packets. The Service Function must store this information so that
 when the Service Function generates a packet it can insert the
 minimum required metadata for a packet to reach its destination.

 A disadvantage to path-invariant metadata is that it is a type of
 metadata that adds no information beyond the information available in
 the path identifier itself. The corollary is that if different
 metadata is required, a different service paths must be created.

7.2. Service-Path-Default Metadata

 We also propose the notion of service-path-default metadata. This is
 metadata that could vary for different packets on a path but has a
 default value acceptable for any packet injected onto a certain path.
 For example, metadata might indicate a quality-of-service (QoS)
 treatment, and an operator considers it acceptable for injected

Penno, et al. Expires October 31, 2016 [Page 21]

Internet-Draft SFC packet reverse April 2016

 packets to have a default QoS treatment. It might also be considered
 acceptable to not send a particular type of metadata.

 To implement this, the controller configures appropriate default
 metadata values for each path identifier in Service Functions that
 need to inject packets. The controller may also indicate a
 particular type may be omitted. The Service Function must store this
 information so that it can insert the minimum required metadata for a
 packet to reach its destination.

 The disadvantage of this approach is that it relies on the assumption
 that there is a meaningful default metadata value, which may not
 exist.

7.3. Bidirectional Clonable Metadata

 Some types of metadata may use values applicable to both directions
 of traffic. An example is routing domain, for which an identifier
 indicates a private network such that the value is the same for both
 directions of traffic and may be copied from one packet to another.

 To implement this, the controller must indicate to each Service
 Function that a particular metadata type is bidirectional-clonable.
 The Service Function can therefore clone the metadata value from one
 packet to a new packet that it creates, even in the reverse
 direction. For this type, it is also considered safe to save a copy
 of metadata for the transport flow. (E.g., to retransmit a TCP
 packet using metadata cloned from another TCP packet of the same
 connection.)

 Note that the Service Function need not know the meaning of the
 metadata; it just needs to know it is safe to clone in this manner.

7.4. Unidirectional Clonable Metadata

 Some types of metadata may use values applicable to only one
 direction of traffic, but a value may be cloned from one packet to
 another in the same direction. An example is a destination
 identifier, in which meatadata indicates a network egress point.
 Another example is metadata indicating a property of either the
 source or destination end-point of the packet.

 To implement this, the controller must indicate to each Service
 Function that a particular metadata type is unidirectional-clonable.
 A transport-layer-stateful Service Function can therefore save away
 metadata values that it has witnessed. An injected packet can
 therefore be assigned a clone of metadata taken from an earlier
 packet going in the same direction. For example, a Service Function

Penno, et al. Expires October 31, 2016 [Page 22]

Internet-Draft SFC packet reverse April 2016

 can send a TCP packet using metadata cloned from another TCP packet
 of the same connection and direction.

 Note that the Service Function need not know the meaning of the
 metadata; it just needs to know it is safe to clone in this manner.

 A disadvantage of unidirectional clonable metadata is that a device
 cannot respond to a packet unless it has previously witnessed a
 packet for the same connection in the opposite direction. For
 example, a firewall cannot respond to the first packet of a
 connection (since both directions have not been witnessed). However,
 having seen a full hand-shake, a cache or optimizing proxy can inject
 or retransmit packets.

7.5. Service-Function-Mastered Metadata

 The easiest case to reason about is a type of metadata for which the
 Service Function can provide the appropriate values: specifically the
 metadata that it would be responsible for inserting for all packets
 as part of packet processing. We can assume this is configured by
 Service-Function-Specific methods.

7.6. Metadata from Reclassification

 Finally if the packet needs crucial metadata values that cannot be
 supplied by the methods above then a reclassification is needed.
 This reclassification would need to be done by the classifier that
 would normally process packets in the reverse path or a SFF that had
 the same rules and capabilities. Ideally the first SFF that
 processes the generated packet.

 If a packet needs to be sent to classifier then it should be carried
 inside a NSH OAM packet that in turn is tunneled with a protocol such
 as VXLAN-GPE with the classifier as its tunnel endpoint.

8. Other solutions

 We explored other solution that we deemed too complex or that would
 bring a severe performance penalty:

 o An out-of-band request-response protocol between SF-SFF. Given
 that some service functions need to be able to generate packets
 quite often this will would create a considerable performance
 penalty. Specially given the fact that path-ids (and their
 symmetric counterpart) might change and SF would not be notified,
 therefore caching benefits will be limited.

Penno, et al. Expires October 31, 2016 [Page 23]

Internet-Draft SFC packet reverse April 2016

 o An out-of-band request-response protocol between SF-Controller.
 Given that admin or network conditions can trigger service path
 creation, update or deletions a SF would not be aware of new path
 attributes. The controller should be able to push new information
 as it becomes available to the interested parties.

 o SF (or SFF) punts the packet back to the controller. This
 solution obviously has severe scaling limitations.

9. Implementation

 The solutions "Flip Path-Id and Index High Order bits" and "SF
 receives Reverse Forwarding Information" were implemented in
 Opendaylight.

10. IANA Considerations

 TBD

11. Security Considerations

 Service Functions must be trusted entities, being permitted to
 rewrite service path headers.

12. Acknowledgements

 Paul Quinn, Jim Guichard

13. Changes

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616,
 DOI 10.17487/RFC2616, June 1999,
 <http://www.rfc-editor.org/info/rfc2616>.

Penno, et al. Expires October 31, 2016 [Page 24]

Internet-Draft SFC packet reverse April 2016

14.2. Informative References

 [I-D.ietf-nvo3-vxlan-gpe]
 Kreeger, L. and U. Elzur, "Generic Protocol Extension for
 VXLAN", draft-ietf-nvo3-vxlan-gpe-02 (work in progress),
 April 2016.

 [I-D.ietf-sfc-architecture]
 Halpern, J. and C. Pignataro, "Service Function Chaining
 (SFC) Architecture", draft-ietf-sfc-architecture-11 (work
 in progress), July 2015.

 [I-D.ietf-sfc-nsh]
 Quinn, P. and U. Elzur, "Network Service Header", draft-
 ietf-sfc-nsh-04 (work in progress), March 2016.

 [I-D.penno-sfc-trace]
 Penno, R., Quinn, P., Pignataro, C., and D. Zhou,
 "Services Function Chaining Traceroute", draft-penno-sfc-
 trace-03 (work in progress), September 2015.

 [I-D.penno-sfc-yang]
 Penno, R., Quinn, P., Zhou, D., and J. Li, "Yang Data
 Model for Service Function Chaining", draft-penno-sfc-
 yang-14 (work in progress), January 2016.

 [RSPYang] Opendaylight, , "Rendered Service Path Yang Model",
 February 2011,
 <https://github.com/opendaylight/sfc/blob/master/sfc-
 model/src/main/yang/rendered-service-path.yang>.

 [SymmetricPaths]
 IETF, , "Symmetric Paths", February 2011,
 <https://tools.ietf.org/html/draft-ietf-sfc-architecture-
 11#section-2.2>.

Authors’ Addresses

 Reinaldo Penno
 Cisco Systems
 170 West Tasman Dr
 San Jose CA
 USA

 Email: repenno@cisco.com

Penno, et al. Expires October 31, 2016 [Page 25]

Internet-Draft SFC packet reverse April 2016

 Carlos Pignataro
 Cisco Systems
 170 West Tasman Dr
 San Jose CA
 USA

 Email: cpignata@cisco.com

 Chui-Tin Yen
 Cisco Systems
 170 West Tasman Dr
 San Jose CA
 USA

 Email: tin@cisco.com

 Eric Wang
 Cisco Systems
 170 West Tasman Dr
 San Jose CA
 USA

 Email: ejwang@cisco.com

 Kent Leung
 Cisco Systems
 170 West Tasman Dr
 San Jose CA
 USA

 Email: kleung@cisco.com

 David Dolson
 Sandvine
 408 Albert Street
 Waterloo, ON N2L 3V3
 Canada

 Phone: +1 519 880 2400
 Email: ddolson@sandvine.com

Penno, et al. Expires October 31, 2016 [Page 26]

