
Internet Research Task Force H. Baba

Internet-Draft The University of Tokyo

Intended status: Informational Y. Ishida

Expires: November 18, 2019 Japan Network Enabler Corporation

 T. Amatsu

 Tokyo Electric Power Company, Inc.

 K. Kunitake

 BroadBand Tower, Inc.

 K. Maeda

 Individual Contributor

 May 17, 2019

 Problems in and among industries for the prompt realization of IoT and

 safety considerations

 draft-baba-iot-problems-07

Abstract

 This document contains opinions gathered from enterprises engaging in

 the IoT business as stated in the preceding version hereof, and also

 examines the possibilities of new social problems in the IoT era.

 Recognition of the importance of information security has grown in

 step with the rising use of the Internet. Closer examination reveals

 that the IoT era may see a new direct physical threat to users. For

 instance, the situation at a smart house may lead it to judge that

 the owner has only temporarily stepped out, causing it to unlock the

 front door, which in turn makes it easier for thieves to enter.

 These kinds of scenarios may occur without identity fraud, hacking,

 and other means of compromising information security. Therefore, for

 the purpose of this document, this issue shall be referred to as "IoT

 Safety" to distinguish it from Information Security.

 We believe that it is necessary to deepen our understanding of these

 new IoT-related threats through discussion and ensure there are

 measures to address these threats in the future. At the same time,

 we must also coordinate these measures with the solutions to the

 problems described in the previous version of this document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

Baba, et al. Expires November 18, 2019 [Page 1]

Internet-Draft IoT Problems May 2019

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 18, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3

 2. Technical Challenges . 4

 2.1. Safety, Security and Privacy 4

 2.1.1. Challenges in protecting lives and property from IoT-

 related threats (IoT Safety) 4

 2.1.1.1. Safety of body/life 5

 2.1.1.2. Safety of equipment 5

 2.1.1.3. Proper performance of equipment 5

 2.1.2. Information Security 5

 2.1.3. Privacy in acquiring data 6

 2.2. Challenges posed by data acquisition, data distribution,

 data management and data quantity 7

 2.2.1. Traffic patterns 7

 2.2.2. Acquired mass data 7

 2.2.3. Explosive increase and diversity of data 7

 2.3. Mapping of the physical world and the virtual world . . . 8

 2.3.1. Physically handling acquired data 8

 2.3.2. Data calibration 8

 2.4. Product lifetime, generation management, and the cost of

 equipment updates 8

 2.4.1. Product lifetime 8

 2.4.2. Introducing IoT equipment into commodity equipment . 9

 2.5. Too many related standards and the speed of

 standardization . 9

Baba, et al. Expires November 18, 2019 [Page 2]

Internet-Draft IoT Problems May 2019

 2.5.1. Too many related standards 9

 2.5.2. Speed of standardization 10

 2.6. Interoperability, fault isolation, and total quality

 assurance . 10

 2.6.1. Interoperability 10

 2.6.2. Fault isolation 10

 2.6.3. Quality assurance 11

 2.7. Product design policy 11

 2.7.1. Changes in design policy 11

 2.8. Various technology restrictions within actual usage . . . 11

 2.8.1. Using radio waves 11

 2.8.2. Batteries . 12

 2.8.3. Wiring . 12

 2.8.4. Being open . 12

 3. Non-technical Challenges 13

 3.1. Changing the product paradigm 13

 3.1.1. Ecosystems . 13

 3.1.2. Coordination and significant changes in strategy . . 13

 3.1.3. Competition with existing industries 13

 3.2. Benefits . 13

 3.2.1. Rising costs and monetization 13

 3.3. Information security and privacy of social systems . . . 14

 3.3.1. Classification of ownership, location, and the usage

 of data . 14

 3.4. Disclosure of data 14

 3.4.1. Side effects and malicious use potentially caused by

 the disclosure of data 14

 3.5. Preparing social support 14

 3.5.1. Regulations . 14

 3.5.2. Corporate social responsibility 14

 3.5.3. Customization for individual customers 15

 3.5.4. IoT literacy of the users 15

 3.5.5. Individual vs. family 15

 4. Information Security Considerations 15

 5. Privacy Considerations 15

 6. Acknowledgments . 16

 Authors’ Addresses . 16

1. Introduction

 Many activities are progressing in various fields, such as the

 proposal of standards for creating an IoT world. There are also many

 reports that analyze and predict the benefits that IoT can bring to

 the economy and society. These developments remind us of the end of

 the 20th century, when the effect and impact of the Internet was

 actively debated.

Baba, et al. Expires November 18, 2019 [Page 3]

Internet-Draft IoT Problems May 2019

 The authors tried using the following approach to clarify the issues

 for the prompt realization of IoT. First, the players were

 conveniently divided into two groups: ICT industry players and Things

 industry players. Next, we met major players in the ICT industry and

 Things industry and asked about the challenges they faced and the

 challenges the other side faced in creating IoT.

 The ICT industry players mentioned here include communication

 carriers, ICT equipment vendors, the Internet service providers,

 application vendors, and software houses. The Things industry

 players include home and housing equipment manufacturers,

 infrastructure providers such as railways companies and power

 companies, and manufacturers of home appliances such as air

 conditioners and refrigerators, which are also the ICT users.

 This paper is principally a summary of the meetings results, and a

 presentation of the micro case studies about the challenges for

 realizing IoT services. It is not an overview of the IoT world or a

 macro-proposal intended to promote the benefits of IoT.

 In addition, the revised version includes an examination of the

 possibilities of new direct physical threats in the IoT era that have

 not yet been seen. These threats should affect the safety of our

 bodies, lives, and "things," which includes property. For this

 reason, this issue shall be referred to as "IoT Safety" to

 distinguish it from Information Security for the purpose of this

 document.

 For the past few years, we got new findings through COMMA House, the

 experimental smart house owned by The University of Tokyo.

 Therefore, we will add new topics to the next version.

2. Technical Challenges

2.1. Safety, Security and Privacy

2.1.1. Challenges in protecting lives and property from IoT-related

 threats (IoT Safety)

 The introduction of IoT may generate threats to "Safety" through the

 actual operation of mechanical devices, in addition to the

 Information Security problems discussed in Section 2.1.2 below. For

 example, the spread of applications for visualizing electric power

 consumption allows for mischief in device operation without the use

 of identity fraud or hacking. In addition, there is the potential

 for problems to arise in the normal operation of individual devices

 that are not caused by abnormal current or voltage, another troubling

 aspect of the introduction of IoT. These issues cannot be resolved

Baba, et al. Expires November 18, 2019 [Page 4]

Internet-Draft IoT Problems May 2019

 with ordinary information security measures for Network Layer 4 or

 lower. In another case, a command to an IoT device is proper by

 itself, but it may conflict with the other commands or its

 environmental status. Therefore, the authors consider it necessary

 to have a system for interpreting the details of operations of many

 appliances and preventing operations according to the necessity in

 Layer 7 (what the authors tentatively call "Sekisyo".)

 These threats are categorized into three types: threat to physical

 safety; the threat of the failure or destruction of equipment and

 property; and the threat of impeding the proper performance of

 equipment. The following section introduces examples of the

 different threats.

2.1.1.1. Safety of body/life

 Information on things such as the use of faucets and housing

 equipment, the locking of the front doors and windows, and the state

 of electric power consumption based on the smart meter is used by

 smart houses to regulate homes. This information is used to

 determine whether anyone is at home, and the electronic lock of the

 front door and windows is unlocked and a notice of absence is issued

 to a thief.

2.1.1.2. Safety of equipment

 Air conditioners and other equipment that normally are not expected

 to be frequently started or stopped each a day can be caused to break

 down by repeatedly turning them on and off as many as hundreds of

 times a day.

2.1.1.3. Proper performance of equipment

 Water heaters containing a hot well can be caused to operate

 erratically. This is done by frequently transmitting signals from

 the mischief application instead of operation panel to tell the water

 heater that only 10% of the normal amount of hot water is needed,

 leaving the water heater perpetually low on water.

2.1.2. Information Security

 We have confirmed two viewpoints regarding the information security

 of services using IoT equipment and devices. The first is tangible

 information security involving the critical infrastructure. The

 second concerns the information security of individuals and homes.

 In regards to information security involving the critical

 infrastructure, the basic policy in the past was to stay physically

Baba, et al. Expires November 18, 2019 [Page 5]

Internet-Draft IoT Problems May 2019

 disconnected from an external network, such as the Internet, to

 ensure information security. However, because of the advance in the

 systems from proprietary communication protocols to open IP protocols

 to detect symptoms of problems and to remotely maintain a large

 number of facilities spread over a wide area, connecting to an

 external network will become unavoidable to achieve various goals.

 In addition, it is clear that isolated networks are also subject to

 the same kind of risks, even though it is not directly connected to

 the outside. There is no major difference in the information

 security risks because isolated networks are already the target of

 international cyber terrorism, with internal crimes and targeted

 attacks occurring more frequently. Based on these reasons, the ICT

 security of the social infrastructure requires an extremely high

 level of information security.

 Looking at the information security of micro units, such as

 individuals and homes, the improved convenience provided by the

 introduction of IoT will lead to greater risks. For example, there

 is a product available for connecting the entrance door to the

 network. In ICT security technology, increasing the key length of

 the encryption makes it much harder to break. But even if the latest

 information security technology is used when it is installed, the

 information security technology will become obsolete and even pose a

 risk about halfway through the twenty- to thirty-year lifetime of the

 entrance door. As has been explained in other items, the ICT sense

 of time is completely different from that of Things.

2.1.3. Privacy in acquiring data

 The problem of privacy in handling acquired data is a huge challenge

 for companies promoting IoT. In addition, the ownership of this data

 poses yet another challenge.

 For example, railway companies have installed many cameras for

 station security and for marketing beverage vending machines. This

 creates problems for personal identification and privacy. At the

 present time, the companies are processing the images in real time

 and do not store the images to avoid the problems.

 Another huge challenge is the ownership of data. Up until now, there

 has been a divided debate on whether data belonged to the company or

 to the users. Likewise, the relationship inside a small user group

 is also extremely diverse and complicated. One specific example is

 of a company that had obtained permission from the head of the

 household to use the data when it carried out an HEMS trial. Later

 on, the spouse of the head of the household disagreed and as a result

 permission to use the data was withdrawn.

Baba, et al. Expires November 18, 2019 [Page 6]

Internet-Draft IoT Problems May 2019

2.2. Challenges posed by data acquisition, data distribution, data

 management and data quantity

2.2.1. Traffic patterns

 The manner in which data is acquired from and distributed to IoT

 equipment/devices differs immensely from the traffic patterns of the

 present Internet. The present form of the Internet focuses on

 distributing information, and its systems focus on effectively

 delivering contents to the users. On the other hand, routinely or

 temporarily sending or receiving data through a huge number of

 various sensors and devices presents a very different kind of

 Internet traffic. However, questions such as how much traffic will

 come from what kind of Things, and how will they superimpose each

 other have not been sufficiently studied. There is no concrete

 explanation about the backbone design and operation of traffic, and

 there have been many cases in which the unclear specifications for

 IoT traffic made the design difficult on the communication company

 side. There are many challenges related to the set up and management

 of IoT equipment. We have heard from the construction companies that

 the configuration of IoT equipment with a large number of sensors

 involves a lot of hard work.

2.2.2. Acquired mass data

 It is necessary to develop a management method to reuse acquired data

 safely and effectively. Even now, there are occasional instances of

 the theft and leakage of social data (such as IDs) that can be used

 to identify individuals. In the IoT era, there will be mass data

 that can lead to Things, and the Things in turn will lead to

 individuals. There are IoT industry players who do not invest as

 much in ICT systems as government agencies and large companies do,

 and thus a management system to safely and effectively reuse the

 acquired data needs to be developed. The laws and regulations

 related to ID management differ vastly by country and region. These

 issues related to society and individuals are largely affected by

 differences in common sense, and therefore need to be localized.

2.2.3. Explosive increase and diversity of data

 In the future IoT era, there are concerns about the explosive

 increase in data quantity and the diversity of data sent from sensors

 and IoT equipment. On the other hand, M2M communication does not

 require mass data like images, and an extraordinary increase in

 traffic will be unlikely despite the increase in the number of

 sensors.

Baba, et al. Expires November 18, 2019 [Page 7]

Internet-Draft IoT Problems May 2019

 If data is sent from all Things, there will be an infinite number of

 different kinds of data. In addition, with the present form of

 Internet traffic, data is received by people, and most of it consists

 of video or image downloads. The download traffic is several times

 greater than that of the upload traffic. If there is a tremendous

 increase in the use of IoT, such as M2M communication, the difference

 between upload and download traffic will probably not be that much.

 It might be necessary to fundamentally review the network and in

 particular the last mile characteristics. The importance of this

 issue is not yet widely recognized.

2.3. Mapping of the physical world and the virtual world

2.3.1. Physically handling acquired data

 The acquired data simply represents certain kinds of digital value,

 and it is important to uncover the meaning of this data. As

 described previously, configuration of IoT equipment, such as the

 large number of installed sensors, requires a lot of hard work. An

 even greater amount of effort will be needed to determine the meaning

 of the data and connect it to the physical world.

 In energy management experiments, data is mapped manually. This is a

 time consuming process, and one that is prone to human error. Cases

 that rely on the use of human hands require the configuration of

 automated setting systems to reduce labor, costs, and human errors to

 introduce IoT

2.3.2. Data calibration

 Another important thing is calibration. This involves properly

 linking the data sent from Things to the Things concerned, and

 correctly indicating the operating conditions.

 It may be necessary to have a tool to treat this problem concerning

 continuation of operation and the one pertaining to introduction of

 IoT described previously as a package.

2.4. Product lifetime, generation management, and the cost of equipment

 updates

2.4.1. Product lifetime

 The life of most ICT equipment is about 5 years or less, while the

 life of IoT equipment and devices is at least 10 years. There is a

 clear gap between these two types of equipment.

Baba, et al. Expires November 18, 2019 [Page 8]

Internet-Draft IoT Problems May 2019

 In the example of the entrance door connected to the network

 mentioned earlier, the door is often used for about twenty to thirty

 years after installed. If is connected to a network, the

 communication technology and communication service will most likely

 have undergone numerous generation changes in that twenty- to thirty-

 year time span. This presents a large gap between the ICT industry

 and the Things industry.

 A solution to this problem that was reached during the meeting with

 the housing equipment manufacturers is that with the automatic

 control of multiple shutters in a building, the portion between the

 controller and the multiple shutters, the so-called mature

 technology, can be placed under the control of the shutter

 manufacturers, while the controller connected to the network will

 deal with the generation changes of the communication service.

2.4.2. Introducing IoT equipment into commodity equipment

 It costs a lot to make the many different types of commodity

 equipment popular around the world usable as IoT equipment and

 devices. There are two ways to change commodity equipment into IoT

 equipment. One way is to convert it to IoT compatible equipment.

 The other way involves adding devices to commodity equipment. There

 are costs in both cases, and it will take a long time to introduce

 IoT unless different incentives are offered to help to overcome the

 burden of cost.

2.5. Too many related standards and the speed of standardization

2.5.1. Too many related standards

 There are many standards related to IoT equipment and devices. There

 are multiple standards, technologies and services for communication

 technology, such as Bluetooth, Wi-Fi, NFC, and LTE, and it is

 difficult to choose which to apply.

 The Things industry players do not always have the communication

 technology professionals needed for IoT. In the meeting, we learned

 that many companies were uncertain and hesitant about fields outside

 their own area of expertise. On the other hand, technological

 competition will improve quality as well as the level of completion,

 and thus will be beneficial for users.

 In the future, a consulting business for clarifying ICT technology

 for the Things industry players may emerge. If there is a system

 that can interconnect multiple standards, it will accelerate the

 Things industry to enter IoT

Baba, et al. Expires November 18, 2019 [Page 9]

Internet-Draft IoT Problems May 2019

2.5.2. Speed of standardization

 The concept of product life in ICT industry is completely different

 from that of the Things industry, and as a result the concept of

 standardization also varies greatly. Before standardization occurs

 in the ICT industry, many different proposals are made, from which

 the best is selected. The final decision often changes, and products

 have to be updated in order to follow the changes in standards. But

 in the Things industry, the standards have to remain unchanged for as

 long as possible because of the long product lifetimes. Therefore,

 it takes a long time to determine when a particular standard has

 become mature. When the Things industry goes to implement a standard

 from the ICT industry, it feels that the standard is incredibly fluid

 and seemingly undecided. Furthermore, the standardization process of

 the two industries is very different, and making it difficult to work

 on the other side when trying to determine a standard.

2.6. Interoperability, fault isolation, and total quality assurance

2.6.1. Interoperability

 The verification of interoperability poses a major challenge because

 of the configuration used by multi-vendors. In addition to

 interoperability between equipment, the ability to ensure backward

 compatibility is also important for bringing about the IoT world.

 If these capabilities cannot be provided, it will be very difficult

 to create an IoT world in which past products can function.

2.6.2. Fault isolation

 The method for fault isolation that may occur presents another

 challenge.

 Many PC users have experienced various kinds of problems. When their

 PC experiences a problem, they have to isolate the faults by

 themselves, with no one available to lend a helping hand.

 In the IoT world, these issues become more difficult and complicated.

 For example, a smart home is equipped with air conditioners, kitchen

 supplies, and doors connected to the Internet. A problem that occurs

 in the smart home poses a much more serious problem to end users than

 an e-mail failure or problem with a PC.

 If users are left to isolate the fault on their own, they may not

 know which manufacturer they contact for repairs if they are unable

 to isolate the fault on their own, or the manufacturer may refuse to

 perform repairs because they fall outside the scope of their

Baba, et al. Expires November 18, 2019 [Page 10]

Internet-Draft IoT Problems May 2019

 responsibility. As can be seen, the issue is an important challenge

 that will determine whether the B2C specific IoT world can be

 established.

2.6.3. Quality assurance

 The quality assurance of individual pieces of IoT equipment does not

 guarantee the total quality of IoT. Since IoT involves connecting

 multiple Things and communication, it is natural to assume that the

 total service quality will depend on the quality of the IoT equipment

 and devices, which can sometimes become bottleneck. However, users

 are not aware of this.

 As was mentioned previously in Section 2.6 issues that are not

 directly related to the quality of an individual component can be

 important factors in determining the quality of the service. In this

 way, the quality of IoT is not decided by each individual Thing, but

 needs to be considered as a service spread across the network.

2.7. Product design policy

2.7.1. Changes in design policy

 The design policy has to be changed from placing emphasis on the high

 functionality of a single product to stressing the singular function

 of individual products as well as how they work in coordination with

 other products. For many years, the Things industry has focused on

 producing high functionality products with added value. But in the

 IoT era, the implicit assumption is to confine Things to their basic

 function and enhance the level of coordination between Things, rather

 than focusing on the added value. Simplified Things must be able to

 be controlled with an external application that can also be used by

 the Things of cross manufacturers.

 Given this situation, the Things industry faces the challenge of

 adopting a completely different policy. During the meeting with the

 manufacturing industries, we could sense their difficulty in

 understanding and recognizing the need to change the policy.

2.8. Various technology restrictions within actual usage

2.8.1. Using radio waves

 There are many cases that have provided us with insight about issues

 related to the use of radio waves in IoT (such as the wave traveling

 range and whether or not it travels further than stated in

 assumptions available). The suppliers or providers who configure IoT

 are not always wave communication technology experts. People who are

Baba, et al. Expires November 18, 2019 [Page 11]

Internet-Draft IoT Problems May 2019

 unfamiliar with radio waves seem to think that waves travel from

 antenna to antenna in a straight line, and that they can be blocked

 by obstacles. As a result, they often ask questions about how many

 meters radio waves can travel or whether radio waves can actually

 travel. Few people understand the fact that the emitted radio waves

 are reflected from various locations and are superimposed at the

 reception point where they are received, or that depending on how

 waves are reflected a change in the reception signal intensity,

 called fading, may occur. The lack of engineers who can advise on

 specialized matters such as these poses a major obstacle.

2.8.2. Batteries

 The power capacity and lifetime of batteries represent another set of

 challenges similar in nature to the issue of radio waves traveling

 distance. There are questions such as the difference between the

 real and catalog specifications, as well as factors that affect the

 battery power capacity. The IoT providers, who are also users of

 IoT, have to solve these issues, while these are difficult problems

 even for experts.

2.8.3. Wiring

 The incredible amount of wiring and its complexity (power lines and

 communication lines) pose major challenges. The complexity of

 wiring- such as the large number of sensors and equipment, the power

 lines that drive them, and the communication lines that connect them

 to the network for acquiring information-is to the point that people

 doing IoT installation work will start wishing for a wire harness.

 In addition, the installation of cables and electric work are often

 done by different engineers. This make the issue even more

 complicated.

2.8.4. Being open

 A single company alone cannot make all the commodities for IoT. The

 IoT world needs to be open, and this can only be achieved with the

 cooperation of many different industries. Up until now, companies in

 the Things industry have developed products in a closed loop process,

 seeking to capture users with their company’s own products. For this

 reason, they lack an open design concept of interoperability. Today,

 an entirely new design concept is needed to design products that can

 interconnect with the products of other companies.

Baba, et al. Expires November 18, 2019 [Page 12]

Internet-Draft IoT Problems May 2019

3. Non-technical Challenges

3.1. Changing the product paradigm

3.1.1. Ecosystems

 While the goal of setting up IoT is to generate new value, it may

 actually lead to the destruction of the ecosystems in which

 industries operate. In the IoT era, the traditional vertically

 integrated way of producing Things in manufacturing industries will

 consume too much time and cost. This approach also makes it

 difficult to incorporate the ideas of other cultures. The need for

 paradigm shift is easy to understand, but difficult to implement.

 Promoting this shift will pose a management challenge that requires a

 considerable amount of skill and effort to overcome.

3.1.2. Coordination and significant changes in strategy

 It will become necessary to run businesses jointly with new partners,

 as well as cooperate and work in coordination with other industries

 and competitors. This issue-even when it is fully understood-will be

 very difficult to address and put into practice.

 We have seen instances in which only a limited amount of information

 was given when parties exchanged opinions. There have also been

 instances in which communication was difficult because of differences

 in terminology and culture.

3.1.3. Competition with existing industries

 The issue of competition with existing industries often arises when

 attempts are made to change or reform a business model change or

 reform. This issue can also be viewed as the reorganization of

 industries, rather than competition between existing industries.

 However, this realignment of industries is difficult to move forward

 in the absence of supervisors.

3.2. Benefits

3.2.1. Rising costs and monetization

 Introducing IoT within products will cause costs to go up, and yet

 the benefits it provides are unclear. There is no specific killer

 application available, and the number of users will not rise

 immediately. Therefore, finding a way to make the business

 profitable will be very difficult. This issue is especially

 difficult for businesses and products that rely on cost reductions to

 deliver low prices that make them competitive.

Baba, et al. Expires November 18, 2019 [Page 13]

Internet-Draft IoT Problems May 2019

3.3. Information security and privacy of social systems

3.3.1. Classification of ownership, location, and the usage of data

 There are many questions regarding the wide variety of data gathered

 from IoT equipment, including questions related to ownership, storage

 location, and the authorization to grant a license to use data.

 These need to be addressed so that the system and equipment can be

 accepted by society.

 For example, if a company installs a door in a house that gathers

 data on the opening and closing of the door, questions about the data

 will arise. Does it belong to the users or the company? Can another

 company use this data?

3.4. Disclosure of data

3.4.1. Side effects and malicious use potentially caused by the

 disclosure of data

 For example, it has been shown that the electricity smart meter can

 lead to burglary because it shows when electricity is used and not

 used, providing an indication of the time when no one is home. This

 particular example demonstrates the importance of ensuring

 information security and privacy.

3.5. Preparing social support

3.5.1. Regulations

 Systems of laws and regulations are important for ensuring the safety

 of the conventional products, but they can also be a barrier for

 innovation.

 IoT can be affected by laws and regulations at home and abroad, and

 can also be influenced by regulations that extend across multiple

 countries. Regulatory authorities need to monitor IoT carefully and

 adjust the regulations and laws they oversee in a way that does not

 negatively impact the global competition environment.

3.5.2. Corporate social responsibility

 In addition to pursuing profit, companies that promote IoT also need

 to improve the benefits offered to users and society

Baba, et al. Expires November 18, 2019 [Page 14]

Internet-Draft IoT Problems May 2019

3.5.3. Customization for individual customers

 There is an ongoing shift in demand away from general products to

 customized products for individual customers. This could also be

 viewed as a shift away from manufacturing businesses to service

 businesses. IoT will play an important role in this shift.

 Instead of manufacturing Things through mass production, it will be

 easier to customize a product by moving some of the functions to an

 application. Likewise, the manufacturing business also needs to move

 forward with the previously mentioned paradigm shift in order to

 achieve customization

3.5.4. IoT literacy of the users

 Because Things are connected to the network, apps will need to be

 created. Some of these will serve as the interface with which people

 interact with IoT.

 In the IoT era of the future, users will need to possess a certain

 amount of knowledge about IoT apps

3.5.5. Individual vs. family

 The issue of whether the data of Things in the house belongs to the

 family or the individual will largely affect data analysis and the

 handling of privacy.

 As was mentioned in Section 2.1.2, the spouse could later object to

 the head of the household granting authorization to use data.

4. Information Security Considerations

 Meetings with the players in various IoT fields provided insight into

 information security issues. These issues are described in the

 following sections.

 o Section 2.1.2 Physical damper of devices

 o Section 2.1.2 Product lifetime and encryption strength

 For details, please see the corresponding text.

5. Privacy Considerations

 Similarly, issues regarding privacy are described in the following

 sections.

Baba, et al. Expires November 18, 2019 [Page 15]

Internet-Draft IoT Problems May 2019

 o Section 2.1.2, Section 3.3.1 Ownership of the data

 o Section 3.4.1 Data disclosure and malicious use

 o Section 3.5.5 Individual vs. family

 For details, please see the corresponding text.

6. Acknowledgments

 We would like to thank the foundation the promotion of industrial

 science and its RC-88 member companies for their cooperation.

 And we also appreciate Ministry of Internal Affairs and

 Communications.

Authors’ Addresses

 Hiroyuki Baba

 The University of Tokyo

 Institute of Industrial Science

 4-6-1 Komaba

 Meguro-ku, Tokyo 153-8505

 Japan

 Email: hbaba@iis.u-tokyo.ac.jp

 Yoshiki Ishida

 Japan Network Enabler Corporation

 7F S-GATE Akasaka-Sanno.

 1-8-1 Akasaka

 Minato-ku, Tokyo 107-0052

 Japan

 Email: ishida@jpne.co.jp

 Takayuki Amatsu

 Tokyo Electric Power Company, Inc.

 1-1-3 Uchisaiwai-cho

 Chiyoda-ku, Tokyo 100-8560

 Japan

 Email: amatsu.t@tepco.co.jp

Baba, et al. Expires November 18, 2019 [Page 16]

Internet-Draft IoT Problems May 2019

 Koichi Kunitake

 BroadBand Tower, Inc.

 Hibiya Parkfront.

 2-1-6, Uchisaiwai-cho

 Chiyoda-ku, Tokyo 100-0011

 Japan

 Email: kokunitake@bbtower.co.jp

 Kaoru Maeda

 Individual Contributor

 Japan

 Email: kaorumaeda.ml@gmail.com

Baba, et al. Expires November 18, 2019 [Page 17]

Thing-to-Thing Research Group M. Burgess
Internet-Draft Independent Researcher
Intended status: Informational H. Wildfeuer
Expires: April 21, 2016 Cisco Systems
 October 19, 2015

 Federated Multi-Tenant Service Architecture for an Internet of Things
 draft-burgess-promise-iot-arch-00

Abstract

 This draft describes architectural recommendations for an Internet of
 Things scenario, based on tried and tested principles from
 infrastructure science. We describe a functional service
 architecture that may be applied in the manner of a platform, from
 the smallest scale to the largest scale, using vendor agnostic
 principles. The current draft is rooted in the principles of Promise
 Theory[Bergstra1] and voluntary cooperation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Burgess & Wildfeuer Expires April 21, 2016 [Page 1]

Internet-Draft Abbreviated Title October 2015

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Requirements and Promises Language 3
 3. Definitions and concepts 3
 4. Device interconnection 4
 5. Federation of agency . 6
 5.1. Ownership . 6
 5.2. Tenancy and separation of concerns 6
 5.3. Proximity of services to Things 7
 6. Workspaces . 7
 7. Generic Promise-Oriented Architecture 8
 7.1. Control . 8
 7.2. Services . 8
 7.3. Promises . 9
 7.4. Agents and their promises 9
 7.5. Standard promises . 10
 7.6. Contextual policy-based adaptation 10
 7.7. Workspace maintenance 11
 7.8. Change of policy (system intent) 11
 7.9. Separation of concerns versus timescales 12
 7.10. Device roles per workspace or region 12
 7.11. Connectivity and Network Policy 14
 8. Characteristics . 15
 9. Summary and Outlook . 16
 10. Acknowledgments . 16
 11. Security Considerations 16
 12. Normative References . 16
 Authors’ Addresses . 17

1. Introduction

 The scenario we call the Internet of Things (IoT) is an inflection
 point in the development of information local and global
 infrastructure. The facilitation of a platform for the next
 generation of global commerce presents a challenge of both
 technological and human dimensions. This is a challenge that spans
 every layer of the software and networking stacks, but can be
 described in general terms without the need to specific
 implementations. That is our goal in this draft. Only a few new
 ideas are needed to synthesize this infrastructure, however several
 old technology practices must be deprecated for scaling and security
 considerations.

Burgess & Wildfeuer Expires April 21, 2016 [Page 2]

Internet-Draft Abbreviated Title October 2015

 A platform for society must be vendor agnostic at its root, and must
 leave ample space for vendor specific creativity on top. What
 distinguishes IoT from past scenarios is the prolific contact surface
 it will expose to the physical world, embedding devices pervasively
 in our close environments, and touching every part of human life. At
 the time of writing, IoT has barely begun to emerge in domestic and
 industrial settings; however, choices we make now could help or
 hinder the development of an adequate platform over the coming
 decades. The proposed architecture not only scales up to large
 numbers, it also scales down to small devices of low capability; from
 the largest installations to the smallest, and from the tiniest
 amounts of data, to vast data-stores collected by scientific
 computing at the limits of possibility.

2. Requirements and Promises Language

 The term "PROMISE", "PROMISES" in this document are to be interpreted
 as described in Promise Theory [Bergstra1]

 When used, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
 "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

3. Definitions and concepts

 IP endpoint A hardware or software agent that is IP addressable, via
 a TCP/IP capable interface.

 Static endpoint A hardware or software agent with an IP address
 (prefix and subnet) that is fixed over the timescale of
 application service interactions.

 Mobile endpoint A hardware or software agent whose IP address
 location can change on the timescale of application service
 interactions.

 Application server/service Any agent that promises to respond to
 requests, from external parties, and perform services of
 any kind, on a timescale that we may call the application
 service timescale.

 Multi-tenant application service A collection of agents housed as
 tenants within a single host device, each offering
 different services, with potentially different timescales.

Burgess & Wildfeuer Expires April 21, 2016 [Page 3]

Internet-Draft Abbreviated Title October 2015

 Client application An agent that consumes data from an application
 service, requested either by imposed query or by promised
 schedule.

 Standalone Thing (FFD) A full function device (FFD)[OneM2M], with an
 IP address, that can present its own service gateway or
 interface to the IP network.

 Peripheral Thing (RFD) A reduced function device (RFD)[OneM2M], with
 no IP address, that attaches to a host gateway device as a
 peripheral, over an arbitrary network (USB, PCIe, CANbus,
 Profibus, ModBus, wireless sensor network, etc). Devices
 are addressable, only through the gateway service. This
 includes portmapped devices.

 Embedded network Any network (IP or non-IP) that is non-IP routed,
 i.e. contained within a host endpoint as part of a black
 box, e.g. isolated NAT, device bus, serial channels.

 Transducer An agent that consumes a service from another agent, and
 provides a new service based on the consumed service, e.g.
 a router, encrypter, compressor, etc.

 Trust A unilateral policy assessment of one agent by another,
 concerning its reliability in honouring promises. Trust is
 not necessarily a transitive property.

 Partial connectivity A device is said to have partial connectivity
 if it is unavailable for intervals of time, e.g. due to
 loss of connectivity, mobility, or power napping.

4. Device interconnection

 All devices are assumed to live in a partially connected environment.
 They MUST be fault tolerant to loss of communications, both with
 other agents in the course of providing application services, and
 with trusted sources of information. A minimum interdependency
 design may be recommended to facilitate this.

 For a nascent Internet of Things, the focus is naturally drawn to the
 specialized leaf devices, where data may be produced or consumed.
 However, these are only half the picture. ‘Thing’ devices, by design,
 also communicate with online services deployed ‘higher up’, or
 ‘Northbound’ in the system, to offload analysis and decision-making.
 Their physical capabilites thus place them into two broad categories:

 Standalone devices These are assumed to connect by an IP addressable
 underlay network. Connectivity is assumed end-to-end,

Burgess & Wildfeuer Expires April 21, 2016 [Page 4]

Internet-Draft Abbreviated Title October 2015

 without reference to tunnels or software defined overlays.
 Routing is assumed to be provided end-to-end, and fully
 decoupled from the registration of devices. Segregation
 and firewalling of certain network regions may be included
 in network design, but will not be considered here.

 Peripherals These include bare sensors and actuators, which do not
 possess sufficient onboard resources or software
 interfaces, may attach to hosting standalone devices that
 act as a gateway and IP endpoint on their behalf.

 Transducers These pass-through devices transformers, converters,
 encapsulation services, etc

 +------------------+
 | FFD / Standalone |--> IP Endpoint
 +------------------+

 +------------------+
 | RFD / Peripheral |--+
 +------------------+ | +------------------+
 +------| FFD / Standalone |--> IP Endpoint
 +------------------+ | +------------------+
 | RFD / Peripheral |--+
 +------------------+

 Devices may be standalone (FFD), with service interfaces, or hosted
 peripherals (RFD), where data are exposed through service interfaces
 from other buses, e.g. USB, CANbus, MODbus, Profibus, etc.

 Figure 1

 Standalone devices are full stack devices that provide data oriented
 services to data clients

 Stand-alone devices and transducers can vary considerably in their
 processing, memory and connectivity resources and constraints. This
 architecture assumes a minimum resource level at the stand-alone
 device, but the device must support ‘full stack’ implementations. In
 practice, this implies that they contain an embedded OS (e.g.
 Linux), and are capable of running an agent providing secure service
 and connectivity interfaces.

Burgess & Wildfeuer Expires April 21, 2016 [Page 5]

Internet-Draft Abbreviated Title October 2015

5. Federation of agency

 Centralization of intent or control is not practical in environments
 with the density of devices and overlapping concerns exhibited by a
 pervasive Internet of Things.

5.1. Ownership

 Device ownership is an important issue in a multi-tenant consumer
 environment. While some devices will be centrally managed by
 providers, many devices in an Internet of Things will be personally
 owned, and would not be managed completely by centralized services.
 Devices may thus be managed by:

 Their owners This applies in particular to personal consumer
 electronics, phones, cars, domestic appliances, etc, where
 users need to retain trusted ownership of their personal
 belongings.

 A service provider This applies to managed services, factory
 machinery, fleet vehicles, set-top boxes placed in the
 home, power controllers, etc, where users do not need to
 interact with the devices on a management level, but there
 is an advantage to placing a device as a local presence in
 a smart environment.

5.2. Tenancy and separation of concerns

 Federation of intent, aka multi-tenancy or diversity, all point to
 the need for Special Interest Groups (SIG) or work groups.
 Workspaces are places that are set aside for a particular purpose,
 that act as umbrellas for special interest groups. For this, we
 introduce the notion of workspaces.

 Federation can be along a number of lines:

 o Geographic partitioning (location)

 o Separation of timescales (fast and slow)

 o By special interest group (functional)

 See sections below for further information.

Burgess & Wildfeuer Expires April 21, 2016 [Page 6]

Internet-Draft Abbreviated Title October 2015

5.3. Proximity of services to Things

 Although devices will be separate from the agencies processing their
 sensory data, and feeding their guidance systems (policies and
 renderers), it is impractical to transport data over long distances
 between leaf devices and ‘cloud’ services. The logical outcome is
 therefore a decentralization of the cloud itself to insert converged
 resources close to the data sources themselves. To scale such a
 distribution, the data services will naturally associate with private
 workspaces, which bound the scope of data generated by Things.

6. Workspaces

 Workspaces may be thought of as a modernization of the domain
 concept. Domains are typically linked to directory services (DNS,
 Active Directory, LDAP etc). The demands of multi-tenant
 environments, where shared resources and separate business-processes
 mix and compete, make these older services less than optimal, though
 not inherently flawed.

 Workspaces are related to the more familiar notion of namespaces in
 information technology; however, namespaces refer only to a priority
 in name-referencing of objects, without underlying resource
 segmentation. Workspaces MUST support multi-tenant separation of
 concerns within a hosted space. Today, workspace facilities are
 commonly offered by user logins on computing devices, and quasi-
 workspace-like facilities are offered by virtual private networks,
 and VLANs, etc, in networking.

 For a collaborative Internet of Things, where interests span many
 issues from manufacturer interests, to personal ownership, functional
 responsibility, and security, the technologies for inter-group
 collaboration must be modernized to support logical, authenticated
 segmentation, shared directory information, as well as private
 naming, across converged resources: compute, network, and storage.

 1. Workspaces may or may not be private, but they must be self-
 contained and separable, in the manner of namespaces.

 2. Workspaces may or may not be associated with multiple tenants;
 but they are associated with multiple issues.

 3. They represent a context for human activity, or separation of
 concerns, e.g. some human activities might be modelled as
 workspaces include: the home, a children’s playground, a squash
 court, an office, a shop, a factory floor, building, district,
 city, emergency channel frequency, hot and cold water pipes,
 dining room, drinks cabinet, etc.

Burgess & Wildfeuer Expires April 21, 2016 [Page 7]

Internet-Draft Abbreviated Title October 2015

 Ubiquitous computing (the Internet of Things) is all about how
 networked devices support a wider variety of workspaces. As the
 density of device resources (compute, storage, sensors, actuators) in
 a workplace or home environment increases, isolation of regions, and
 mapping of resources to responsible or interested parties become more
 difficult problems, both to implement and to understand.

 A detailed description of workspaces will be given separately
 [WORKSPC].

7. Generic Promise-Oriented Architecture

 A promise-oriented architecture is described implicitly in [DSOM2005]
 and [Bergstra1]. It lays out a generic ‘bottom up’ management
 concept, in which devices each have the responsibility for their own
 state and roles. It resembles Service Oriented Architecture (SOA)
 superficially, without reference to specific technologies,
 implementations or protocols, and relates to the modern notion of
 microservices [MicroS]

 By formulating architecture from the bottom up, one can easily
 account for multi-contextual concerns, from developer concerns about
 realtime software updates (Continuous Delivery and DevOps etc), to
 operational service scaling, governance, and security, in a way that
 top-down schemes cannot easily achieve.

7.1. Control

 A promise-oriented architecture communicates (e.g. intent and data)
 by authenticated publish-subscribe (aka "pull") methods, for security
 and predictability. Thing devices MUST not accept control commands
 imposed upon them by "push" methods, as this exposes a security risk
 and may lead to inconclusive results if there are uncoordinated
 pushes. In the vernacular usage of "control plane" and "data plane",
 control is asserted through agreed service level policies, and data
 are exchanged within services to carry out functions.

 Every standalone device operates autonomously, with direct policy
 input from its owner, without being managed from an external
 collective. Similarly, any standalone device can give up that
 autonomy to a trusted manager, offering policy updates as a service.

7.2. Services

 All devices provide services in varying degrees of sophistication.
 Peripheral devices serve data or actuators to host devices, and
 standalone devices expose functions to one another as software

Burgess & Wildfeuer Expires April 21, 2016 [Page 8]

Internet-Draft Abbreviated Title October 2015

 services. Each server plays a role to be composed into the wider
 system.

 Services may be used both for basic infrastructure support, and for
 driving user applications. No limitations need be stated about
 applications. Each fully functional, standalone device is free to
 host any application services. The result is superficially similar
 to the Service Oriented Architecture [SOA], but without reference to
 a specific technology or methodology. In modern parlance, the model
 is an example of microservices [MicroS].

 Data services are also best implemented as with pull methods, for
 resource-light scalability and security, but extremely limited
 application devices might initially struggle to support this mode.

7.3. Promises

 The basic atom of bottom-up policy is a promise. Each promise
 consists of three things:

 A ‘promiser’ i.e. a resource that will affect a change by keeping
 its promise to the system, e.g. a file, a process, a
 transaction, a measurement, device settings, etc.

 A description body i.e. the desired-outcome that is achieved when
 the promise is kept. This SHOULD be implemented in a
 convergent, idempotent manner [CFENGINE], [CONVERGE].

 A context in which the promise applies, based on time, location, type
 and group membership of the devices referred to in the
 model.

7.4. Agents and their promises

 In a promise architecture, every device is contextually evaluated and
 integrated from the bottom up, according to the promises is keeps,
 e.g. the services it provides, its behaviours and properties, etc.
 Thus every device is modelled by its individual degree of agency to
 act as a proxy for human intent (policy).

 Standalone devices are assumed to be equipped with policy-keeping
 software agents. Peripheral devices, such as sensors or actuators,
 are assumed to be integral parts of the standalone devices, and hence
 maintainable by the their software agents.

 No system must push changes or data to such agents ad hoc, without a
 documented promise to accept; thereafter, ‘fault tolerance’ demands
 that we reject the word ‘must’ from most descriptions, and replace it

Burgess & Wildfeuer Expires April 21, 2016 [Page 9]

Internet-Draft Abbreviated Title October 2015

 with ‘promise of best effort’, as to reply on perfect behaviour leads
 to brittle systems with unrealistic expectations. For human safety
 in a rapidly expanding sphere of human involvement, the only ‘must’
 is for each agent to be stable and self-correcting, subject to the
 guidance of policy.

7.5. Standard promises

 The following characteristics describe the cooperation between
 agents:

 1. Standalone devices promise to bootstrap to some trusted
 bootservice, i.e. register to one or more workspaces.

 2. Standalone devices promise to refuse direct commands imposed from
 network peers (as mentioned above).

 3. Policy consists of a collection of promises that apply in
 labelled contexts, each of which describes a unique desired end-
 state.

 4. Promises are kept in a convergent manner, so that all promise-
 keeping actions lead to the desired end-state, no matter what the
 initial state of the device.

 5. Agents that live on every device have drivers/renderers and make
 all changes without remote communication.

7.6. Contextual policy-based adaptation

 Each policy agent promises to maintain a context evaluator that
 computes a set of classifying ‘tags’ or ‘labels’ that characterize
 the state of the agent. This is updated every time the agent
 verifies policy, as its state may change as a result of repairs.
 These may be used as conditionals for distributed policy-based
 decision-making.

 Contextual labels characterize the device, its environment, and its
 location and time. The labels can then be used in policy to make
 certain promises apply only in specific contexts.

 When promises, within a policy, are tagged by issue or context,
 agents can select those that apply to its condition, within a larger
 trust relationship implied by policy sourcing. This simplifies logic
 and promotes stability, as evidenced by experience with software
 agents [CFENGINE].

Burgess & Wildfeuer Expires April 21, 2016 [Page 10]

Internet-Draft Abbreviated Title October 2015

7.7. Workspace maintenance

 The following characteristics describe compatible policy update
 processes:

 1. Devices subscribe to policy from a trusted source, download
 changes to the policy model when they can, and cache it locally
 so that it is always available.

 2. Local agents implement cached policy, without any dependence on
 remote communication, and in a fault tolerant fashion. The
 failure to keep one promise should have minimal impact on the
 ability to keep others.

 3. By verifying promises continuously, the agent that runs on each
 standalone device will know (or be able to calculate) its
 operational context, and can decide which promises are needed
 from the policy model, and whether or not to keep the promises.
 This scales O(1), i.e. without bottleneck.

 4. Each promise that documents and intended outcome of the system is
 verified and measured in the process, providing immediate and
 statistical feedback to policy designers about the success of the
 policy in describing a stable desired outcome.

7.8. Change of policy (system intent)

 Policy change can be initiated from within a workspace, subject to a
 defined quality assurance, or fit-for-purpose review. Thus change of
 infrastructure may be instigated from the bottom-up also, as a self-
 service request.

 1. Human operators (owners or managers) decide on a policy model for
 all devices in an organization or policy group. This may be
 informed by the feedback about the success rate of previously
 kept promises.

 2. The changes are edited into a model, which consists of a
 collection of promises that should be kept by all resources on
 all devices.

 3. Changes are checked and tested before publishing.

 4. Once changes are approved, they are published by a policy service
 for download at the convenience of the standalone device.

Burgess & Wildfeuer Expires April 21, 2016 [Page 11]

Internet-Draft Abbreviated Title October 2015

7.9. Separation of concerns versus timescales

 infrastructure stability is supported by a separation of systems into
 agencies that act in alignment with specific, separable timescales.
 Separation of fast and slow timescales avoids tight coupling and
 associated complex behaviours and should be considered a priority for
 maintaining safe, stable systems for human dependence.

 Systems scale along two broad lines, which a promise-oriented
 architecture helps to resolve:

 Dynamical scaling Workload timescales concern the quantitative
 activity of the system: how fast requests are handled, how
 quickly service is delivered, and promises are kept.

 Semantic (functional) scaling Semantics are normally the concern of
 software engineers and system designers. This facilitates
 functional understanding. It is a form of human interface
 or knowledge management. It is sometimes at odds with the
 needs of dynamical scaling.

 Changes to semantics should generally be slow compared to the
 workload related dynamical activity, in order to maintain functional
 stability. Cooperative design of workspaces may observe this
 principle to foster functional stability and workload efficiency.

7.10. Device roles per workspace or region

 A number of functional roles are required to maintain a service
 lifecycle in a distributed environment. Making these roles self-
 managed within each workspace is how one scales the diversity of
 human intent and concerns. Roles are defined by the kinds of
 promises kept by devices:

 Bootstrap server To provide trusted need-to-know data and local
 contacts so that clients can begin working within a policy
 domain.

 Bootstrap client To accept essential directory information on trust
 in order to join a local policy domain.

 Policy server To deliver current policy from an authorized source,
 appropriate for each client (tenancy terms) from its global
 perspective

 Policy client To subscribe to the policy, selectively, depending on
 context from its local perspective.

Burgess & Wildfeuer Expires April 21, 2016 [Page 12]

Internet-Draft Abbreviated Title October 2015

 Data server data server (aka ‘‘Thing’’) To offer a catalogue of data
 streams to different tenants This includes sensors,
 actuators.

 Data Client To subscribe to the policy, selectively, depending on
 context from its local perspective.

 Identity server Manufacturer User Description service is promised by
 all Things providing a URI that points to a description of
 the device, its serial number characteristics, service
 details etc.

 Identity client Identity clients promise to make use of data schemas
 and encodings involved in the interpretation of data
 pertaining to the device.

 "Control data" "Application
data"
 +--+
 |+------------------+ +------------------+ +----------------- +| +-------------
----+
 || Bootstrap server | | Policy server | | Directory server || | Data client
(s) |
 |+------------------+ +------------------+ +----------------- +| +-------------
----+
 +--------|---------------------|----------------------|--------+ |
 | | | |
 +----------------+ | | |
 | | | |
 +------------------+ | | | |
 | FFD / Standalone | | | | |
 | Bootstrap client|--+ | | |
 | Policy client |-------+ | |
 | Directory server|------------------------------+ |
 | Data client |--+
 +------------------+

 "Thing(s)"

 The roles in each collaborative workspace. Devices at the bottom of
 the figure typically coordinate through workspace services hosted in
 the "cloud" or any nearby compute resource. Efficiency suggests
 avoiding long data paths, instead moving computational resources
 closer to data collection points.

 Figure 2

Burgess & Wildfeuer Expires April 21, 2016 [Page 13]

Internet-Draft Abbreviated Title October 2015

 Bootstrapping new devices into a workspace represents the beginning
 of a device lifecycle. Devices must begin with the location of a
 known bootstrap server. Devices must also promise to advertise their
 nature and capabilities, called ‘identification’. This may include
 Manufacturer Usage Description (MUD) identifiers [MUD].

7.11. Connectivity and Network Policy

 So far, much as been said on how the application devices provide
 services via promises, and how system intent can be described and
 orchestrated via policy. There is also a connectivity (transport)
 fabric for these devices that operates on a set of promises that
 underly the described service framework, i.e. the network. Each
 network endpoint can be seen as providing its own set of promises
 that are used by other network elements to deliver routing and
 switching capabilities [PromiseNet].

 Intent driven networking is becoming more relevant as Software
 Defined Networking (SDN) deployments proliferate. In the described
 IoT architecture, service policies that describe the IoT system
 intent can be used as an input to derive partial network policies
 (e.g. Group Based Policy or some other model-based approach), with
 modulation by other data discovered from bootstrapping, etc. The
 figure below illustrates the relationship between the service and
 network layer policies for IoT.

Burgess & Wildfeuer Expires April 21, 2016 [Page 14]

Internet-Draft Abbreviated Title October 2015

 +--------------------+
 | IoT Service Policy |
 +--------------------+
 |
 +---------------------+ | +--------------------+
 | Topology / Location | | | Orchestration |
 | +-+-+
 | Bootstrap data | | | Organization policy|
 +---------------------+ | +--------------------+
 |
 \|/
 v
 +--------------------+
 | IoT SDN policy |
 +--------------------+

 Service policy could be partially rendered as an SDN baseline for
 simplifying dependency management.

 Figure 3

8. Characteristics

 The architecture, described in this draft, enables densely clustered
 IT resources to form arbitrary self-service communities that span
 local or wide area networks. This is decouples a logical patchwork
 of segments on top of a plain end-to-end IP network. By basing on
 principles of fault-tolerance, including publish-subscribe
 dissemination semantics, this may be scaled, without bottleneck, by
 only the well-known methods currently employed by the World Wide Web.

 IPv6 and successors will play a key role in recapturing network
 simplicity from the many workarounds that have been stacked on top of
 IPv4 and its limitations. However, currently missing are adequate
 directory services to support a transparent workgroup concept. The
 present Internet architecture is still geared principally towards a
 crudely shared single-tenant, top-down management model, with
 authority at the top. Top down methods require the leaf domains to
 be exposed to attack from high up in the network. However, shrink-
 wrapping workspace boundaries closer around their private resources,
 their management could be simplified, speeded up, and become less
 exposed.

Burgess & Wildfeuer Expires April 21, 2016 [Page 15]

Internet-Draft Abbreviated Title October 2015

9. Summary and Outlook

 The issues discussed and laid out in this draft address key issues of
 scalability, fault tolerance, separation of concerns, and federation
 of intent within networked information systems. The platform is a
 synthesis of well-known techniques, and is deliberately aligned with
 the needs of agile commercial spaces, as well as large industrial
 distributions, and small domestic needs. We purposely leave open
 vendor specific concerns, which can easily fit into the described
 architecture, on top of this common set of principles.

10. Acknowledgments

 We are grateful for helpful conversations with K. Burns, M.
 Dvorkin, D. Maluf, and E. Lear.

11. Security Considerations

 With a pervasive contact surface onto both the Internet and the real
 world, security is obvious a major concern. Experience with
 pervasive frameworks like [CFENGINE], as well as theoretical studies
 of pull-based architectures, suggest that the promise-oriented pull-
 only architecture can reduce the exposure to denial of service
 attacks and data-based overflow attacks, by rejecting all external
 data sent without invitation. Moreover, the tie-in between service
 and network policy reduces the likelihood of errors in policy across
 the layers.

 Workspaces can play a role too here, as a shrink-wrapping of service
 scope around minimal set of endpoints, thus reducing the logical
 contact surface for data communications, and publishing information
 purely on a need-to-know basis. We take is for granted that
 workspace data are encrypted with workspace authorized credentials.

12. Normative References

 [Bergstra1]
 Bergstra, J. and M. Burgess, "Promise Theory: Principles
 and Applications", 2013.

 [CFENGINE]
 Burgess, M., "A site configuration engine, Computing
 Systems", 1995.

 [CONVERGE]
 Burgess, M., "Configurable immunity model of evolving
 configuration management, Science of Computer
 Programming", 2004.

Burgess & Wildfeuer Expires April 21, 2016 [Page 16]

Internet-Draft Abbreviated Title October 2015

 [DSOM2005]
 Burgess, M., "An Approach to Understanding Policy Based on
 Autonomy and Voluntary Cooperation, Lecture Notes in
 Computer Science", 2005.

 [MicroS] Richardson, C., "Pattern: Microservices Architecture",
 2014.

 [MUD] Lear, E., "Manufacturer Usage Description", 2015.

 [OneM2M] OneM2M, , "Standards for M2M and the Internet of Things",
 2015.

 [PromiseNet]
 Borrill, P., Burgess, M., Craw, T., and M. Dvorkin, "A
 Promise Theory of Networking", 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [SOA] Open Group, , "SOA Reference Architecture Technical
 Standard : Basic Concepts", 2016.

 [WORKSPC] Burgess, M., Dvorkin, M., and K. Burns, "Self-Service
 Workspaces for Federated IT Infrastructure", 2016.

Authors’ Addresses

 Mark Burgess
 Independent Researcher
 Oslo
 Norway

 Herb Wildfeuer
 Cisco Systems
 San Jose
 USA

 Email: hwildfeu@cisco.com

Burgess & Wildfeuer Expires April 21, 2016 [Page 17]

CoRE O. Garcia-Morchon
Internet-Draft S. Kumar
Intended status: Informational Philips Research
Expires: March 15, 2014 S. Keoh
 University of Glasgow
 R. Hummen
 RWTH Aachen
 R. Struik
 Struik Consultancy
 September 11, 2013

 Security Considerations in the IP-based Internet of Things
 draft-garcia-core-security-06

Abstract

 A direct interpretation of the Internet of Things concept refers to
 the usage of standard Internet protocols to allow for human-to-thing
 or thing-to-thing communication. Although the security needs are
 well-recognized, it is still not fully clear how existing IP-based
 security protocols can be applied to this new setting. This
 Internet-Draft first provides an overview of security architecture,
 its deployment model and general security needs in the context of the
 lifecycle of a thing. Then, it presents challenges and requirements
 for the successful roll-out of new applications and usage of standard
 IP-based security protocols when applied to get a functional Internet
 of Things.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2013.

Copyright Notice

Garcia-Morchon, et al. Expires March 15, 2014 [Page 1]

Internet-Draft Security Considerations for the IoT September 11, 2013

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 2]

Internet-Draft Security Considerations for the IoT September 11, 2013

Table of Contents

 1. Conventions and Terminology Used in this Document 4
 2. Introduction . 4
 3. The Thing Lifecycle and Architectural Considerations 5
 3.1. Threat Analysis . 6
 3.2. Security Aspects . 10
 4. State of the Art . 13
 4.1. IP-based Security Solutions 13
 4.2. Wireless Sensor Network Security and Beyond 15
 5. Challenges for a Secure Internet of Things 16
 5.1. Constraints and Heterogeneous Communication 16
 5.1.1. Tight Resource Constraints 16
 5.1.2. Denial-of-Service Resistance 18
 5.1.3. Protocol Translation and End-to-End Security 18
 5.2. Bootstrapping of a Security Domain 20
 5.2.1. Distributed vs. Centralized Architecture and
 Operation . 20
 5.2.2. Bootstrapping a thing’s identity and keying
 materials . 21
 5.2.3. Privacy-aware Identification 22
 5.3. Operation . 23
 5.3.1. End-to-End Security 23
 5.3.2. Group Membership and Security 23
 5.3.3. Mobility and IP Network Dynamics 24
 6. Security Suites for the IP-based Internet of Things 25
 6.1. Security Architecture 29
 6.2. Security Model . 30
 6.3. Security Bootstrapping and Management 31
 6.4. Network Security . 33
 6.5. Application Security 34
 7. Next Steps towards a Flexible and Secure Internet of Things . 36
 8. Security Considerations 40
 9. IANA Considerations . 40
 10. Acknowledgements . 40
 11. References . 40
 11.1. Informative References 40
 Authors’ Addresses . 45

Garcia-Morchon, et al. Expires March 15, 2014 [Page 3]

Internet-Draft Security Considerations for the IoT September 11, 2013

1. Conventions and Terminology Used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in "Key words for use in
 RFCs to Indicate Requirement Levels" [RFC2119].

2. Introduction

 The Internet of Things (IoT) denotes the interconnection of highly
 heterogeneous networked entities and networks following a number of
 communication patterns such as: human-to-human (H2H), human-to-thing
 (H2T), thing-to-thing (T2T), or thing-to-things (T2Ts). The term IoT
 was first coined by the Auto-ID center [AUTO-ID] in 1999. Since
 then, the development of the underlying concepts has ever increased
 its pace. Nowadays, the IoT presents a strong focus of research with
 various initiatives working on the (re)design, application, and usage
 of standard Internet technology in the IoT.

 The introduction of IPv6 and web services as fundamental building
 blocks for IoT applications [RFC6568] promises to bring a number of
 basic advantages including: (i) a homogeneous protocol ecosystem that
 allows simple integration with Internet hosts; (ii) simplified
 development of very different appliances; (iii) an unified interface
 for applications, removing the need for application-level proxies.
 Such features greatly simplify the deployment of the envisioned
 scenarios ranging from building automation to production environments
 to personal area networks, in which very different things such as a
 temperature sensor, a luminaire, or an RFID tag might interact with
 each other, with a human carrying a smart phone, or with backend
 services.

 This Internet Draft presents an overview of the security aspects of
 the envisioned all-IP architecture as well as of the lifecycle of an
 IoT device, a thing, within this architecture. In particular, we
 review the most pressing aspects and functionalities that are
 required for a secure all-IP solution.

 With this, this Internet-Draft pursues several goals. First, we aim
 at presenting a comprehensive view of the interactions and
 relationships between an IoT application and security. Second, we
 aim at describing challenges for a secure IoT in the specific context
 of the lifecycle of a resource-constrained device. The final goal of
 this draft is to discuss the next steps towards a secure IoT.

 The rest of the Internet-Draft is organized as follows. Section 3
 depicts the lifecycle of a thing and gives general definitions for

Garcia-Morchon, et al. Expires March 15, 2014 [Page 4]

Internet-Draft Security Considerations for the IoT September 11, 2013

 the main security aspects within the IoT domain. In Section 4, we
 review existing protocols and work done in the area of security for
 wireless sensor networks. Section 5 identifies general challenges
 and needs for an IoT security protocol design and discusses existing
 protocols and protocol proposals against the identified requirements.
 Section 6 proposes a number of illustrative security suites
 describing how different applications involve distinct security
 needs. Section 7 includes final remarks and conclusions.

3. The Thing Lifecycle and Architectural Considerations

 We consider the installation of a Building Automation and Control
 (BAC) system to illustrate the lifecycle of a thing in a BAC
 scenario. A BAC system consists of a network of interconnected nodes
 that perform various functions in the domains of HVAC (Heating,
 Ventilating, and Air Conditioning), lighting, safety etc. The nodes
 vary in functionality and a majority of them represent resource
 constrained devices such as sensors and luminaries. Some devices may
 also be battery operated or battery-less nodes, demanding for a focus
 on low energy consumption and on sleeping devices.

 In our example, the life of a thing starts when it is manufactured.
 Due to the different application areas (i.e., HVAC, lighting, safety)
 nodes are tailored to a specific task. It is therefore unlikely that
 one single manufacturer will create all nodes in a building. Hence,
 interoperability as well as trust bootstrapping between nodes of
 different vendors is important. The thing is later installed and
 commissioned within a network by an installer during the
 bootstrapping phase. Specifically, the device identity and the
 secret keys used during normal operation are provided to the device
 during this phase. Different subcontractors may install different
 IoT devices for different purposes. Furthermore, the installation
 and bootstrapping procedures may not be a defined event but may
 stretch over an extended period of time. After being bootstrapped,
 the device and the system of things are in operational mode and run
 the functions of the BAC system. During this operational phase, the
 device is under the control of the system owner. For devices with
 lifetimes spanning several years, occasional maintenance cycles may
 be required. During each maintenance phase, the software on the
 device can be upgraded or applications running on the device can be
 reconfigured. The maintenance tasks can thereby be performed either
 locally or from a backend system. Depending on the operational
 changes of the device, it may be required to re-bootstrap at the end
 of a maintenance cycle. The device continues to loop through the
 operational phase and the eventual maintenance phase until the device
 is decommissioned at the end of its lifecycle. However, the end-of-
 life of a device does not necessarily mean that it is defective but

Garcia-Morchon, et al. Expires March 15, 2014 [Page 5]

Internet-Draft Security Considerations for the IoT September 11, 2013

 rather denotes a need to replace and upgrade the network to next-
 generation devices in order to provide additional functionality.
 Therefore the device can be removed and re-commissioned to be used in
 a different network under a different owner by starting the lifecycle
 over again. Figure 1 shows the generic lifecycle of a thing. This
 generic lifecycle is also applicable for IoT scenarios other than BAC
 systems.

 At present, BAC systems use legacy building control standards such as
 BACNet [BACNET] or DALI [DALI] with independent networks for each
 subsystem (HVAC, lighting, etc.). However, this separation of
 functionality adds further complexity and costs to the configuration
 and maintenance of the different networks within the same building.
 As a result, more recent building control networks employ IP-based
 standards allowing seamless control over the various nodes with a
 single management system. While allowing for easier integration,
 this shift towards IP-based standards results in new requirements
 regarding the implementation of IP security protocols on constrained
 devices and the bootstrapping of security keys for devices across
 multiple manufacturers.

 _Manufactured _SW update _Decommissioned
 / / /
 | _Installed | _ Application | _Removed &
 | / | / reconfigured | / replaced
 | | _Commissioned | | | |
 | | / | | | | _Reownership &
 | | | _Application | | _Application | | / recommissioned
 | | | / running | | / running | | |
 | | | | | | | | | | \\
 +##+##+###+#############+##+##+#############+##+##+##############>>>
 \/ ______________/ \/ _____________/ ___/ time //
 / / \ \ \
 Bootstrapping / Maintenance & \ Maintenance &
 / re-bootstrapping \ re-bootstrapping
 Operational Operational

 The lifecycle of a thing in the Internet of Things.

 Figure 1

3.1. Threat Analysis

 This section explores the security threats and vulnerabilities of a
 network of things in the IoTs. Security threats have been analyzed
 in related IP protocols including HTTPS [RFC2818], 6LoWPAN [RFC4919],
 ANCP [RFC5713], DNS security threats [RFC3833], SIP [RFC3261], IPv6

Garcia-Morchon, et al. Expires March 15, 2014 [Page 6]

Internet-Draft Security Considerations for the IoT September 11, 2013

 ND [RFC3756], and PANA [RFC4016]. Nonetheless, the challenge is
 about their impacts on scenarios of the IoTs. In this section, we
 specifically discuss the threats that could compromise an individual
 thing, or network as a whole, with regard to different phases in the
 thing’s lifecycle. Note that these set of threats might go beyond
 the scope of Internet protocols but we gather them here for the sake
 of completeness.

 1 Cloning of things: During the manufacturing process of a thing,
 an untrusted manufacturer can easily clone the physical
 characteristics, firmware/software, or security configuration of
 the thing. Subsequently, such a cloned thing may be sold at a
 cheaper price in the market, and yet be still able to function
 normally, as a genuine thing. For example, two cloned devices
 can still be associated and work with each other. In the worst
 case scenario, a cloned device can be used to control a genuine
 device. One should note here, that an untrusted manufacturer may
 also change functionality of the cloned thing, resulting in
 degraded functionality with respect to the genuine thing
 (thereby, inflicting potential reputational risk to the original
 thing manufacturer). Moreover, it can implement additional
 functionality with the cloned thing, such as a backdoor.

 2 Malicious substitution of things: During the installation of a
 thing, a genuine thing may be substituted with a similar variant
 of lower quality without being detected. The main motivation may
 be cost savings, where the installation of lower-quality things
 (e.g., non-certified products) may significantly reduce the
 installation and operational costs. The installers can
 subsequently resell the genuine things in order to gain further
 financial benefits. Another motivation may be to inflict
 reputational damage on a competitor’s offerings.

 3 Eavesdropping attack: During the commissioning of a thing into a
 network, it may be susceptible to eavesdropping, especially if
 operational keying materials, security parameters, or
 configuration settings, are exchanged in clear using a wireless
 medium. After obtaining the keying material, the attacker might
 be able to recover the secret keys established between the
 communicating entities (e.g., H2T, T2Ts, or Thing to the backend
 management system), thereby compromising the authenticity and
 confidentiality of the communication channel, as well as the
 authenticity of commands and other traffic exchanged over this
 communication channel. When the network is in operation, T2T
 communication may be eavesdropped upon if the communication
 channel is not sufficiently protected or in the event of session
 key compromise due to a long period of usage without key renewal
 or updates.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 7]

Internet-Draft Security Considerations for the IoT September 11, 2013

 4 Man-in-the-middle attack: The commissioning phase may also be
 vulnerable to man-in-the-middle attacks, e.g., when keying
 material between communicating entities is exchanged in the clear
 and the security of the key establishment protocol depends on the
 tacit assumption that no third party is able to eavesdrop on or
 sit in between the two communicating entities during the
 execution of this protocol. Additionally, device authentication
 or device authorization may be nontrivial, or may need support of
 a human decision process, since things usually do not have a
 priori knowledge about each other and can, therefore, not always
 be able to differentiate friends and foes via completely
 automated mechanisms. Thus, even if the key establishment
 protocol provides cryptographic device authentication, this
 knowledge on device identities may still need complementing with
 a human-assisted authorization step (thereby, presenting a weak
 link and offering the potential of man-in-the-middle attacks this
 way).

 5 Firmware Replacement attack: When a thing is in operation or
 maintenance phase, its firmware or software may be updated to
 allow for new functionality or new features. An attacker may be
 able to exploit such a firmware upgrade by replacing the thing’s
 with malicious software, thereby influencing the operational
 behaviour of the thing. For example, an attacker could add a
 piece of malicious code to the firmware that will cause it to
 periodically report the energy usage of the lamp to a data
 repository for analysis.

 6 Extraction of security parameters: A thing deployed in the
 ambient environment (such as sensors, actuators, etc.) is usually
 physically unprotected and could easily be captured by an
 attacker. Such an attacker may then attempt to extract security
 information such as keys (e.g., device’s key, private-key, group
 key) from this thing or try and re-program it to serve his needs.
 If a group key is used and compromised this way, the whole
 network may be compromised as well. Compromise of a thing’s
 unique key has less security impact, since only the communication
 channels of this particular thing in question are compromised.
 Here, one should caution that compromise of the communication
 channel may also compromise all data communicated over this
 channel. In particular, one has to be weary of, e.g., compromise
 of group keys communicated over this channel (thus, leading to
 transitive exposure ripple effects).

 7 Routing attack: As highlighted in [ID-Daniel], routing
 information in IoT can be spoofed, altered, or replayed, in order
 to create routing loops, attract/repel network traffic, extend/
 shorten source routes, etc. Other relevant routing attacks

Garcia-Morchon, et al. Expires March 15, 2014 [Page 8]

Internet-Draft Security Considerations for the IoT September 11, 2013

 include 1) Sinkhole attack (or blackhole attack), where an
 attacker declares himself to have a high-quality route/path to
 the base station, thus allowing him to do anything to all packets
 passing through it. 2) Selective forwarding, where an attacker
 may selectively forward packets or simply drop a packet. 3)
 Wormhole attack, where an attacker may record packets at one
 location in the network and tunnel them to another location,
 thereby influencing perceived network behaviour and potentially
 distorting statistics, thus greatly impacting the functionality
 of routing. 4) Sybil attack, whereby an attacker presents
 multiple identities to other things in the network.

 8 Privacy threat: The tracking of a thing’s location and usage may
 pose a privacy risk to its users. An attacker can infer
 information based on the information gathered about individual
 things, thus deducing behavioural patterns of the user of
 interest to him. Such information can subsequently be sold to
 interested parties for marketing purposes and targeted
 advertizing.

 9 Denial-of-Service attack: Typically, things have tight memory and
 limited computation, they are thus vulnerable to resource
 exhaustion attack. Attackers can continuously send requests to
 be processed by specific things so as to deplete their resources.
 This is especially dangerous in the IoTs since an attacker might
 be located in the backend and target resource-constrained devices
 in an LLN. Additionally, DoS attack can be launched by
 physically jamming the communication channel, thus breaking down
 the T2T communication channel. Network availability can also be
 disrupted by flooding the network with a large number of packets.

 The following table summarizes the security threats we identified
 above and the potential point of vulnerabilities at different layers
 of the communication stack. We also include related RFCs that
 include a threat model that might apply to the IoTs.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 9]

Internet-Draft Security Considerations for the IoT September 11, 2013

 +------------------+------------------+------------------+
 | Manufacturing | Installation/ | Operation |
 | | Commissioning | |
 +------------+------------------+------------------+------------------+
Thing’s	Device Cloning	Substitution	Privacy threat
Model			Extraction of
			security params
+------------+------------------+------------------+------------------+			
Application		RFC2818	RFC2818, Firmware
Layer		RFC4016	replacement
+------------+------------------+------------------+------------------+			
Transport			Eavesdropping
Layer		Eavesdropping &	Man-in-the-middle
+------------+------------------	Man-in-the-middle	------------------+	
Network		attack	RFC4919,DoS attack
Layer		RFC4919, RFC5713	Routing attack
		RFC3833, RFC3756	RFC3833
+------------+------------------+------------------+------------------+			
Physical			DoS attack
Layer			
 +-------------------------------+------------------+------------------+

 The security threat analysis

 Figure 2

3.2. Security Aspects

 The term security subsumes a wide range of different concepts. In
 the first place, it refers to the basic provision of security
 services including confidentiality, authentication, integrity,
 authorization, non-repudiation, and availability, and some augmented
 services, such as duplicate detection and detection of stale packets
 (timeliness). These security services can be implemented by a
 combination of cryptographic mechanisms, such as block ciphers, hash
 functions, or signature algorithms, and non-cryptographic mechanisms,
 which implement authorization and other security policy enforcement
 aspects. For each of the cryptographic mechanisms, a solid key
 management infrastructure is fundamental to handling the required
 cryptographic keys, whereas for security policy enforcement, one
 needs to properly codify authorizations as a function of device roles
 and a security policy engine that implements these authorization
 checks and that can implement changes hereto throughout the system’s
 lifecycle.

 In the context of the IoT, however, the security must not only focus
 on the required security services, but also how these are realized in
 the overall system and how the security functionalities are executed.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 10]

Internet-Draft Security Considerations for the IoT September 11, 2013

 To this end, we use the following terminology to analyze and classify
 security aspects in the IoT:

 1 The security architecture refers to the system elements involved
 in the management of the security relationships between things
 and the way these security interactions are handled (e.g.,
 centralized or distributed) during the lifecycle of a thing.

 2 The security model of a node describes how the security
 parameters, processes, and applications are managed in a thing.
 This includes aspects such as process separation, secure storage
 of keying materials, etc.

 3 Security bootstrapping denotes the process by which a thing
 securely joins the IoT at a given location and point in time.
 Bootstrapping includes the authentication and authorization of a
 device as well as the transfer of security parameters allowing
 for its trusted operation in a given network.

 4 Network security describes the mechanisms applied within a
 network to ensure trusted operation of the IoT. Specifically, it
 prevents attackers from endangering or modifying the expected
 operation of networked things. Network security can include a
 number of mechanisms ranging from secure routing to data link
 layer and network layer security.

 5 Application security guarantees that only trusted instances of an
 application running in the IoT can communicate with each other,
 while illegitimate instances cannot interfere.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 11]

Internet-Draft Security Considerations for the IoT September 11, 2013

 : +-----------+:
 : *+*>|Application|*****
 : *| +-----------+: *
 : *| +-----------+: *
 : *|->| Transport |: *
 : * _*| +-----------+: *
 : *| | +-----------+: *
 : *| |->| Network |: *
 : *| | +-----------+: *
 : *| | +-----------+: * *** Bootstrapping
 : *| +->| L2 |: * ˜˜˜ Application Security
 : *| +-----------+: *
 :+--------+ : *
 :|Security| Configuration: *
 :|Service | Entity : *
 :+--------+ : *
 :........................: *
 *
 *
 :+--------+ : * : +--------+:
 :|Security| Node B : * : Node A |Security|:
 :|Service | : * : |Service |:
 :+--------+ : * : +--------+:
 : | +-----------+: * :+-----------+ |* :
 : | +->|Application|: ****|Application|<*+* |* :
 : | | +-----------+: :+-----------+ |* |* :
 : | | +-----------+: :+-----------+ |* |* :
 : | |->| Transport |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜| Transport |<-|* |* :
 : |__| +-----------+: :+-----------+ |*_|* :
 : | +-----------+: : +-----------+ : :+-----------+ | * :
 : |->| Network |: : | Network | : :| Network |<-| :
 : | +-----------+: : +-----------+ : :+-----------+ | :
 : | +-----------+: : +-----------+ : :+-----------+ | :
 : +->| L2 |: : | L2 | : :| L2 |<-+ :
 : +-----------+: : +-----------+ : :+-----------+ :
 :.......................: :...............: :.......................:
 Overview of Security Mechanisms.

 Figure 3

 We now discuss an exemplary security architecture relying on a
 configuration entity for the management of the system with regard to
 the introduced security aspects (see Figure 2). Inspired by the
 security framework for routing over low power and lossy network
 [ID-Tsao], we show an example of security model and illustrates how
 different security concepts and the lifecycle phases map to the
 Internet communication stack. Assume a centralized architecture in

Garcia-Morchon, et al. Expires March 15, 2014 [Page 12]

Internet-Draft Security Considerations for the IoT September 11, 2013

 which a configuration entity stores and manages the identities of the
 things associated with the system along with their cryptographic
 keys. During the bootstrapping phase, each thing executes the
 bootstrapping protocol with the configuration entity, thus obtaining
 the required device identities and the keying material. The security
 service on a thing in turn stores the received keying material for
 the network layer and application security mechanisms for secure
 communication. Things can then securely communicate with each other
 during their operational phase by means of the employed network and
 application security mechanisms.

4. State of the Art

 Nowadays, there exists a multitude of control protocols for the IoT.
 For BAC systems, the ZigBee standard [ZB], BACNet [BACNET], or DALI
 [DALI] play key roles. Recent trends, however, focus on an all-IP
 approach for system control.

 In this setting, a number of IETF working groups are designing new
 protocols for resource constrained networks of smart things. The
 6LoWPAN working group [WG-6LoWPAN] concentrates on the definition of
 methods and protocols for the efficient transmission and adaptation
 of IPv6 packets over IEEE 802.15.4 networks [RFC4944]. The CoRE
 working group [WG-CoRE] provides a framework for resource-oriented
 applications intended to run on constrained IP network (6LoWPAN). One
 of its main tasks is the definition of a lightweight version of the
 HTTP protocol, the Constrained Application Protocol (CoAP) [ID-CoAP],
 that runs over UDP and enables efficient application-level
 communication for things.

4.1. IP-based Security Solutions

 In the context of the IP-based IoT solutions, consideration of TCP/IP
 security protocols is important as these protocols are designed to
 fit the IP network ideology and technology. While a wide range of
 specialized as well as general-purpose key exchange and security
 solutions exist for the Internet domain, we discuss a number of
 protocols and procedures that have been recently discussed in the
 context of the above working groups. The considered protocols are
 IKEv2/IPsec [RFC4306], TLS/SSL [RFC5246], DTLS [RFC5238], HIP
 [RFC5201][ID-Moskowitz], PANA [RFC5191], and EAP [RFC3748] in this
 Internet-Draft. Application layer solutions such as SSH [RFC4251]
 also exist, however, these are currently not considered. Figure 3
 depicts the relationships between the discussed protocols in the
 context of the security terminology introduced in Section 3.1.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 13]

Internet-Draft Security Considerations for the IoT September 11, 2013

 : +-----------+:
 : *+*>|Application|***** *** Bootstrapping
 : *| +-----------+: * ### Application Security
 : *| +-----------+: * === Network security
 : *|->| Transport |: *
 : * _*| +-----------+: *
 : *| | +-----------+: *
 : *| |->| Network |: *--> -PANA/EAP
 : *| | +-----------+: * -HIP
 : *| | +-----------+: *
 : *| +->| L2 |: * ## DTLS
 : *| +-----------+: * ##
 :+--------+ : *
 :|Security| Configuration: * [] HIP,IKEv2
 :|Service | Entity : * [] ESP/AH
 :+--------+ : *
 :........................: *
 *
 *
 :+--------+ : * : +--------+:
 :|Security| Node B : * : Node A |Security|:
 :|Service | : * : |Service |:
 :+--------+ : Secure * : +--------+:
 : | +-----------+: routing * :+-----------+ |* :
 : | +->|Application|: framework ******|Application|<*+* |* :
 : | | +----##-----+: | :+----##-----+ |* |* :
 : | | +----##-----+: | :+----##-----+ |* |* :
 : | |->| Transport |#########|#############| Transport |<-|* |* :
 : |__| +----[]-----+: |.......... :+----[]-----+ |*_|* :
 : | +====[]=====+=====+===========+=====+====[]=====+ | * :
 : |->|| Network |: : | Network | : :| Network ||<-| :
 : | +|----------+: : +-----------+ : :+----------|+ | :
 : | +|----------+: : +-----------+ : :+----------|+ | :
 : +->|| L2 |: : | L2 | : :| L2 ||<-+ :
 : +===========+=====+===========+=====+===========+ :
 :.......................: :...............: :.......................:
 Relationships between IP-based security protocols.

 Figure 4

 The Internet Key Exchange (IKEv2)/IPsec and the Host Identity
 protocol (HIP) reside at or above the network layer in the OSI model.
 Both protocols are able to perform an authenticated key exchange and
 set up the IPsec transforms for secure payload delivery. Currently,
 there are also ongoing efforts to create a HIP variant coined Diet
 HIP [ID-HIP] that takes lossy low-power networks into account at the
 authentication and key exchange level.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 14]

Internet-Draft Security Considerations for the IoT September 11, 2013

 Transport Layer Security (TLS) and its datagram-oriented variant DTLS
 secure transport-layer connections. TLS provides security for TCP
 and requires a reliable transport, while DTLS secures and uses
 datagram-oriented protocols such as UDP. Both protocols are
 intentionally kept similar and share the same ideology and cipher
 suites.

 The Extensible Authentication Protocol (EAP) is an authentication
 framework supporting multiple authentication methods. EAP runs
 directly over the data link layer and, thus, does not require the
 deployment of IP. It supports duplicate detection and
 retransmission, but does not allow for packet fragmentation. The
 Protocol for Carrying Authentication for Network Access (PANA) is a
 network-layer transport for EAP that enables network access
 authentication between clients and the network infrastructure. In
 EAP terms, PANA is a UDP-based EAP lower layer that runs between the
 EAP peer and the EAP authenticator.

4.2. Wireless Sensor Network Security and Beyond

 A variety of key agreement and privacy protection protocols that are
 tailored to IoT scenarios have been introduced in the literature. For
 instance, random key pre-distribution schemes [PROC-Chan] or more
 centralized solutions, such as SPINS [JOURNAL-Perrig], have been
 proposed for key establishment in wireless sensor networks. The
 ZigBee standard [ZB] for sensor networks defines a security
 architecture based on an online trust center that is in charge of
 handling the security relationships within a ZigBee network. Personal
 privacy in ubiquitous computing has been studied extensively, e.g.,
 in [THESIS-Langheinrich]. Due to resource constraints and the
 specialization to meet specific requirements, these solutions often
 implement a collapsed cross layer optimized communication stack
 (e.g., without task-specific network layers and layered packet
 headers). Consequently, they cannot directly be adapted to the
 requirements of the Internet due to the nature of their design.

 Despite important steps done by, e.g., Gupta et al. [PROC-Gupta], to
 show the feasibility of an end-to-end standard security architecture
 for the embedded Internet, the Internet and the IoT domain still do
 not fit together easily. This is mainly due to the fact that IoT
 security solutions are often tailored to the specific scenario
 requirements without considering interoperability with Internet
 protocols. On the other hand, the direct use of existing Internet
 security protocols in the IoT might lead to inefficient or insecure
 operation as we show in our discussion below.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 15]

Internet-Draft Security Considerations for the IoT September 11, 2013

5. Challenges for a Secure Internet of Things

 In this section, we take a closer look at the various security
 challenges in the operational and technical features of the IoT and
 then discuss how existing Internet security protocols cope with these
 technical and conceptual challenges through the lifecycle of a thing.
 Table 1 summarizes which requirements need to be met in the lifecycle
 phases as well as the considered protocols. The structure of this
 section follows the structure of the table. This discussion should
 neither be understood as a comprehensive evaluation of all protocols,
 nor can it cover all possible aspects of IoT security. Yet, it aims
 at showing concrete limitations of existing Internet security
 protocols in some areas rather than giving an abstract discussion
 about general properties of the protocols. In this regard, the
 discussion handles issues that are most important from the authors’
 perspectives.

5.1. Constraints and Heterogeneous Communication

 Coupling resource constrained networks and the powerful Internet is a
 challenge because the resulting heterogeneity of both networks
 complicates protocol design and system operation. In the following
 we briefly discuss the resource constraints of IoT devices and the
 consequences for the use of Internet Protocols in the IoT domain.

5.1.1. Tight Resource Constraints

 The IoT is a resource-constrained network that relies on lossy and
 low-bandwidth channels for communication between small nodes,
 regarding CPU, memory, and energy budget. These characteristics
 directly impact the threats to and the design of security protocols
 for the IoT domain. First, the use of small packets, e.g., IEEE
 802.15.4 supports 127-byte sized packets at the physical layer, may
 result in fragmentation of larger packets of security protocols. This
 may open new attack vectors for state exhaustion DoS attacks, which
 is especially tragic, e.g., if the fragmentation is caused by large
 key exchange messages of security protocols. Moreover, packet
 fragmentation commonly downgrades the overall system performance due
 to fragment losses and the need for retransmissions. For instance,
 fate-sharing packet flight as implemented by DTLS might aggravate the
 resulting performance loss.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 16]

Internet-Draft Security Considerations for the IoT September 11, 2013

 +--+
 | Bootstrapping phase | Operational Phase |
 +------------+--+
	Incremental deployment	End-to-End security
Requirements	Identity and key management	Mobility support
	Privacy-aware identification	Group membership management
	Group creation	
+------------+--+		
	IKEv2	IKEv2/MOBIKE
Protocols	TLS/DTLS	TLS/DTLS
	HIP/Diet-HIP	HIP/Diet-HIP
	PANA/EAP	
 +---+

 Relationships between IP-based security protocols.

 Figure 5

 The size and number of messages should be minimized to reduce memory
 requirements and optimize bandwidth usage. In this context, layered
 approaches involving a number of protocols might lead to worse
 performance in resource-constrained devices since they combine the
 headers of the different protocols. In some settings, protocol
 negotiation can increase the number of exchanged messages. To
 improve performance during basic procedures such as, e.g.,
 bootstrapping, it might be a good strategy to perform those
 procedures at a lower layer.

 Small CPUs and scarce memory limit the usage of resource-expensive
 cryptoprimitives such as public-key cryptography as used in most
 Internet security standards. This is especially true, if the basic
 cryptoblocks need to be frequently used or the underlying application
 demands a low delay.

 Independently from the development in the IoT domain, all discussed
 security protocols show efforts to reduce the cryptographic cost of
 the required public-key-based key exchanges and signatures with
 ECC[RFC5246][RFC5903][ID-Moskowitz][ID-HIP]. Moreover, all protocols
 have been revised in the last years to enable crypto agility, making
 cryptographic primitives interchangeable. Diet HIP takes the
 reduction of the cryptographic load one step further by focusing on
 cryptographic primitives that are to be expected to be enabled in
 hardware on IEEE 802.15.4 compliant devices. For example, Diet HIP
 does not require cryptographic hash functions but uses a CMAC [NIST]
 based mechanism, which can directly use the AES hardware available in
 standard sensor platforms. However, these improvements are only a
 first step in reducing the computation and communication overhead of
 Internet protocols. The question remains if other approaches can be

Garcia-Morchon, et al. Expires March 15, 2014 [Page 17]

Internet-Draft Security Considerations for the IoT September 11, 2013

 applied to leverage key agreement in these heavily resource-
 constrained environments.

 A further fundamental need refers to the limited energy budget
 available to IoT nodes. Careful protocol (re)design and usage is
 required to reduce not only the energy consumption during normal
 operation, but also under DoS attacks. Since the energy consumption
 of IoT devices differs from other device classes, judgments on the
 energy consumption of a particular protocol cannot be made without
 tailor-made IoT implementations.

5.1.2. Denial-of-Service Resistance

 The tight memory and processing constraints of things naturally
 alleviate resource exhaustion attacks. Especially in unattended T2T
 communication, such attacks are difficult to notice before the
 service becomes unavailable (e.g., because of battery or memory
 exhaustion). As a DoS countermeasure, DTLS, IKEv2, HIP, and Diet HIP
 implement return routability checks based on a cookie mechanism to
 delay the establishment of state at the responding host until the
 address of the initiating host is verified. The effectiveness of
 these defenses strongly depends on the routing topology of the
 network. Return routability checks are particularly effective if
 hosts cannot receive packets addressed to other hosts and if IP
 addresses present meaningful information as is the case in today’s
 Internet. However, they are less effective in broadcast media or
 when attackers can influence the routing and addressing of hosts
 (e.g., if hosts contribute to the routing infrastructure in ad-hoc
 networks and meshes).

 In addition, HIP implements a puzzle mechanism that can force the
 initiator of a connection (and potential attacker) to solve
 cryptographic puzzles with variable difficulties. Puzzle-based
 defense mechanisms are less dependent on the network topology but
 perform poorly if CPU resources in the network are heterogeneous
 (e.g., if a powerful Internet host attacks a thing). Increasing the
 puzzle difficulty under attack conditions can easily lead to
 situations, where a powerful attacker can still solve the puzzle
 while weak IoT clients cannot and are excluded from communicating
 with the victim. Still, puzzle-based approaches are a viable option
 for sheltering IoT devices against unintended overload caused by
 misconfigured or malfunctioning things.

5.1.3. Protocol Translation and End-to-End Security

 Even though 6LoWPAN and CoAP progress towards reducing the gap
 between Internet protocols and the IoT, they do not target protocol
 specifications that are identical to their Internet pendants due to

Garcia-Morchon, et al. Expires March 15, 2014 [Page 18]

Internet-Draft Security Considerations for the IoT September 11, 2013

 performance reasons. Hence, more or less subtle differences between
 IoT protocols and Internet protocols will remain. While these
 differences can easily be bridged with protocol translators at
 gateways, they become major obstacles if end-to-end security measures
 between IoT devices and Internet hosts are used.

 Cryptographic payload processing applies message authentication codes
 or encryption to packets. These protection methods render the
 protected parts of the packets immutable as rewriting is either not
 possible because a) the relevant information is encrypted and
 inaccessible to the gateway or b) rewriting integrity-protected parts
 of the packet would invalidate the end-to-end integrity protection.

 There are essentially four solutions for this problem:

 1 Sharing symmetric keys with gateways enables gateways to
 transform (e.g., de-compress, convert, etc.) packets and re-apply
 the security measures after transformation. This method abandons
 end-to-end security and is only applicable to simple scenarios
 with a rudimentary security model.

 2 Reusing the Internet wire format in the IoT makes conversion
 between IoT and Internet protocols unnecessary. However, it
 leads to poor performance because IoT specific optimizations
 (e.g., stateful or stateless compression) are not possible.

 3 Selectively protecting vital and immutable packet parts with a
 MAC or with encryption requires a careful balance between
 performance and security. Otherwise, this approach will either
 result in poor performance (protect as much as possible) or poor
 security (compress and transform as much as possible).

 4 Message authentication codes that sustain transformation can be
 realized by considering the order of transformation and
 protection (e.g., by creating a signature before compression so
 that the gateway can decompress the packet without recalculating
 the signature). This enables IoT specific optimizations but is
 more complex and may require application-specific transformations
 before security is applied. Moreover, it cannot be used with
 encrypted data because the lack of cleartext prevents gateways
 from transforming packets.

 To the best of our knowledge, none of the mentioned security
 protocols provides a fully customizable solution in this problem
 space. In fact, they usually offer an end-to-end secured connection.
 An exception is the usage layered approach as might be PANA and EAP.
 In such a case, this configuration (i) allows for a number of
 configurations regarding the location of, e.g., the EAP authenticator

Garcia-Morchon, et al. Expires March 15, 2014 [Page 19]

Internet-Draft Security Considerations for the IoT September 11, 2013

 and authentication server and (ii) the layered architecture might
 allow for authentication at different places. The drawback of this
 approach, however, lies in its high signaling traffic volume compared
 to other approaches. Hence, future work is required to ensure
 security, performance and interoperability between IoT and the
 Internet.

5.2. Bootstrapping of a Security Domain

 Creating a security domain from a set of previously unassociated IoT
 devices is a key operation in the lifecycle of a thing and in the IoT
 network. In this section, we discuss general forms of network
 operation, how to communicate a thing’s identity and the privacy
 implications arising from the communication of this identity.

5.2.1. Distributed vs. Centralized Architecture and Operation

 Most things might be required to support both centralized and
 distributed operation patterns. Distributed thing-to-thing
 communication might happen on demand, for instance, when two things
 form an ad-hoc security domain to cooperatively fulfill a certain
 task. Likewise, nodes may communicate with a backend service located
 in the Internet without a central security manager. The same nodes
 may also be part of a centralized architecture with a dedicated node
 being responsible for the security management for group communication
 between things in the IoT domain. In today’s IoT, most common
 architectures are fully centralized in the sense that all the
 security relationships within a segment are handled by a central
 party. In the ZigBee standard, this entity is the trust center.
 Current proposals for 6LoWPAN/CoRE identify the 6LoWPAN Border Router
 (6LBR) as such a device.

 A centralized architecture allows for central management of devices
 and keying materials as well as for the backup of cryptographic keys.
 However, it also imposes some limitations. First, it represents a
 single point of failure. This is a major drawback, e.g., when key
 agreement between two devices requires online connectivity to the
 central node. Second, it limits the possibility to create ad-hoc
 security domains without dedicated security infrastructure. Third,
 it codifies a more static world view, where device roles are cast in
 stone, rather than a more dynamic world view that recognizes that
 networks and devices, and their roles and ownership, may change over
 time (e.g., due to device replacement and hand-over of control).

 Decentralized architectures, on the other hand, allow creating ad-hoc
 security domains that might not require a single online management
 entity and are operative in a much more stand-alone manner. The ad-
 hoc security domains can be added to a centralized architecture at a

Garcia-Morchon, et al. Expires March 15, 2014 [Page 20]

Internet-Draft Security Considerations for the IoT September 11, 2013

 later point in time, allowing for central or remote management.

5.2.2. Bootstrapping a thing’s identity and keying materials

 Bootstrapping refers to the process by which a device is associated
 to another one, to a network, or to a system. The way it is
 performed depends upon the architecture: centralized or distributed.
 It is important to realize that bootstrapping may involve different
 types of information, ranging from network parameters and information
 on device capabilities and their presumed functionality, to
 management information related to, e.g., resource scheduling and
 trust initialization/management. Furthermore, bootstrapping may
 occur in stages during the lifecycle of a device and may include
 provisioning steps already conducted during device manufacturing
 (e.g., imprinting a unique identifier or a root certificate into a
 device during chip testing), further steps during module
 manufacturing (e.g., setting of application-based configurations,
 such as temperature read-out frequencies and push-thresholds), during
 personalization (e.g., fine-tuned settings depending on installation
 context), during hand-over (e.g., transfer of ownership from supplier
 to user), and, e.g., in preparation of operation in a specific
 network. In what follows, we focus on bootstrapping of security-
 related information, since bootstrapping of all other information can
 be conducted as ordinary secured communications, once a secure and
 authentic channel between devices has been put in place.

 In a distributed approach, a Diffie-Hellman type of handshake can
 allow two peers to agree on a common secret. In general, IKEv2, HIP,
 TLS, DTLS, can perform key exchanges and the setup of security
 associations without online connections to a trust center. If we do
 not consider the resource limitations of things, certificates and
 certificate chains can be employed to securely communicate
 capabilities in such a decentralized scenario. HIP and Diet HIP do
 not directly use certificates for identifying a host, however
 certificate handling capabilities exist for HIP and the same protocol
 logic could be used for Diet HIP. It is noteworthy, that Diet HIP
 does not require a host to implement cryptographic hashes. Hence,
 some lightweight implementations of Diet HIP might not be able to
 verify certificates unless a hash function is implemented by the
 host.

 In a centralized architecture, preconfigured keys or certificates
 held by a thing can be used for the distribution of operational keys
 in a given security domain. A current proposal [ID-OFlynn] refers to
 the use of PANA for the transport of EAP messages between the PANA
 client (the joining thing) and the PANA Authentication Agent (PAA),
 the 6LBR. EAP is thereby used to authenticate the identity of the
 joining thing. After the successful authentication, the PANA PAA

Garcia-Morchon, et al. Expires March 15, 2014 [Page 21]

Internet-Draft Security Considerations for the IoT September 11, 2013

 provides the joining thing with fresh network and security
 parameters.

 IKEv2, HIP, TLS, and DTLS could be applied as well for the transfer
 of configuration parameters in a centralized scenario. While HIP’s
 cryptographic secret identifies the thing, the other protocols do not
 represent primary identifiers but are used instead to bind other
 identifiers such as the operation keys to the public-key identities.

 In addition to the protocols, operational aspects during
 bootstrapping are of key importance as well. Many other standard
 Internet protocols assume that the identity of a host is either
 available by using secondary services like certificate authorities or
 secure name resolution (e.g., DNSsec) or can be provided over a side
 channel (entering passwords via screen and keyboard). While these
 assumptions may hold in traditional networks, intermittent
 connectivity, localized communication, and lack of input methods
 complicate the situation for the IoT.

 The order in which the things within a security domain are
 bootstrapped plays an important role as well. In [RFC6345], the PANA
 relay element is introduced, relaying PANA messages between a PaC
 (joining thing) and PAA of a segment [ID-OFlynn]. This approach
 forces commissioning based on distance to PAA, i.e., things can only
 be bootstrapped hop-by-hop starting from those closer to the PAA, all
 things that are 1-hop away are bootstrapped first, followed by those
 that are 2-hop away, and so on. Such an approach might impose
 important limitations on actual use cases in which, e.g., an
 installer without technical background has to roll-out the system.

5.2.3. Privacy-aware Identification

 During the last years, the introduction of RFID tags has raised
 privacy concerns because anyone might access and track tags. As the
 IoT involves not only passive devices, but also includes active and
 sensing devices, the IoT might irrupt even deeper in people’s privacy
 spheres. Thus, IoT protocols should be designed to avoid these
 privacy threats during bootstrapping and operation where deemed
 necessary. In H2T and T2T interactions, privacy-aware identifiers
 might be used to prevent unauthorized user tracking. Similarly,
 authentication can be used to prove membership of a group without
 revealing unnecessary individual information.

 TLS and DTLS provide the option of only authenticating the responding
 host. This way, the initiating host can stay anonymous. If
 authentication for the initiating host is required as well, either
 public-key certificates or authentication via the established
 encrypted payload channel can be employed. Such a setup allows to

Garcia-Morchon, et al. Expires March 15, 2014 [Page 22]

Internet-Draft Security Considerations for the IoT September 11, 2013

 only reveal the responder’s identity to possible eavesdroppers.

 HIP and IKEv2 use public-key identities to authenticate the initiator
 of a connection. These identities could easily be traced if no
 additional protection were in place. IKEv2 transmits this
 information in an encrypted packet. Likewise, HIP provides the
 option to keep the identity of the initiator secret from
 eavesdroppers by encrypting it with the symmetric key generated
 during the handshake. However, Diet HIP cannot provide a similar
 feature because the identity of the initiator simultaneously serves
 as static Diffie-Hellman key. Note that all discussed solutions
 could use anonymous public-key identities that change for each
 communication. However, such identity cycling may require a
 considerable computational effort for generating new asymmetric key
 pairs. In addition to the built-in privacy features of the here
 discussed protocols, a large body of anonymity research for key
 exchange protocols exists. However, the comparison of these
 protocols and protocol extensions is out of scope for this work.

5.3. Operation

 After the bootstrapping phase, the system enters the operational
 phase. During the operational phase, things can relate to the state
 information created during the bootstrapping phase in order to
 exchange information securely and in an authenticated fashion. In
 this section, we discuss aspects of communication patterns and
 network dynamics during this phase.

5.3.1. End-to-End Security

 Providing end-to-end security is of great importance to address and
 secure individual T2T or H2T communication within one IoT domain.
 Moreover, end-to-end security associations are an important measure
 to bridge the gap between the IoT and the Internet. IKEv2 and HIP,
 TLS and DTLS provide end-to-end security services including peer
 entity authentication, end-to-end encryption and integrity protection
 above the network layer and the transport layer respectively. Once
 bootstrapped, these functions can be carried out without online
 connections to third parties, making the protocols applicable for
 decentralized use in the IoT. However, protocol translation by
 intermediary nodes may invalidate end-to-end protection measures (see
 Section 5.1).

5.3.2. Group Membership and Security

 In addition to end-to-end security, group key negotiation is an
 important security service for the T2Ts and Ts2T communication
 patterns in the IoT as efficient local broadcast and multicast relies

Garcia-Morchon, et al. Expires March 15, 2014 [Page 23]

Internet-Draft Security Considerations for the IoT September 11, 2013

 on symmetric group keys.

 All discussed protocols only cover unicast communication and
 therefore do not focus on group-key establishment. However, the
 Diffie-Hellman keys that are used in IKEv2 and HIP could be used for
 group Diffie-Hellman key-negotiations. Conceptually, solutions that
 provide secure group communication at the network layer (IPsec/IKEv2,
 HIP/Diet HIP) may have an advantage regarding the cryptographic
 overhead compared to application-focused security solutions (TLS/
 DTLS). This is due to the fact that application-focused solutions
 require cryptographic operations per group application, whereas
 network layer approaches may allow to share secure group associations
 between multiple applications (e.g., for neighbor discovery and
 routing or service discovery). Hence, implementing shared features
 lower in the communication stack can avoid redundant security
 measures.

 A number of group key solutions have been developed in the context of
 the IETF working group MSEC in the context of the MIKEY architecture
 [WG-MSEC][RFC4738]. These are specifically tailored for multicast
 and group broadcast applications in the Internet and should also be
 considered as candidate solutions for group key agreement in the IoT.
 The MIKEY architecture describes a coordinator entity that
 disseminates symmetric keys over pair-wise end-to-end secured
 channels. However, such a centralized approach may not be applicable
 in a distributed environment, where the choice of one or several
 coordinators and the management of the group key is not trivial.

5.3.3. Mobility and IP Network Dynamics

 It is expected that many things (e.g., wearable sensors, and user
 devices) will be mobile in the sense that they are attached to
 different networks during the lifetime of a security association.
 Built-in mobility signaling can greatly reduce the overhead of the
 cryptographic protocols because unnecessary and costly re-
 establishments of the session (possibly including handshake and key
 agreement) can be avoided. IKEv2 supports host mobility with the
 MOBIKE [RFC4555][RFC4621] extension. MOBIKE refrains from applying
 heavyweight cryptographic extensions for mobility. However, MOBIKE
 mandates the use of IPsec tunnel mode which requires to transmit an
 additional IP header in each packet. This additional overhead could
 be alleviated by using header compression methods or the Bound End-
 to-End Tunnel (BEET) mode [ID-Nikander], a hybrid of tunnel and
 transport mode with smaller packet headers.

 HIP offers a simple yet effective mobility management by allowing
 hosts to signal changes to their associations [RFC5206]. However,
 slight adjustments might be necessary to reduce the cryptographic

Garcia-Morchon, et al. Expires March 15, 2014 [Page 24]

Internet-Draft Security Considerations for the IoT September 11, 2013

 costs, for example, by making the public-key signatures in the
 mobility messages optional. Diet HIP does not define mobility yet
 but it is sufficiently similar to HIP to employ the same mechanisms.
 TLS and DTLS do not have standards for mobility support, however,
 work on DTLS mobility exists in the form of an Internet draft
 [ID-Williams]. The specific need for IP-layer mobility mainly
 depends on the scenario in which nodes operate. In many cases,
 mobility support by means of a mobile gateway may suffice to enable
 mobile IoT networks, such as body sensor networks. However, if
 individual things change their point of network attachment while
 communicating, mobility support may gain importance.

6. Security Suites for the IP-based Internet of Things

 Different applications have different security requirements and needs
 and, depending on various factors, such as device capability,
 availability of network infrastructure, security services needed,
 usage, etc., the required security protection may vary from "no
 security" to "full-blown security". For example, applications may
 have different needs regarding authentication and confidentiality.
 While some application might not require any authentication at all,
 others might require strong end-to-end authentication. In terms of
 secure bootstrapping of keys, some applications might assume the
 existence and online availability of a central key-distribution-
 center (KDC) within the 6LoWPAN network to distribute and manage
 keys; while other applications cannot rely on such a central party or
 their availability.

 Thus, it is essential to define security profiles to better tailor
 security solutions for different applications with the same
 characteristics and requirements. This provides a means of grouping
 applications into profiles and then defines the minimal required
 security primitives to enable and support the security needs of the
 profile. The security elements in a security profile can be
 classified according to Section 3.1, namely:

 1 Security architecture,

 2 Security model,

 3 Security bootstrapping,

 4 Network security, and

Garcia-Morchon, et al. Expires March 15, 2014 [Page 25]

Internet-Draft Security Considerations for the IoT September 11, 2013

 5 Application security.

 In order to (i) guide the design process by identifying open gaps;
 (ii) allow for later interoperability; and (iii) prevent possible
 security misconfigurations, this section defines a number of generic
 security profiles with different security needs. Each security
 profile is identified by:

 1 a short description,

 2 an exemplary application that might use/require such a security
 policy,

 3 the security requirements for each of the above security aspects
 according to our classification in Section 3.1.

 These security profiles can serve to guide the standardization
 process, since these explicitly describe the basic functionalities
 and protocols required to get different use cases up and running. It
 can allow for later interoperability since different manufacturers
 can describe the implemented security profile in their products.
 Finally, the security profiles can avoid possible security
 misconfigurations, since each security profile can be bound to a
 different application area so that it can be clearly defined which
 security protocols and approaches can be applied where and under
 which circumstances.

 Note that each of these security profiles aim at summarizing the
 required security requirements for different applications and at
 providing a set of initial security features. In other words, these
 profiles reflect the need for different security configurations,
 depending on the threat and trust models of the underlying
 applications. In this sense, this section does not provide an
 overview of existing protocols as done in previous sections of the
 Internet Draft, but it rather explicitly describes what should be in
 place to ensure secure system operation. Observe also that this list
 of security profiles is not exhaustive and that it should be
 considered just as an example not related to existing legal
 regulations for any existing application. These security profiles
 are summarized in the table below:

Garcia-Morchon, et al. Expires March 15, 2014 [Page 26]

Internet-Draft Security Considerations for the IoT September 11, 2013

 +---+
 | Application | Description |
 +----------+---+
 |SecProf_0 |No security needs|6LoWPAN/CoAP is used without security |
 +----------+-----------------+---------------------------------------+
 |SecProf_1 |Home usage |Enables operation between home things |
 | | |without interaction with central device|
 +----------+-----------------+---------------------------------------+
SecProf_2	Managed Home	Enables operation between home things.
	usage	Interaction with a central and local
		device is possible
+----------+-----------------+---------------------------------------+		
SecProf_3	Industrial usage	Enables operation between things.
		Relies on central (local or backend)
		device for security
+----------+-----------------+---------------------------------------+		
SecProf_4	Advanced	Enables ad-hoc operation between things
	Industrial usage	and relies on central device or
		on a collection of control devices
 +----------+-----------------+---------------------------------------+

 Security profiles and application areas.

 Figure 6

 The classification in the table considers different potential
 applications and situations in which their security needs change due
 to different operational features (network size, existence of a
 central device, connectivity to the Internet, importance of the
 exchanged information, etc) or threat model (what are the assets that
 an attacker looks for). As already pointed out, this set of
 scenarios is exemplary and they should be further discussed based on
 a broader consensus.

 SecProf_0 is meant for any application that does not require
 security. Examples include applications during system development,
 system testing, or some very basic applications in which security is
 not required at all.

 The second security suite (SecProf_1) is catered for environments in
 which 6LoWPAN/CoAP can be used to enable communication between things
 in an ad-hoc manner and the security requirements are minimal. An
 example, is a home application in which two devices should exchange
 information and no further connection with other devices (local or
 with a backend) is required. In this scenario, value of the
 exchanged information is low and that it usually happen in a confined
 room, thus, it is possible to have a short period of time during

Garcia-Morchon, et al. Expires March 15, 2014 [Page 27]

Internet-Draft Security Considerations for the IoT September 11, 2013

 which initial secrets can be exchanged in the clear. Due to this
 fact, there is no requirement to enable devices from different
 manufacturers to interoperate in a secure way (keys are just
 exchanged). The expected network size of applications using this
 profile is expected to be small such that the provision of network
 security, e.g., secure routing, is of low importance.

 The next security suite (SecProf_2) represents an evolution of
 SecProf_1 in which, e.g., home devices, can be managed locally. A
 first possibility for the securing domain management refers to the
 creation of a centrally managed security domain without any
 connectivity to the Internet. The central device used for management
 can serve as, e.g., a key distribution center including policies for
 key update, storage, etc. The presence of a central device can help
 in the management of larger networks. Network security becomes more
 relevant in this scenario since the 6LoWPAN/CoAP network can be prone
 to Denial of Service attacks (e.g., flooding if L2 is not protected)
 or routing attacks.

 SecProf_3 considers that a central device is always required for
 network management. Example applications of this profile include
 building control and automation, sensor networks for industrial use,
 environmental monitoring, etc. As before, the network manager can be
 located in the 6LoWPAN/CoAP network and handle key management. In
 this case, the first association of devices to the network is
 required to be done in a secure way. In other words, the threat
 model requires measurements to protect against any vulterable period
 of time. This step can involve the secure transmission of keying
 materials used for network security at different layers. The
 information exchanged in the network is considered to be valuable and
 it should be protected in the sense of pairwise links. Commands
 should be secured and broadcast should be secured with entity
 authentication [ID-CoAPMulticast]. Network should be protected from
 attacks. A further extension to this use case is to allow for remote
 management. A "backend manager" is in charge of managing SW or
 information exchanged or collected within the 6LoWPAN/CoAP network.
 This requires connection of devices to the Internet over a 6LBR
 involving a number of new threats that were not present before. A
 list of potential attacks include: resource-exhaustion attacks from
 the Internet; amplification attacks; trust issues related a HTTP-CoAP
 proxy [ID-proHTTPCoAP], etc. This use case requires protecting the
 communication from a device in the backend to a device in the
 6LoWPAN/CoAP network, end-to-end. This use case also requires
 measures to provide the 6LBR with the capability of dropping fake
 requests coming from the Internet. This becomes especially
 challenging when the 6LBR is not trusted and access to the exchanged
 information is limited; and even more in the case of a HTTP-CoAP
 proxy since protocol translation is required. This use case should

Garcia-Morchon, et al. Expires March 15, 2014 [Page 28]

Internet-Draft Security Considerations for the IoT September 11, 2013

 take care of protecting information accessed from the backend due to
 privacy issues (e.g., information such as type of devices, location,
 usage, type and amount of exchanged information, or mobility patterns
 can be gathered at the backend threatening the privacy sphere of
 users) so that only required information is disclosed.

 The last security suite (SecProf_4) essentially represents
 interoperability of all the security profiles defined previously. It
 considers applications with some additional requirements regarding
 operation such as: (i) ad-hoc establishment of security relationships
 between things (potentially from different manufacturers) in non-
 secure environments or (ii) dynamic roaming of things between
 different 6LoWPAN/CoAP security domains. Such operational
 requirements pose additional security requirements, e.g., in addition
 to secure bootstrapping of a device within a 6LoWPAN/CoAP security
 domain and the secure transfer of network operational key, there is a
 need to enable inter-domains secure communication to facilitate data
 sharing.

 The above description illustrates how different applications of
 6LoWPAN/CoAP networks involve different security needs. In the
 following sections, we summarize the expected security features or
 capabilities for each the security profile with regards to "Security
 Architecture", "Security Model", "Security Bootstrapping", "Network
 Security", and "Application Security".

6.1. Security Architecture

 The choice of security architecture has many implications regarding
 key management, access control, or security scope. A distributed (or
 ad-hoc) architecture means that security relationships between things
 are setup on the fly between a number of objects and kept in a
 decentralized fashion. A locally centralized security architecture
 means that a central device, e.g., the 6LBR, handles the keys for all
 the devices in the security domain. Alternatively, a central
 security architecture could also refer to the fact that smart objects
 are managed from the backend. The security architecture for the
 different security profiles is classified as follows.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 29]

Internet-Draft Security Considerations for the IoT September 11, 2013

 +---+
 | Description |
 +----------+---+
 |SecProf_0 | - |
 +----------+---+
 |SecProf_1 | Distributed |
 +----------+---+
 |SecProf_2 | Distributed able to move centralized (local) |
 +----------+---+
 |SecProf_3 | Centralized (local &/or backend) |
 +----------+---+
 |SecProf_4 | Distributed & centralized (local &/or backend) |
 +----------+---+

 Security architectures in different security profiles.

 Figure 7

 In "SecProf_1", management mechanisms for the distributed assignment
 and management of keying materials is required. Since this is a very
 simple use case, access control to the security domain can be enabled
 by means of a common secret known to all devices. In the next
 security suite (SecProf_2), a central device can assume key
 management responsibilities and handle the access to the network. The
 last two security suites (SecProf_3 and SecProf_4) further allow for
 the management of devices or some keying materials from the backend.

6.2. Security Model

 While some applications might involve very resource-constrained
 things such as, e.g., a humidity, pollution sensor, other
 applications might target more powerful devices aimed at more exposed
 applications. Security parameters such as keying materials,
 certificates, etc must be protected in the thing, for example by
 means of tamper-resistant hardware. Keys may be shared across a
 thing’s networking stack to provide authenticity and confidentiality
 in each networking layer. This would minimize the number of key
 establishment/agreement handshake and incurs less overhead for
 constrained thing. While more advance applications may require key
 separation at different networking layers, and possibly process
 separation and sandboxing to isolate one application from another. In
 this sense, this section reflects the fact that different
 applications require different sets of security mechanisms.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 30]

Internet-Draft Security Considerations for the IoT September 11, 2013

 +---+
 |Description |
 +----------+---+
 |SecProf_0 | - |
 +----------+---+
 |SecProf_1 |No tamper resistant |
 | |Sharing keys between layers |
 +----------+---+
 |SecProf_2 |No tamper resistant |
 | |Sharing keys between layers |
 +----------+---+
 |SecProf_3 |Tamper resistant |
 | |Key and process separation |
 +----------+---+
SecProf_4	(no) Tamper resistant
	Sharing keys between layers/Key and process separation
	Sandbox
 +----------+---+

 Thing security models in different security profiles.

 Figure 8

6.3. Security Bootstrapping and Management

 Bootstrapping refers to the process by which a thing initiates its
 life within a security domain and includes the initialization of
 secure and/or authentic parameters bound to the thing and at least
 one other device in the network. Here, different mechanisms may be
 used to achieve confidentiality and/or authenticity of these
 parameters, depending on deployment scenario assumptions and the
 communication channel(s) used for passing these parameters. The
 simplest mechanism for initial set-up of secure and authentic
 parameters is via communication in the clear using a physical
 interface (USB, wire, chip contact, etc.). Here, one commonly
 assumes this communication channel is secure, since eavesdropping
 and/or manipulation of this interface would generally require access
 to the physical medium and, thereby, to one or both of the devices
 themselves. This mechanism was used with the so-called original
 "resurrecting duckling" model, as introduced in [PROC-Stajano]. This
 technique may also be used securely in wireless, rather than wired,
 set-ups, if the prospect of eavesdropping and/or manipulating this
 channel are dim (a so-called "location-limited" channel [PROC-
 Smetters-04, PROC-Smetters-02]). Examples hereof include the
 communication of secret keys in the clear using near field
 communication (NFC) - where the physical channel is purported to have
 very limited range (roughly 10cm), thereby thwarting eavesdropping by

Garcia-Morchon, et al. Expires March 15, 2014 [Page 31]

Internet-Draft Security Considerations for the IoT September 11, 2013

 far-away adversarial devices, and in-the-clear communication during a
 small time window (triggered by, e.g., a button-push) - where
 eavesdropping is presumed absent during this small time window. With
 the use of public-key based techniques, assumptions on the
 communication channel can be relaxed even further, since then the
 cryptographic technique itself provides for confidentiality of the
 channel set-up and the location-limited channel - or use of
 certificates - rules out man-in-the-middle attacks, thereby providing
 authenticity [PROC-Smetters-02]. The same result can be obtained
 using password-based public-key protocols [SPEKE], where authenticity
 depends on the (weak) password not being guessed during execution of
 the protocol. It should be noted that while most of these techniques
 realize a secure and authentic channel for passing parameters, these
 generally do not provide for explicit authorization. As an example,
 with use of certificate-based public-key based techniques, one may
 obtain hard evidence on whom one shares secret and/or authentic
 parameters with, but this does not answer the question as to whether
 one wishes to share this information at all with this specifically
 identified device (the latter usually involves a human-decision
 element). Thus, the bootstrapping mechanisms above should generally
 be complemented by mechanisms that regulate (security policies for)
 authorization. Furthermore, the type of bootstrapping is very
 related to the required type of security architecture. Distributed
 bootstrapping means that a pair of devices can setup a security
 relationship on the fly, without interaction with a central device
 elsewhere within the system. In many cases, it is handy to have a
 distributed bootstrapping protocol based on existing security
 protocols (e.g., DTLS in CoAP) required for other purposes: this
 reduces the amount of required software. A centralized boostrapping
 protocol is one in which a central device manages the security
 relationships within a network. This can happen locally, e.g.,
 handled by the 6LBR, or remotely, e.g., from a server connected via
 the Internet. The security bootstrapping for the different security
 profiles is as follows.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 32]

Internet-Draft Security Considerations for the IoT September 11, 2013

 +---+
 |Description |
 +----------+---+
 |SecProf_0 | - |
 +----------+---+
 |SecProf_1 |* Distributed, (e.g., Resurrecting duckling) |
 | |* First key distribution happens in the clear |
 +----------+---+
SecProf_2	* Distributed, (e.g., Resurrecting duckling)
	* Centralized (local), 6LBR acts as KDC
	* First key distribution occurs in the clear, if the KDC
	is available, the KDC can manage network access
+----------+---+	
SecProf_3	* 6LBR acts as KDC. It handles node joining, provides
	them with keying material from L2 to application layers
	* Bootstrapping occurs in a secure way - either in secure
	environment or the security mechanisms ensure that
	eavesdropping is not possible.
	* KDC and backend can implement secure methods for
	network access
+----------+---+	
SecProf_4	* As in SecProf_3.
 +----------+---+

 Security boostrapping methods in different security profiles

 Figure 9

6.4. Network Security

 Network security refers to the mechanisms used to ensure the secure
 transport of 6LoWPAN frames. This involves a multitude of issues
 ranging from secure discovery, frame authentication, routing
 security, detection of replay, secure group communication, etc.
 Network security is important to thwart potential attacks such as
 denial-of-service (e.g., through message flooding) or routing
 attacks.

 The Internet Draft [ID-Tsao] presents a very good overview of attacks
 and security needs classified according to the confidentiality,
 integrity, and availability needs. A potential limitation is that
 there exist no differentiation in security between different use
 cases and the framework is limited to L3. The security suites
 gathered in the present ID aim at solving this by allowing for a more
 flexible selection of security needs at L2 and L3.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 33]

Internet-Draft Security Considerations for the IoT September 11, 2013

 +---+
 |Description |
 +----------+---+
 |SecProf_0 | - |
 +----------+---+
SecProf_1	* Network key creating a home security domain at L2
	ensuring authentication and freshness of exchanged data
	* Secure multicast does not ensure origin authentication
	* No need for secure routing at L3
+----------+---+	
SecProf_2	* Network key creating a home security domain at L2
	ensuring authentication and freshness of exchanged data
	* Secure multicast does not ensure origin authentication
	* No need for secure routing at L3
+----------+---+	
SecProf_3	* Network key creating an industry security domain at L2
	ensuring authentication and freshness of exchanged data
	* Secure routing needed (integrity & availability) at L3
	within 6LoWPAN/CoAP
	* Secure multicast requires origin authentication
+----------+---+	
SecProf_4	* Network key creating an industry security domain at L2
	ensuring authentication and freshness of exchanged data
	* Inter-domain authentication/secure handoff
	* Secure routing needed at L3
	* Secure multicast requires origin authentication
	* 6LBR (HTTP-CoAP proxy) requires verification of
	forwarded messages and messages leaving or entering the
	6LoWPAN/CoAP network.
 +----------+---+

 Network security needs in different security profiles

 Figure 10

6.5. Application Security

 In the context of 6LoWPAN/CoAP networks, application security refers
 firstly to the configuration of DTLS used to protect the exchanged
 information. It further refers to the measures required in potential
 translation points (e.g., a (HTTP-CoAP) proxy) where information can
 be collected and the privacy sphere of users in a given security
 domain is endangered. Application security for the different
 security profiles is as follows.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 34]

Internet-Draft Security Considerations for the IoT September 11, 2013

 +---+
 |Description |
 +----------+---+
 |SecProf_0 | - |
 +----------+---+
 |SecProf_1 | - |
 +----------+---+
SecProf_2	* DTLS is used for end-to-end application security
	between management device and things and between things
	* DTLS ciphersuites configurable to provide
	confidentiality and/or authentication and/or freshness
	* Key transport and policies for generation of session
	keys are required
+----------+---+	
SecProf_3	* Requirements as in SecProf_2 and
	* DTLS is used for end-to-end application security
	between management device and things and between things
	* Communication between KDC and each thing secured by
	pairwise keys
	* Group keys for communication in a group distributed
	by KDC
	* Privacy protection should be provided in translation
	points
+----------+---+	
SecProf_4	* Requirements as in SecProf_3 and
	* TLS or DTLS can be used to send commands from the
	backend to the 6LBR or things in a 6LoWPAN/CoAP network
	* End-to-end secure connectivity from backend required
	* Secure broadcast in a network from backend required
 +----------+---+

 Application security methods in different security profiles

 Figure 11

 The first two security profiles do not include any security at the
 application layer. The reason is that, in the first case, security
 is not provided and, in the second case, it seems reasonable to
 provide basic security at L2. In the third security profile
 (SecProf_2), DTLS becomes the way of protecting messages at
 application layer between things and with the KDC running on a 6LBR.
 A key option refers to the capability of easily configuring DTLS to
 provide a subset of security services (e.g., some applications do not
 require confidentiality) to reduce the impact of security in the
 system operation of resource-constrained things. In addition to
 basic key management mechanisms running within the KDC, communication
 protocols for key transport or key update are required. These

Garcia-Morchon, et al. Expires March 15, 2014 [Page 35]

Internet-Draft Security Considerations for the IoT September 11, 2013

 protocols could be based on DTLS. The next security suite
 (SecProf_3) requires pairwise keys for communication between things
 within the security domain. Furthermore, it can involve the usage of
 group keys for group communication. If secure multicast is
 implemented, it should provide origin authentication. Finally,
 privacy protection should be taken into account to limit access to
 valuable information -- such as identifiers, type of collected data,
 traffic patterns -- in potential translation points (proxies) or in
 the backend. The last security suite (SecProf_4) further extends the
 previous set of requirements considering security mechanisms to deal
 with translations between TLS and DTLS or for the provision of secure
 multicast within a 6LoWPAN/CoAP network from the backend.

7. Next Steps towards a Flexible and Secure Internet of Things

 This Internet Draft included an overview of both operational and
 security requirements of things in the Internet of Things, discussed
 a general threat model and security issues, and introduced a number
 of potential security suites fitting different types of IoT
 deployments.

 We conclude this document by giving our assessment of the current
 status of CoAP security with respect to addressing the IP security
 challenges we identified, so as to facilitate discussion of next
 steps towards workable security design concepts suitable for IP-based
 IoT in the broader community. Hereby, we focus on the employed
 security protocols and the type of security architecture.

 With current status, we refer to the feasibility of realizing secure
 deployments with existing CoAP protocols and the practicality of
 creating comprehensive security architectures based on those
 protocols:

 1 DTLS has been defined as the basic building block for protecting
 CoAP. At the time it was first proposed, no DTLS implementation
 for small, constrained devices was available. In the mean-time,
 TinyDTLS [TinyDTLS] has been developed offering the first open-
 source implementation of the protocol for small devices. However,
 more experience with the protocol is required. In particular, a
 performance evaluation and comparison should be made with a well-
 defined set of standard node platforms/networks. The results will
 help understand the limitations and the benefits of DTLS as well
 as to give recommended usage scenarios for this security
 protocol.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 36]

Internet-Draft Security Considerations for the IoT September 11, 2013

 2 (D)TLS was designed for traditional computer networks and, thus,
 some of its features may not be optimal for resource-constrained
 networks. This includes:

 a Basic DTLS features that are, in our view, not ideal for
 resource-constrained devices. For instance, the loss of a
 message in-flight requires the retransmission of all messages
 in-flight. On the other hand, if all messages in-flight are
 transmitted together in a single UDP packet, more resources
 are required for handling of large buffers. As pointed out
 in [ID-Hartke] , the number of flights in the DTLS handshake
 should be reduced, so that a faster setup of a secure channel
 can be realized. This would definitely improve the
 performance of DTLS significantly.

 b Fragmentation of messages due to smaller MTUs in resource-
 constrained networks is problematic. This implies that the
 node must have a large buffer to store all the fragments and
 subsequently perform re-ordering and reassembly in order to
 construct the entire DTLS message. The fragmentation of the
 handshake messages can, e.g., allow for a very simple method
 to carry out a denial of service attack.

 c The completion of the DTLS handshake is based on the
 successful verification of the Finished message by both
 client and server. As the Finished message is computed based
 on the hash of all handshake messages in the correct order,
 the node must allocate a large buffer to queue all handshake
 messages.

 d DTLS is thought to offer end-to-end security; however, end-
 to-end security also has to be considered from the point of
 view of LLN protection, so that end-to-end exchanges can
 still be verified and the LLN protected from, e.g., DoS
 attacks.

 3 Raw public-key in DTLS has been defined as mandatory. However,
 memory-optimized public-key libraries still require several KB of
 flash and several hundreds of B of RAM. Although Moore’s law
 still applies and an increase of platform resources is expected,
 many IoT scenarios are cost-driven, and in many use cases, the
 same work could be done with symmetric-keys. Thus, a key
 question is whether the choice for raw public-key is the best
 one. In addition, using raw public keys rather than certified
 public keys hard codes identities to public keys, thereby
 inhibiting public key updates and potentially complicating
 initial configuration.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 37]

Internet-Draft Security Considerations for the IoT September 11, 2013

 4 Performance of DTLS from a system perspective should be evaluated
 involving not just the cryptographic constructs and protocols,
 but should also include implementation benchmarks for security
 policies, since these may impact overall system performance and
 network traffic (an example of this would be policies on the
 frequency of key updates, which would necessitate securely
 propagating these to all devices in the network).

 5 Protection of lower protocol layers is a must in networks of any
 size to guarantee resistance against routing attacks such as
 flooding or wormhole attacks. The wireless medium that is used
 by things to communicate is broadcast in nature and allows
 anybody on the right frequency to overhear and even inject
 packets at will. Hence, IP-only security solutions may not
 suffice in many IoT scenarios. At the time of writing the
 document, comprehensive methods are either not in place or have
 not been evaluated yet. This limits the deployment of large-
 scale systems and makes the secure deployment of large scale
 networks rather infeasible.

 6 The term "bootstrapping" has been discussed in many occasions.
 Although everyone agrees on its importance, finding a good
 solution applicable to most use cases is rather challenging.
 While usage of existing methods for network access might
 partially address bootstrapping in the short-term and facilitate
 integration with legacy back-end systems, we feel that, in the
 medium-term, this may lead to too large of an overhead and
 imposes unnecessary constraints on flexible deployment models.
 The bootstrapping protocol should be reusable and light-weight to
 fit with small devices. Such a standard bootstrapping protocol
 must allow for commissioning of devices from different
 manufacturers in both centralized and ad-hoc scenarios and
 facilitate transitions of control amongst devices during the
 device’s and system’s lifecycle. Examples of the latter include
 scenarios that involve hand-over of control, e.g., from a
 configuration device to an operational management console and
 involving replacement of such a control device. A key challenge
 for secure bootstrapping of a device in a centralized
 architecture is that it is currently not feasible to commission a
 device when the adjacent devices have not been commissioned yet.
 In view of the authors, a light-weight approach is still required
 that allows for the bootstrapping of symmetric-keys and of
 identities in a certified public-key setting.

 7 Secure resource discovery has not been discussed so far. However,
 this issue is currently gaining relevance. The IoT, comprising
 sensors and actuators, will provide access to many resources to
 sense and modify the environment. The usage of DNS presents

Garcia-Morchon, et al. Expires March 15, 2014 [Page 38]

Internet-Draft Security Considerations for the IoT September 11, 2013

 well-known security issues, while the application of secure DNS
 may not be feasible on small devices. In general, security
 issues and solutions related to resource discovery are still
 unclear.

 8 A security architecture involves, beyond the basic protocols,
 many different aspects such as key management and the management
 of evolving security responsibilities of entities during the
 lifecycle of a thing. This document discussed a number of
 security suites and argued that different types of security
 architectures are required. A flexible IoT security architecture
 should incorporate the properties of a fully centralized
 architecture as well as allow devices to be paired together
 initially without the need for a trusted third party to create
 ad-hoc security domains comprising a number of nodes. These ad-
 hoc security domains could then be added later to the Internet
 via a single, central node or via a collection of nodes (thus,
 facilitating implementation of a centralized or distributed
 architecture, respectively). The architecture should also
 facilitate scenarios, where an operational network may be
 partitioned or merged, and where hand-over of control
 functionality of a single device or even of a complete subnetwork
 may occur over time (if only to facilitate smooth device repair/
 replacement without the need for a hard "system reboot" or to
 realize ownership transfer). This would allow the IoT to
 transparently and effortlessly move from an ad-hoc security
 domain to a centrally-managed single security domain or a
 heterogeneous collection of security domains, and vice-versa.
 However, currently, these features still lack validation in real-
 life, large-scale deployments.

 9 Currently, security solutions are layered, in the sense that each
 layer takes care of its own security needs. This approach fits
 well with traditional computer networks, but it has some
 limitations when resource-constrained devices are involved and
 these devices communicate with more powerful devices in the back-
 end. We argue that protocols should be more interconnected
 across layers to ensure efficiency as resource limitations make
 it challenging to secure (and manage) all layers individually. In
 this regard, securing only the application layer leaves the
 network open to attacks, while security focused only at the
 network or link layer might introduce possible inter-application
 security threats. Hence, the limited resources of things may
 require sharing of keying material and common security mechanisms
 between layers. It is required that the data format of the
 keying material is standardized to facilitate cross-layer
 interaction. Additionally, cross-layer concepts should be
 considered for an IoT-driven re-design of Internet security

Garcia-Morchon, et al. Expires March 15, 2014 [Page 39]

Internet-Draft Security Considerations for the IoT September 11, 2013

 protocols.

8. Security Considerations

 This document reflects upon the requirements and challenges of the
 security architectural framework for Internet of Things.

9. IANA Considerations

 This document contains no request to IANA.

10. Acknowledgements

 We gratefully acknowledge feedback and fruitful discussion with
 Tobias Heer and Robert Moskowitz.

11. References

11.1. Informative References

 [RFC6568]Kim, E., Kaspar, D., and JP. Vasseur, "Design and
 Application Spaces for IPv6 over Low-Power Wireless Personal Area
 Networks (6LoWPANs)", RFC 6568, April 2012.

 [RFC2818]Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC6345]Duffy, P., Chakrabarti, S., Cragie, R., Ohba, Y., Ed., and
 A. Yegin, "Protocol for Carrying Authentication for Network Access
 (PANA) Relay Element", RFC 6345, August 2011.

 [ID-CoAP]Z. Shelby, K. Hartke, C. Bormann, "Constrained Application
 Protocol (CoAP)", draft-ietf-core-coap-18, June 2013.

 [ID-CoAPMulticast]Rahman, A. and E. Dijk, "Group Communication for
 CoAP",draft-ietf-core-groupcomm-12 (work in progress), July 2013.

 [ID-Daniel]Park, S., Kim, K., Haddad, W., Chakrabarti, S., and J.
 Laganier, "IPv6 over Low Power WPAN Security Analysis",Internet Draft
 draft-daniel-6lowpan-security-analysis-05, Mar 2011.

 [ID-HIP]Moskowitz, R., "HIP Diet EXchange (DEX)", draft-moskowitz-
 hip-rg-dex-06 (work in progress), May 2012.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 40]

Internet-Draft Security Considerations for the IoT September 11, 2013

 [ID-Hartke]Hartke, K. and O. Bergmann, "Datagram Transport Layer
 Security in Constrained Environments", draft-hartke-core-codtls-02
 (work in progress), July 2012.

 [ID-Moskowitz]Moskowitz, R., Heer, T., Jokela, P., and Henderson, T.,
 "Host Identity Protocol Version 2", draft-ietf-hip-rfc5201-bis-13
 (work in progress), Sep 2013.

 [ID-Nikander]Nikander, P. and J. Melen, "A Bound End-to-End
 Tunnel(BEET) mode for ESP", draft-nikander-esp-beet-mode-09, Aug
 2008.

 [ID-OFlynn]O’Flynn, C., Sarikaya, B., Ohba, Y., Cao, Z., and R.
 Cragie, "Security Bootstrapping of Resource-Constrained Devices",
 draft-oflynn-core-bootstrapping-03 (work in progress), Nov 2010.

 [ID-Tsao]Tsao, T., Alexander, R., Dohler, M., Daza, V., and A.
 Lozano, "A Security Framework for Routing over Low Power and Lossy
 Networks", draft-ietf-roll-security-framework-07, Jan 2012.

 [ID-Williams]Williams, M. and J. Barrett, "Mobile DTLS", draft-
 barrett-mobile-dtls-00, Mar 2009.

 [ID-proHTTPCoAP]Castellani, A., Loreto, S., Rahman, A., Fossati, T.,
 and E. Dijk, "Best practices for HTTP-CoAP mapping implementation",
 draft-castellani-core-http-mapping-07(work in progress), Feb 2013.

 [RFC3261]Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP: Session
 Initiation Protocol", RFC 3261, June 2002.

 [RFC3748]Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol (EAP)", RFC 3748,
 June 2004.

 [RFC3756]Nikander, P., Ed., Kempf, J., and E. Nordmark, "IPv6
 Neighbor Discovery (ND) Trust Models and Threats", RFC 3756, May
 2004.

 [RFC3833]Atkins, D. and R. Austein, "Threat Analysis of the Domain
 Name System (DNS)", RFC 3833, August 2004.

 [RFC4016]Parthasarathy, M., "Protocol for Carrying Authentication and
 Network Access (PANA) Threat Analysis and Security Requirements",
 RFC 4016, March 2005.

 [RFC5246]Dierks, T. and E. Rescorla, "The Transport Layer Security

Garcia-Morchon, et al. Expires March 15, 2014 [Page 41]

Internet-Draft Security Considerations for the IoT September 11, 2013

 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC4251]Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

 [RFC4306]Kaufman, C., Ed., "Internet Key Exchange (IKEv2) Protocol",
 RFC 4306, December 2005.

 [RFC4555]Eronen, P., "IKEv2 Mobility and Multihoming Protocol
 (MOBIKE)", RFC 4555, June 2006.

 [RFC4621]Kivinen, T. and H. Tschofenig, "Design of the IKEv2 Mobility
 and Multihoming (MOBIKE) Protocol", RFC 4621, August 2006.

 [RFC4738]Ignjatic, D., Dondeti, L., Audet, F., and P. Lin, "MIKEY-
 RSA-R: An Additional Mode of Key Distribution in Multimedia Internet
 KEYing (MIKEY)", RFC 4738, November 2006.

 [RFC4919]Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6
 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview,
 Assumptions, Problem Statement, and Goals", RFC 4919, August 2007.

 [RFC4944]Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4 Networks", RFC 4944,
 September 2007.

 [RFC5191]Forsberg, D., Ohba, Y., Ed., Patil, B., Tschofenig, H., and
 A. Yegin, "Protocol for Carrying Authentication for Network Access
 (PANA)", RFC 5191, May 2008.

 [RFC5201]Moskowitz, R., Nikander, P., Jokela, P., Ed., and T.
 Henderson, "Host Identity Protocol", RFC 5201, April 2008.

 [RFC5206]Nikander, P., Henderson, T., Ed., Vogt, C., and J. Arkko,
 "End-Host Mobility and Multihoming with the Host Identity Protocol",
 RFC 5206, April 2008.

 [RFC5238]Phelan, T., "Datagram Transport Layer Security (DTLS) over
 the Datagram Congestion Control Protocol (DCCP)", RFC 5238, May 2008.

 [RFC5246]Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5713]Moustafa, H., Tschofenig, H., and S. De Cnodder, "Security
 Threats and Security Requirements for the Access Node Control
 Protocol (ANCP)", RFC 5713, January 2010.

 [RFC5903]Fu, D. and J. Solinas, "Elliptic Curve Groups modulo a Prime

Garcia-Morchon, et al. Expires March 15, 2014 [Page 42]

Internet-Draft Security Considerations for the IoT September 11, 2013

 (ECP Groups) for IKE and IKEv2", RFC 5903, June 2010.

 [AUTO-ID]"AUTO-ID LABS", Web http://www.autoidlabs.org/, Sept 2010.

 [BACNET]"BACnet", Web http://www.bacnet.org/, Feb 2011.

 [DALI]"DALI", Web http://www.dalibydesign.us/dali.html, Feb 2011.

 [JOURNAL-Perrig]Perrig, A., Szewczyk, R., Wen, V., Culler, D., and J.
 Tygar, "SPINS: Security protocols for Sensor Networks",Journal
 Wireless Networks, Sept 2002.

 [NIST]Dworkin, M., "NIST Specification Publication 800-38B", 2005.

 [PROC-Chan]Chan, H., Perrig, A., and D. Song, "Random Key
 Predistribution Schemes for Sensor Networks", Proceedings IEEE
 Symposium on Security and Privacy, 2003.

 [PROC-Gupta]Gupta, V., Wurm, M., Zhu, Y., Millard, M., Fung, S.,
 Gura, N., Eberle, H., and S. Shantz, "Sizzle: A Standards-based End-
 to-End Security Architecture for the Embedded Internet", Proceedings
 Pervasive Computing and Communications (PerCom), 2005.

 [PROC-Smetters-02]Balfanz, D., Smetters, D., Steward, P., and H. Chi
 Wong,"Talking To Strangers: Authentication in Ad-Hoc Wireless
 Networks", Paper NDSS, 2002.

 [PROC-Smetters-04]Balfanz, D., Durfee, G., Grinter, R., Smetters, D.,
 and P. Steward, "Network-in-a-Box: How to Set Up a Secure Wireless
 Network in Under a Minute", Paper USENIX, 2004.

 [PROC-Stajano-99]Stajano, F. and R. Anderson, "Resurrecting Duckling
 - Security Issues for Adhoc Wireless Networks", 7th International
 Workshop Proceedings, Nov 1999.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [THESIS-Langheinrich]Langheinrich, M., "Personal Privacy in
 Ubiquitous Computing", PhD Thesis ETH Zurich, 2005.

 [TinyDTLS "TinyDTLS", Web http://tinydtls.sourceforge.net/, Feb 2012.

 [WG-6LoWPAN]"IETF 6LoWPAN Working Group", Web
 http://tools.ietf.org/wg/6lowpan/, Feb 2011.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 43]

Internet-Draft Security Considerations for the IoT September 11, 2013

 [WG-CoRE]"IETF Constrained RESTful Environment (CoRE) Working Group",
 Web https://datatracker.ietf.org/wg/core/charter/, Feb 2011.

 [WG-MSEC]"MSEC Working Group", Web
 http://datatracker.ietf.org/wg/msec/.

 [ZB]"ZigBee Alliance", Web http://www.zigbee.org/, Feb 2011.

Garcia-Morchon, et al. Expires March 15, 2014 [Page 44]

Internet-Draft Security Considerations for the IoT September 11, 2013

Authors’ Addresses

 Oscar Garcia-Morchon
 Philips Research
 High Tech Campus
 Eindhoven, 5656 AA
 The Netherlands

 Email: oscar.garcia@philips.com

 Sandeep S. Kumar
 Philips Research
 High Tech Campus
 Eindhoven, 5656 AA
 The Netherlands

 Email: sandeep.kumar@philips.com

 Sye Loong Keoh
 University of Glasgow Singapore
 Republic PolyTechnic, 9 Woodlands Ave 9
 Singapore 838964
 SG

 Email: SyeLoong.Keoh@glasgow.ac.uk

 Rene Hummen
 RWTH Aachen University
 Templergraben 55
 Aachen, 52056
 Germany

 Email: rene.hummen@cs.rwth-aachen.de

 Rene Struik
 Struik Security Consultancy
 Toronto,
 Canada

 Email: rstruik.ext@gmail.com

Garcia-Morchon, et al. Expires March 15, 2014 [Page 45]

Network Working Group D. He
Internet-Draft Huawei
Intended status: Informational B. Sarikaya
Expires: November 6, 2015 Huawei USA
 May 5, 2015

 Security Bootstrapping of IEEE 802.15.4 based Internet of Things
 draft-he-iot-security-bootstrapping-01

Abstract

 Network level security bootstrapping and joining device level
 security bootstrapping mechanisms are described in this document.
 They are proposed for security bootstrapping of the Internet of
 Things networks, which implement IETF protocols (e.g. 6LoWPAN, 6lo,
 RPL, AODV, DSR) over IEEE 802.15.4. The network level security
 bootstrapping is useful at the very beginning of a newly deployed IoT
 network. It automatically and hierarchically adds all the devices to
 security domain and helps establish security communication. The
 joining device level security bootstrapping provides comprehensive
 mechanism for different IoT devices joining an existing IoT network.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 6, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

He & Sarikaya Expires November 6, 2015 [Page 1]

Internet-Draftsecurity Bootstrapping of 802.15.4 based IoT May 2015

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. new section . 4
 3. IEEE 802.15.4 based IoT topologies 4
 4. Network level security bootstrapping 4
 4.1. Security bootstrapping for the first hop FFDs via 6LBR . 5
 4.2. Security bootstrapping for further FFDs via configured
 FFDs . 6
 4.3. Security bootstrapping for RFDs via configured FFDs . . . 6
 5. Joining Device Security Bootstrapping 7
 5.1. Bootstrapping of joining RFD via configured FFD 7
 5.2. Bootstrapping of joining FFD via configured FFD/6LBR . . 8
 6. Security Considerations 9
 7. Acknowledgement . 9
 8. References . 9
 8.1. Normative References 9
 8.2. Informative References 10
 Authors’ Addresses . 10

1. Introduction

 An IoT network is composed of various numbers of connected things
 with communication ability and different functionalities (sensing
 unit, control logic). They cooperate together to accomplish specific
 tasks required by users. Things in an IoT network might be supplied
 by different vendors, and are normally resource-constrained devices
 that with limited power supply, communication capability, CPU
 performance and memory volume.

 [IEEE802.15.4]is a standard which specifies the physical layer and
 media access control for low-rate wireless personal area networks
 (LR-WPANs). It is widely used in wireless sensor networks nowadays,
 6LoWPAN WG (concluded) developed RFC 4944[RFC4944] to describe how to
 transmit IPv6 packets over 802.15.4, and support mesh routing in LR-
 WPANs. 6lo WG defines generic IPv6 packet header compression method
 [RFC7400] for LR-WPANs. 6tisch tries to build adaptation protocol for
 802.15.4e protocol. Roll develops routing protocol RPL[RFC6550] for
 IPv6 based low power and lossy networks. IEEE 802.15.4 is foreseen
 as the most used lower layer protocol for low rate IoT networks with
 resource constrained devices.

He & Sarikaya Expires November 6, 2015 [Page 2]

Internet-Draftsecurity Bootstrapping of 802.15.4 based IoT May 2015

 Creating security domains from previously unassociated IoT devices is
 a key operation in the IoT network and in the lifecycle of a thing.
 Because IEEE 802.15.4 maximum payload size is 128 Bytes, a standard
 security bootstrapping protocol should be light-weight with low
 complexity. The protocol must allow for commissioning of devices
 from different manufacturers and facilitate transitions of control
 amongst devices during the device’s and system’s lifecycle.

 Traditional security bootstrapping approaches include device
 authentication and key generation/distribution, which tend to impose
 configuration burdens upon users. For example, users need to follow
 a series of instruction steps for WPA2-PSK (WiFi Protected Access 2,
 Pre-shared key) configuration, even though the pre-shared key mode is
 the simplest option for using WPA. Establishing security among IoT
 devices becomes more complicated since they don’t always provide user
 interface to input necessary security information. Furthermore, the
 scale of the IoT network can be large, human intervention in large
 scale security bootstrapping is expensive and low efficient.

 [I-D.pritikin-anima-bootstrapping-keyinfra] proposes a zero-touch
 bootstrapping key infrastructure to allow joining device securely and
 automatically bootstraps itself based on 802.1AR certificate. It
 can’t be directly used in 802.15.4 devices due to the high security
 complexity and heavy communication overhead. Its architecture is not
 built by considering different possible 802.15.4 network topologies
 and the underlying routing protocols developed by IETF.

 [I-D.struik-6tisch-security-considerations]defines high level
 requirements and proposes two types of security mechanisms: single-
 stage and two-stage. Even though the two types of security AA
 mechanisms offer flexible solutions. The underlying security
 architecture can neither be used directly by 802.15.4 IoT networks.
 IEEE 802.15.4 also defines two-step mechanism for nodes joining
 network with layer 2 authentication. Without considering use of IPv6
 infrastructure, the solution is not comprehensive.

 Another key challenge for security bootstrapping of a device the
 above mentioned mechanisms is that they are not feasible to
 commission a device when the adjacent devices have not been
 commissioned yet. As a result, this document describes and
 standardizes two types of automatic bootstrapping methods for
 802.15.4 based IoT networks: network level security bootstrapping and
 joining device level security bootstrapping.

He & Sarikaya Expires November 6, 2015 [Page 3]

Internet-Draftsecurity Bootstrapping of 802.15.4 based IoT May 2015

2. new section

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 This specification requires readers to be familiar with all the terms
 and concepts that are discussed in "Neighbor Discovery for IP version
 6 (IPv6)" [RFC4861], "IPv6 over Low-Power Wireless Personal Area
 Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and
 Goals" [RFC4919].This specification makes extensive use of the same
 terminology defined in [RFC4944].

3. IEEE 802.15.4 based IoT topologies

 A general architectural overview of the IEEE 802.15.4 based IoT is
 provided in Figure 1. All the devices communicate to backbone server
 through 6LBR. FFDs communicate with each other directly or
 indirectly via hopping or 6LBR. RFDs directly connect to FFDs, and
 the number of RFDs that attach to a FFD may vary.

 /////-------------------\\\\\
 | Server |
 \\\\\-------------------/////
 |
 +---+
 | 6LBR |
 +--------------------------------+----------------------------------+
 | +--------+-----------+ |
 | +-**->| FFD_2 |<--**-+ |
 | | +--------------------+ | |
 +-----------------+--+ +---+--------------+
 | FFD_1 | <---------*****--------> | FFD_N |
 +--------------------+ +------------------+
 | | |
 +--------------+ +--------------+ +--------------+
 | RFD_11 | | RFD_1M | | FFD_N1 |
 +--------------+ +--------------+ +--------------+

 Figure 1

4. Network level security bootstrapping

 At the very beginning of the networking once nodes are deployed,
 network level security bootstrapping assist automatically creates
 security domain and hierarchically adds devices to network. The
 mechanism is realized by three phases:

He & Sarikaya Expires November 6, 2015 [Page 4]

Internet-Draftsecurity Bootstrapping of 802.15.4 based IoT May 2015

 Phase 1: Security bootstrapping for the first hop FFDs via 6LBR

 Phase 2: Security bootstrapping for further FFDs via configured
 FFDs

 Phase 3: Security bootstrapping for RFDs via configured FFDs

4.1. Security bootstrapping for the first hop FFDs via 6LBR

 When devices are power-on, 6LBR broadcasts beacon frames to
 neighboring nodes. The FFDs that receive the beacon frames are the
 first-hop FFDs. As shown in Figure 2, upon receiving the beacon
 frame, a first-hop FFD associates with 6LBR at link layer according
 to IEEE 802.15.4. The FFD then presents credential to 6LBR, which
 are forwarded to trust center to be validated. EAP can be used to
 realize the authentication procedure. If the validation is
 successful, the IP address and network key are generated and
 delivered to the FFD. Further configurations such as cluster head
 selection, routing protocol, etc., can be realized afterwards.
 Otherwise if the validation fails, the 6LBR refuses adding the FFD to
 its domain.

 First-hop FFD 6LBR TC
 | | |
 | Beaconing | |
 |<--------------------------------| |
 | | |
 | IEEE 802.15.4 | |
 | MAC unsecure association | |
 |<------------------------------->| |
 | | |
 | | |
 | Authentication | Auth.material check |
 |<------------------------------->|<---------------------->|
 | Network key and IP address | IP address |
 | | |
 | | |
 | Further Configuration | |
 |<------------------------------->| |
 | | |
 | | |

 Figure 2

He & Sarikaya Expires November 6, 2015 [Page 5]

Internet-Draftsecurity Bootstrapping of 802.15.4 based IoT May 2015

4.2. Security bootstrapping for further FFDs via configured FFDs

 The configured FFDs broadcast beacon frames to neighboring nodes.
 The unconfigured FFD that receives the beacon frame associates with
 the configured FFD at link layer. A FFD may receive multiple beacon
 frames from more than one configured FFDs, it can select the first
 one to associate or the one with strongest received power strength.
 The selection policy is out of the scope of the current document.
 The unconfigured FFD then presents credential to the associated
 configured FFD, which are forwarded to 6LBR and TC to be validated.
 If EAP is used, PANA can be used to relay the authentication message
 from configured FFDs to 6LBR. If the validation is successful, the
 IP address and network key are generated and delivered to the FFD.
 Further configurations such as routing protocol can be realized
 afterwards. Otherwise if the validation fails, the 6LBR refuses
 adding the FFD to its domain.

 Unconfigured FFD Configured FFD 6LBR TC
Beaconing		
<--------------------------------		
IEEE 802.15.4		
MAC unsecure association		
<------------------------------->		
Authentication	Relay	Auth.check
<------------------------------->	<------------>	<---------------->
Network key and IP address		IP address
Further Configuration		
<-------------------------------- ------------->		

 Figure 3

4.3. Security bootstrapping for RFDs via configured FFDs

 The configured FFDs broadcast beacon frames to neighboring nodes.
 The unconfigured RFD that receives the beacon frame associates with
 the configured FFD at link layer. A RFD may receive multiple beacon
 frames from more than one configured FFDs. It can select one device
 to associate, e.g. the first one that replies or the one with
 strongest received power strength. The unconfigured RFD then

He & Sarikaya Expires November 6, 2015 [Page 6]

Internet-Draftsecurity Bootstrapping of 802.15.4 based IoT May 2015

 presents credential to the associated configured FFD, which are
 forwarded to 6LBR and TC to be validated. If the validation is
 successful, the IP address and network key are generated and
 delivered to the RFD. Otherwise if the validation fails, the FFD
 refuses adding the RFD to its domain.

 RFD Configured FFD 6LBR TC
Beaconing		
<--------------------------------		
IEEE 802.15.4		
MAC unsecure association		
<------------------------------->		
Authentication	Relay	Auth.check
<------------------------------->	<------------>	<---------------->
Network key and IP address		IP address
Further Configuration		
<-------------------------------- ------------->		

 Figure 4

5. Joining Device Security Bootstrapping

 New devices may be added to an existing IoT due to various reasons.
 As a result the security bootstrapping can be devided into the
 bootstrapping of joining RFD and bootstrapping of joining FFD.

5.1. Bootstrapping of joining RFD via configured FFD

 A joining RFD broadcasts beacon frames to neighboring nodes. The
 configured FFDs that receive the beacon frames, decide whether
 allowing the RFD associating at link layer. A RFD may receive
 multiple replies from more than one configured FFDs. It can select
 one device to associate, e.g. the first one that replies or the one
 with strongest received power strength. The joining RFD then
 presents credential to the associated configured FFD, which is
 forwarded to 6LBR and TC to be validated. If the validation is
 successful, the IP address and network key are generated and
 delivered to the RFD. Otherwise if the validation fails, the
 FFDrefuses adding the RFD to its domain.

He & Sarikaya Expires November 6, 2015 [Page 7]

Internet-Draftsecurity Bootstrapping of 802.15.4 based IoT May 2015

 Joining RFD Configured FFD 6LBR TC
 | | | |
 | Beaconing | | |
 |-------------------------------->| | |
 | | | |
 | IEEE 802.15.4 | | |
 | MAC unsecure association | | |
 |<------------------------------->| | |
 | | | |
 | | | |
 | Authentication | Relay | Auth.check |
 |<------------------------------->|<------------>|<--------------->|
 | Network key and IP address | | IP address |
 | | | |
 | | | |
 | Further Configuration | | |
 |<-------------------------------- ------------->| |
 | | | |
 | | | |

 Figure 5

5.2. Bootstrapping of joining FFD via configured FFD/6LBR

 A joining FFD broadcasts beacon frames to neighboring nodes. The
 configured FFDs that receive the beacon frames, decide whether
 allowing the FFD associating at link layer. A FFD may receive
 multiple replies from more than one configured FFDs or directly from
 the 6LBR. It can select one device to associate, e.g. the first one
 that replies or the one with strongest received power strength. The
 joining FFD then presents credential to the associated configured
 FFD/6LBR, which is forwarded to TC to be validated. If the
 validation is successful, the IP address and network key are
 generated and delivered to the FFD. Further configurations such as
 routing protocol can be realized afterwards. Otherwise if the
 validation fails, the 6LBR refuses adding the FFD to its domain.

He & Sarikaya Expires November 6, 2015 [Page 8]

Internet-Draftsecurity Bootstrapping of 802.15.4 based IoT May 2015

 +---------------------------+
 Joining FFD | Configured FFD 6LBR | TC
 | +------+--------------+-----+ |
Beaconing		
-------------------------------->		
IEEE 802.15.4		
MAC unsecure association		
<------------------------------->		
Authentication	Relay	Auth.check
<------------------------------->	<------------>	<---------------->
Network key and IP address		IP address
Further Configuration		
<-------------------------------- ------------->		

 Figure 6

6. Security Considerations

 TBD

7. Acknowledgement

 TBD

8. References

8.1. Normative References

 [IEEE802.15.4]
 IEEE Standard, , "IEEE Std. 802.15.4-2011", October 2011,
 <http://standards.ieee.org/findstds/
 standard/802.15.4-2011.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

He & Sarikaya Expires November 6, 2015 [Page 9]

Internet-Draftsecurity Bootstrapping of 802.15.4 based IoT May 2015

 [RFC4919] Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6
 over Low-Power Wireless Personal Area Networks (6LoWPANs):
 Overview, Assumptions, Problem Statement, and Goals", RFC
 4919, August 2007.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, September 2007.

 [RFC6550] Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R.,
 Levis, P., Pister, K., Struik, R., Vasseur, JP., and R.
 Alexander, "RPL: IPv6 Routing Protocol for Low-Power and
 Lossy Networks", RFC 6550, March 2012.

 [RFC7400] Bormann, C., "6LoWPAN-GHC: Generic Header Compression for
 IPv6 over Low-Power Wireless Personal Area Networks
 (6LoWPANs)", RFC 7400, November 2014.

8.2. Informative References

 [I-D.pritikin-anima-bootstrapping-keyinfra]
 Pritikin, M., Behringer , M., and S. Bjarnason ,
 "Bootstrapping Key Infrastructures", November 2014.

 [I-D.struik-6tisch-security-considerations]
 Struik , R., "6TiSCH Security Architectural
 Considerations", January 2015.

Authors’ Addresses

 Danping He
 Huawei

 Email: ana.hedanping@huawei.com

 Behcet Sarikaya
 Huawei USA
 5340 Legacy Dr. Building 3
 Plano, TX 75024

 Email: sarikaya@ieee.org

He & Sarikaya Expires November 6, 2015 [Page 10]

Network Working Group A. Keranen
Internet-Draft Ericsson
Intended status: Informational M. Kovatsch
Expires: April 21, 2016 ETH Zurich
 K. Hartke
 Universitaet Bremen TZI
 October 19, 2015

 RESTful Design for Internet of Things Systems
 draft-keranen-t2trg-rest-iot-00

Abstract

 This document gives guidance for designing Internet of Things (IoT)
 systems that follow the principles of the Representational State
 Transfer (REST) architectural style.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Keranen, et al. Expires April 21, 2016 [Page 1]

Internet-Draft RESTful Design for IoT Systems October 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Basics . 5
 3.1. Architecture . 5
 3.2. System design . 7
 3.3. Resource modeling . 7
 3.4. Uniform Resource Identifiers (URIs) 7
 3.5. HTTP/CoAP Methods . 8
 3.5.1. GET . 9
 3.5.2. POST . 9
 3.5.3. PUT . 9
 3.5.4. DELETE . 10
 3.6. HTTP/CoAP Status/Response Codes 10
 4. Security Considerations 11
 5. Acknowledgement . 11
 6. References . 11
 6.1. Normative References 11
 6.2. Informative References 12
 Appendix A. Future Work . 12
 Authors’ Addresses . 13

1. Introduction

 The Representational State Transfer (REST) architectural style [REST]
 is a set of guidelines and best practices for building distributed
 hypermedia systems.

 When REST principles are applied to a design of a system, the result
 is often called RESTful and in particular an API following these
 principles is called a RESTful API.

 Different protocols can be used with RESTful systems, but at the time
 of writing the most common protocols are HTTP [RFC7231] and CoAP
 [RFC7252].

 RESTful design facilitates many desirable features for a system, such
 as good scaling properties. RESTful APIs are also often simple and
 lightweight and hence easy to use also with various IoT applications.
 The goal of this document is to give basic guidance for designing
 RESTful systems and APIs for IoT applications and give pointers for
 more information.

Keranen, et al. Expires April 21, 2016 [Page 2]

Internet-Draft RESTful Design for IoT Systems October 2015

2. Terminology

 This section explains some of the common terminology that is used in
 the context of RESTful design for IoT systems.

 Application State: The set of pending requests, history of requests,
 bookmarks (URIs stored for later retrieval), and application-specific
 state that the client keeps between requests.

 Cache: A local store of response messages and the subsystem that
 controls storage, retrieval, and deletion of messages in it.

 Client: A node that sends requests to servers and receives responses.

 Content Negotiation: The practice of determining the "best"
 representation for a client when examining the current state of a
 resource.

 Form: A hypermedia control that enables a client to change the state
 of a resource.

 Forward Proxy: An intermediary that is selected by a client, usually
 via local configuration rules, and that can be tasked to make
 requests on behalf of the client. This may be useful, for example,
 when the client lacks the capability to make the request itself, or
 to service the response from a cache in order to reduce response time
 and network bandwidth or energy consumption.

 Gateway: See "Reverse Proxy".

 Hypermedia Control: A component embedded in a representation that
 describes a request. By performing the request, the client can
 change resource state and/or move the application state forward.

 Idempotent Method: A method where multiple identical requests with
 that method lead to the same visible resource state as a single such
 request. For example, the PUT method replaces the state of a
 resource with a new state; replacing the state multiple times with
 the same new state still results in the same result.

 Link: A hypermedia control that enables a client to navigate between
 resources and thereby change the application state.

 Media Type: A sequence of characters such as "text/html" or
 "application/json" that is used to label representations so that it
 is known how the representation should be interpreted, and how it is
 encoded.

Keranen, et al. Expires April 21, 2016 [Page 3]

Internet-Draft RESTful Design for IoT Systems October 2015

 Method: A procedure associated with a resource. Common methods
 include GET, PUT, POST, and DELETE (see Section 3.5 for details).

 Origin Server: A server that is the definitive source for
 representations of its resources and the ultimate recipient of any
 request that intends to modify its resources. In contrast,
 intermediaries (such as proxies caching a representation) can assume
 the role of a server, but are not the source for representations as
 these are acquired from the origin server.

 Proactive Content Negotiation: A content negotiation mechanism where
 the server selects a representation based on the client’s content
 negotiation preferences. For example, in an IoT application, the
 preferences of a client could be media types "application/senml+json"
 and "text/plain".

 Reactive Content Negotiation: A content negotiation mechanism where
 the client selects a representation from a list of available
 representations. The list may, for example, be included by a server
 in an initial response. If the user agent is not satisfied by the
 initial response representation, it can request one or more of the
 alternative representations, selected based on metadata included in
 the list.

 Representation Format: A set of rules for encoding information in a
 sequence of bytes. In the Web, the most prevalent representation
 format is HTML. Other common formats include plain text (in UTF-8 or
 any other encoding), JSON or XML. With IoT systems, often compact
 formats such as JSON, CBOR, and EXI are used.

 Representation: A sequence of bytes, plus representation metadata,
 that captures the current or intended state of a resource and that
 can be transferred between clients and servers (possibly via one or
 more intermediaries).

 Representational State Transfer (REST): An architectural style for
 Internet-scale distributed hypermedia systems.

 Resource State: A mapping of a resource to a set of values that may
 change over time.

 Resource: An item of interest identified by a URI. Anything that can
 be named can be a resource. A resource often encapsulates a piece of
 state in a system. Typical resources in an IoT system can be, e.g.,
 a sensor, the current value of a sensor, the location of a device, or
 the current state of an actuator.

Keranen, et al. Expires April 21, 2016 [Page 4]

Internet-Draft RESTful Design for IoT Systems October 2015

 Reverse Proxy: An intermediary that appears as a server towards the
 client but satisfies the requests by forwarding them to the actual
 server (possibly via one or more other intermediaries). A reverse
 proxy is often used to encapsulate legacy services, to improve server
 performance through caching, and to enable load balancing across
 multiple machines.

 Safe Method: A method that does not result in any state change on the
 origin server when applied to a resource. For example, the GET
 method only returns a representation of the resource state but does
 not change the resource.

 Server: A node that listens for requests, applies the requested
 actions to resources, and sends responses back to the clients.

 Uniform Resource Identifier (URI): A global identifier for resources.
 See Section 3.4 for more details.

3. Basics

3.1. Architecture

 The components of a REST system are assigned one of two roles: client
 or server. User agents are always in the client role and have the
 initiative to issue requests. Intermediaries (such as forward
 proxies and reverse proxies) implement both roles, but only forward
 requests to other intermediaries or origin servers. They can also
 translate requests to different protocols, for instance, CoAP-HTTP
 cross-proxies.

 Note that the terms "client" and "server" refer only to the roles
 that the nodes assume for a particular message exchange. The same
 node might act as a client in some communications and a server in
 others.

 ________ _________
 | | | |
 | User (C)-------------------(S) Origin |
 | Agent | | Server |
 |________| |_________|
 (Browser) (Web Server)

 Figure 1: Client-Server Communication

Keranen, et al. Expires April 21, 2016 [Page 5]

Internet-Draft RESTful Design for IoT Systems October 2015

 ________ __________ _________
 | | | | | |
 | User (C)---(S) Inter- (C)--------------------(S) Origin |
 | Agent | | mediary | | Server |
 |________| |__________| |_________|
 (Browser) (Forward Proxy) (Web Server)

 Figure 2: Communication with Forward Proxy

 Reverse proxies are usually imposed by the origin server. In
 addition to the features of a forward proxy, they can also provide an
 interface for non-RESTful services such as legacy systems or
 alternative technologies such as Bluetooth ATT/GATT. This property
 is enforced by the layered system constraint of REST, which says that
 a client cannot see beyond the server it is connected to.

 ________ __________ _________
 | | | | | |
 | User (C)--------------------(S) Inter- (x)---(x) Origin |
 | Agent | | mediary | | Server |
 |________| |__________| |_________|
 (Browser) (Reverse Proxy) (Legacy System)

 Figure 3: Communication with Reverse Proxy

 Nodes in IoT systems often implement both roles. Unlike
 intermediaries, however, they can take the initiative as a client
 (e.g., to register with a directory, such as CoAP Resource Directory)
 and act as origin server at the same time (e.g., to serve sensor
 values).

 ________ _________
 | | | |
 | Thing (C)-------------------------------------(S) Origin |
 | (S) | Server |
 |________| \ |_________|
 (Sensor) \ ________ (Resource Directory)
 \ | |
 (C) Thing |
 |________|
 (Controller)

 Figure 4: Constrained RESTful environments

Keranen, et al. Expires April 21, 2016 [Page 6]

Internet-Draft RESTful Design for IoT Systems October 2015

3.2. System design

 When designing a REST system, the state of the distributed
 application must be assigned to the different components. Here, it
 is important to distinguish between "session state" and "resource
 state".

 Session state encompasses the control flow and the interactions
 between the components (see Section 2). Following the statelessness
 constraint, the session state must be kept only on clients. On the
 one hand, this makes requests a bit more verbose since every request
 must contain all the information necessary to process it. On the
 other hand, this makes servers efficient, since they do not have to
 keep any state about their clients. Requests can easily be
 distributed over multiple worker threads or server instances. For
 the IoT systems, it lowers the memory requirements for server
 implementations, which is particularly important for constrained
 servers and servers serving large amount of clients.

 Resource state includes the more persistent data of an application
 (i.e., independent of the application control flow). This can be
 static data such as device descriptions, persistent data such as
 system configuration, but also dynamic data such as the current value
 of a sensor on a thing.

3.3. Resource modeling

 Important part of RESTful API design is to model the system as a set
 of resources whose state can be retrieved and/or modified and where
 resources can be potentially also created and/or deleted.

 Resource representations have a media type that tells how the
 representation should be interpreted. Typical media types for IoT
 systems include "text/plain" for simple UTF-8 text, "application/
 octet-stream" for arbitrary binary data, "application/json" for JSON
 [RFC7159], "application/senml+json" [I-D.jennings-core-senml] for
 Sensor Markup Language (SenML) formatted data, "application/cbor" for
 CBOR [RFC7049], "application/exi" for EXI [W3C.REC-exi-20110310].
 Full list of registered internet media types is available at the IANA
 registry [IANA-media-types] and media types registered for use with
 CoAP are listed at CoAP Content-Formats IANA registry
 [IANA-CoAP-media].

3.4. Uniform Resource Identifiers (URIs)

 Uniform Resource Identifiers (URIs) are used to interact with a
 resource, to reference a resource from another resource, to advertise
 or bookmark a resource, or to index a resource by search engines.

Keranen, et al. Expires April 21, 2016 [Page 7]

Internet-Draft RESTful Design for IoT Systems October 2015

 foo://example.com:8042/over/there?name=ferret#nose
 _/ ______________/_________/ _________/ __/
 | | | | |
 scheme authority path query fragment

 A URI is a sequence of characters that matches the syntax defined in
 [RFC3986]. It consists of a hierarchical sequence of five
 components: scheme, authority, path, query, and fragment (from most
 significant to least significant). A scheme creates a namespace for
 resources and defines how the following components identify a
 resource within that namespace. The authority identifies an entity
 that governs part of the namespace, such as the server
 "www.example.org" in the "http" scheme. A host name (e.g., a fully
 qualified domain name) or an IP address, potentially followed by a
 transport layer port number, are usually used in the authority
 component for the "http" and "coap" schemes. The path and query
 contain data to identify a resource within the scope of the URI’s
 scheme and naming authority. The path is hierarchical; the query is
 non-hierarchical. The fragment allows to refer to some portion of
 the resource, such as a section in an HTML document.

 For RESTful IoT applications, typical schemes include "https",
 "coaps", "http", and "coap". These refer to HTTP and CoAP, with and
 without Transport Layer Security (TLS) [RFC5246]. (CoAP uses
 Datagram TLS (DTLS) [RFC6347], the variant of TLS for UDP.) These
 four schemes also provide means for locating the resource; using the
 HTTP protocol for "http" and "https", and with the CoAP protocol for
 "coap" and "coaps". If the scheme is different for two URIs (e.g.,
 "coap" vs. "coaps"), it is important to note that even if the rest of
 the URI is identical, these are two different resources, in two
 distinct namespaces.

 The query parameters can be used to parametrize the resource. For
 example, a GET request may use query parameters to request the server
 to send only certain kind data of the resource (i.e., filtering the
 response). Query parameters in PUT and POST requests do not have
 such established semantics and are not commonly used.

3.5. HTTP/CoAP Methods

 Section 4.3 of [RFC7231] defines the set of methods in HTTP;
 Section 5.8 of [RFC7252] defines the set of methods in CoAP. The
 following lists the most relevant methods and gives a short
 explanation of their semantics.

Keranen, et al. Expires April 21, 2016 [Page 8]

Internet-Draft RESTful Design for IoT Systems October 2015

3.5.1. GET

 The GET method requests a current representation for the target
 resource. Only the origin server needs to know how each of its
 resource identifiers corresponds to an implementation and how each
 implementation manages to select and send a current representation of
 the target resource in a response to GET.

 A payload within a GET request message has no defined semantics.

 A response to a successful GET request is cacheable; a cache may use
 it to satisfy future, equivalent GET requests. The GET method is
 safe and idempotent.

3.5.2. POST

 The POST method requests that the target resource process the
 representation enclosed in the request according to the resource’s
 own specific semantics.

 If one or more resources has been created on the origin server as a
 result of successfully processing a POST request, the origin server
 sends a 201 (Created) response containing a Location header field
 that provides an identifier for the resource created and a
 representation that describes the status of the request while
 referring to the new resource(s).

 The POST method is not safe nor idempotent.

3.5.3. PUT

 The PUT method requests that the state of the target resource be
 created or replaced with the state defined by the representation
 enclosed in the request message payload. A successful PUT of a given
 representation would suggest that a subsequent GET on that same
 target resource will result in an equivalent representation being
 sent.

 The fundamental difference between the POST and PUT methods is
 highlighted by the different intent for the enclosed representation.
 The target resource in a POST request is intended to handle the
 enclosed representation according to the resource’s own semantics,
 whereas the enclosed representation in a PUT request is defined as
 replacing the state of the target resource. Hence, the intent of PUT
 is idempotent and visible to intermediaries, even though the exact
 effect is only known by the origin server.

 The PUT method is not safe, but is idempotent.

Keranen, et al. Expires April 21, 2016 [Page 9]

Internet-Draft RESTful Design for IoT Systems October 2015

3.5.4. DELETE

 The DELETE method requests that the origin server remove the
 association between the target resource and its current
 functionality.

 If the target resource has one or more current representations, they
 might or might not be destroyed by the origin server, and the
 associated storage might or might not be reclaimed, depending
 entirely on the nature of the resource and its implementation by the
 origin server.

 The DELETE method is not safe, but is idempotent.

3.6. HTTP/CoAP Status/Response Codes

 Section 6 of [RFC7231] defines a set of Status Codes in HTTP that are
 used by application to indicate whether a request was understood and
 satisfied, and how to interpret the answer. Similarly, Section 5.9
 of [RFC7252] defines the set of Response Codes in CoAP.

 The status codes consist of three digits (e.g., "404" or "4.04")
 where the first digit expresses the class of the code.
 Implementations do not need to understand all status codes, but the
 class of the code must be understood. Codes starting with 1 are
 informational; the request was received and being processed. Codes
 starting with 2 indicate successful request. Codes starting with 3
 indicate redirection; further action is needed to complete the
 request. Codes stating with 4 and 5 indicate errors. The codes
 starting with 4 mean client error (e.g., bad syntax in request)
 whereas codes starting with 5 mean server error; there was no
 apparent problem with the request but server was not able to fulfill
 the request.

 Responses may be stored in a cache to satisfy future, equivalent
 requests. HTTP and CoAP use two different patterns to decide what
 responses are cacheable. In HTTP, the cacheability of a response
 depends on the request method (e.g., responses returned in reply to a
 GET request are cacheable). In CoAP, the cacheability of a response
 depends on the response code (e.g., responses with code 2.04 are
 cacheable). This difference also leads to slightly different
 semantics for the codes starting with 2; for example, CoAP does not
 have a 2.00 response code.

Keranen, et al. Expires April 21, 2016 [Page 10]

Internet-Draft RESTful Design for IoT Systems October 2015

4. Security Considerations

 This document does not define new functionality and therefore does
 not introduce new security concerns. However, security consideration
 from related specifications apply to RESTful IoT design. These
 include:

 o HTTP security: Section 9 of [RFC7230], Section 9 of [RFC7231],
 etc.

 o CoAP security: Section 11 of [RFC7252]

 o URI security: Section 7 of [RFC3986]

5. Acknowledgement

 The authors would like to thank Mert Ocak for the review comments.

6. References

6.1. Normative References

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", Ph.D. Dissertation,
 University of California, Irvine , 2000.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/
 RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing", RFC
 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

Keranen, et al. Expires April 21, 2016 [Page 11]

Internet-Draft RESTful Design for IoT Systems October 2015

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DOI
 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [W3C.REC-exi-20110310]
 Schneider, J. and T. Kamiya, "Efficient XML Interchange
 (EXI) Format 1.0", World Wide Web Consortium
 Recommendation REC-exi-20110310, March 2011,
 <http://www.w3.org/TR/2011/REC-exi-20110310>.

6.2. Informative References

 [I-D.jennings-core-senml]
 Jennings, C., Shelby, Z., Arkko, J., and A. Keranen,
 "Media Types for Sensor Markup Language (SENML)", draft-
 jennings-core-senml-01 (work in progress), July 2015.

 [IANA-CoAP-media]
 "CoAP Content-Formats", n.d.,
 <http://www.iana.org/assignments/core-parameters/
 core-parameters.xhtml#content-formats>.

 [IANA-media-types]
 "Media Types", n.d., <http://www.iana.org/assignments/
 media-types/media-types.xhtml>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, DOI 10.17487/
 RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

Appendix A. Future Work

 o More details on the definition of application state. Is server
 involved and to what extent.

 o Discuss design patterns, such as "Observing state (asynchronous
 updates) of a resource", "Executing a Function", "Events as
 State", "Conversion", "Collections", "robust communication in
 network with high packet loss", "unreliable (best effort)
 communication", "3-way commit", etc.

 o Discuss directories, such as CoAP Resource Directory

Keranen, et al. Expires April 21, 2016 [Page 12]

Internet-Draft RESTful Design for IoT Systems October 2015

 o More information on how to design resources; choosing what is
 modeled as a resource, etc.

Authors’ Addresses

 Ari Keranen
 Ericsson
 Jorvas 02420
 Finland

 Email: ari.keranen@ericsson.com

 Matthias Kovatsch
 ETH Zurich
 Universitaetstrasse 6
 Zurich CH-8092
 Switzerland

 Email: kovatsch@inf.ethz.ch

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Email: hartke@tzi.org

Keranen, et al. Expires April 21, 2016 [Page 13]

Network Working Group J. Mattsson
Internet-Draft J. Fornehed
Intended status: Standards Track G. Selander
Expires: April 21, 2016 F. Palombini
 Ericsson
 October 19, 2015

 Controlling Actuators with CoAP
 draft-mattsson-core-coap-actuators-00

Abstract

 Being able to trust information from sensors and to securely control
 actuators is essential in a world of connected and networking things
 interacting with the physical world. In this memo we show that just
 using COAP with a security protocol like DTLS or OSCOAP is not
 enough. We describe several serious attacks any on-path attacker can
 do, and discuss tougher requirements and mechanisms to mitigate the
 attacks. While this document is focused on actuators, one of the
 attacks applies equally well to sensors using DTLS.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Mattsson, et al. Expires April 21, 2016 [Page 1]

Internet-Draft CoAP Actuators October 2015

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Attacks . 2
 2.1. The Block Attack . 3
 2.2. The Request Delay Attack 4
 2.3. The Response Delay and Mismatch Attack 7
 2.4. The Relay Attack . 10
 3. The Repeat Option . 11
 4. IANA Considerations . 13
 5. Security Considerations 13
 6. References . 13
 6.1. Normative References 14
 6.2. Informative References 14
 Authors’ Addresses . 14

1. Introduction

 Being able to trust information from sensors and to securely control
 actuators is essential in a world of connected and networking things
 interacting with the physical world. One protocol used to interact
 with sensors and actuators is the Constrained Application Protocol
 (CoAP). Any Internet-of-Things (IoT) deployment valuing security and
 privacy would use a security protocol such as DTLS [RFC6347] or
 OSCOAP [I-D.selander-ace-object-security] to protect CoAP, but we
 show that this is not enough. We describe several serious attacks
 any on-path attacker (i.e. not only "trusted" intermediaries) can do,
 and discusses tougher requirements and mechanisms to mitigate the
 attacks. The request delay attack (valid for both DTLS and OSCOAP
 and described in Section 2.2) lets an attacker control an actuator at
 a much later time than the client anticipated. The response delay
 and mismatch attack (valid for DTLS and described in Section 2.3)
 lets an attacker respond to a client with a response meant for an
 older request. In Section 3, a new CoAP Option, the Repeat Option,
 mitigating the delay attack in specified.

2. Attacks

 Internet-of-Things (IoT) deployments valuing security and privacy,
 MUST use a security protocol such as DTLS or OSCOAP to protect CoAP.
 This is especially true for deployments of actuators where attacks
 often (but not always) have serious consequences. The attacks

Mattsson, et al. Expires April 21, 2016 [Page 2]

Internet-Draft CoAP Actuators October 2015

 described in this section are made under the assumption that CoAP is
 already protected with a security protocol such as DTLS or OSCOAP, as
 an attacker otherwise can easily forge false requests and responses.

2.1. The Block Attack

 An on-path attacker can block the delivery of any number of requests
 or responses. The attack can also be performed by an attacker
 jamming the lower layer radio protocol. This is true even if a
 security protocol like DTLS or OSCOAP is used. Encryption makes
 selective blocking of messages harder, but not impossible or even
 infeasible. With DTLS, proxies have access to the complete CoAP
 message, and with OSCOAP, the CoAP header and several CoAP options
 are not encrypted. In both security protocols, the IP-addresses,
 ports, and CoAP message lengths are available to all on-path
 attackers, which may be enough to determine the server, resource, and
 command. The block attack is illustrated in Figure 1 and 2.

 Client Foe Server
 | | |
 +----->X | Code: 0.03 (PUT)
 | PUT | | Token: 0x47
 | | | Uri-Path: lock
 | | | Payload: 1 (Lock)
 | | |

 Figure 1: Blocking a Request

 Where ’X’ means the attacker is blocking delivery of the message.

 Client Foe Server
 | | |
 +------------>| Code: 0.03 (PUT)
 | | PUT | Token: 0x47
 | | | Uri-Path: lock
 | | | Payload: 1 (Lock)
 | | |
 | X<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x47
 | | |

 Figure 2: Blocking a Response

 While blocking requests to, or responses from, a sensor is just a
 denial of service attack, blocking a request to, or a response from,
 an actuator results in the client losing information about the
 server’s status. If the actuator e.g. is a lock (door, car, etc.),
 the attack results in the client not knowing (except by using out-of-

Mattsson, et al. Expires April 21, 2016 [Page 3]

Internet-Draft CoAP Actuators October 2015

 band information) whether the lock is unlocked or locked, just like
 the observer in the famous Schroedinger’s cat thought experiment.
 Due to the nature of the attack, the client cannot distinguish the
 attack from connectivity problems, offline servers, or unexpected
 behavior from middle boxes such as NATs and firewalls.

 Remedy: In actuator deployments where confirmation is important, the
 application MUST notify the user upon reception of the response, or
 warn the user when a response is not received. The application
 SHOULD also indicate to the user that the status of the actuator is
 now uncertain.

2.2. The Request Delay Attack

 An on-path attacker may not only block packets, but can also delay
 the delivery of any packet (request or response) by a chosen amount
 of time. This is true even if DTLS or OSCOAP is used, as long as the
 delayed packet is delivered inside the replay window. The replay
 window has a default length of 64 in DTLS and is application
 dependent in OSCOAP. The attacker can control the replay window by
 blocking some or all other packets. By first delaying a request, and
 then later, after delivery, blocking the response to the request, the
 client is not made aware of the delayed delivery except by the
 missing response. The server has in general, no way of knowing that
 the request was delayed and will therefore happily process the
 request.

 If some wireless low-level protocol is used, the attack can also be
 performed by the attacker simultaneously recording what the client
 transmits while at the same time jamming the server. The request
 delay attack is illustrated in Figure 3.

Mattsson, et al. Expires April 21, 2016 [Page 4]

Internet-Draft CoAP Actuators October 2015

 Client Foe Server
 | | |
 +----->@ | Code: 0.03 (PUT)
 | PUT | | Token: 0x9c
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |

 | | |
 | @----->| Code: 0.03 (PUT)
 | | PUT | Token: 0x9c
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |
 | X<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x9c
 | | |

 Figure 3: Delaying a Request

 Where ’@’ means the attacker is storing and later forwarding the
 message (@ may alternatively be seen as a wormhole connecting two
 points in spacetime).

 While an attacker delaying a request to a sensor is often not a
 security problem, an attacker delaying a request to an actuator
 performing an action is often a serious problem. A request to an
 actuator (for example a request to unlock a lock) is often only meant
 to be valid for a short time frame, and if the request does not reach
 the actuator during this short timeframe, the request should not be
 fulfilled. In the unlock example, if the client does not get any
 response and does not physically see the lock opening, the user is
 likely to walk away, calling the locksmith (or the IT-support).

 If a non-zero replay window is used (the default in DTLS and
 unspecified in OSCOAP), the attacker can let the client interact with
 the actuator before delivering the delayed request to the server
 (illustrated in Figure 4). In the lock example, the attacker may
 store the first "unlock" request for later use. The client will
 likely resend the request with the same token. If DTLS is used, the
 resent packet will have a different sequence number and the attacker
 can forward it. If OSCOAP is used, resent packets will have the same
 sequence number and the attacker must block them all until the client
 sends a new message with a new sequence number (not shown in
 Figure 4). After a while when the client has locked the door again,
 the attacker can deliver the delayed "unlock" message to the door, a
 very serious attack.

Mattsson, et al. Expires April 21, 2016 [Page 5]

Internet-Draft CoAP Actuators October 2015

 Client Foe Server
 | | |
 +----->@ | Code: 0.03 (PUT)
 | PUT | | Token: 0x9c
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |
 +------------>| Code: 0.03 (PUT)
 | PUT | | Token: 0x9c
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |
 <-------------+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x9c
 | | |

 | | |
 +------------>| Code: 0.03 (PUT)
 | PUT | | Token: 0x7a
 | | | Uri-Path: lock
 | | | Payload: 1 (Lock)
 | | |
 <-------------+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x7a
 | | |
 | @----->| Code: 0.03 (PUT)
 | | PUT | Token: 0x9c
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |
 | X<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x9c
 | | |

 Figure 4: Delaying Request with Reordering

 While the second attack (Figure 4) can be mitigated by using a replay
 window of length zero, the first attack (Figure 3) cannot. A
 solution must enable the server to verify that the request was
 received within a certain time frame after it was sent. This can be
 accomplished with either a challenge-response pattern or by
 exchanging timestamps. Security solutions based on timestamps
 require exactly synchronized time, and this is hard to control with
 complications such as time zones and daylight saving. Even if the
 clocks are synchronized at one point in time, they may easily get
 out-of-sync and an attacker may even be able to affect the client or
 the server time in various ways such as setting up a fake NTP server,
 broadcasting false time signals to radio controlled clocks, or expose

Mattsson, et al. Expires April 21, 2016 [Page 6]

Internet-Draft CoAP Actuators October 2015

 one of them to a strong gravity field. As soon as client falsely
 believes it is time synchronized with the server, delay attacks are
 possible. A challenge response mechanism is much more failure proof
 and easy to analyze. One such mechanism, the CoAP Repeat Option, is
 specified in Section 3.

 Remedy: The CoAP Repeat Option specified in Section 3 SHALL be used
 for controlling actuators unless another application specific
 challenge-response or timestamp mechanism is used.

2.3. The Response Delay and Mismatch Attack

 The following attack can be performed if CoAP is protected by a
 security protocol where the response is not bound to the request in
 any way except by the CoAP token. This would include most general
 security protocols, such as DTLS and IPsec, but not OSCOAP. The
 attacker performs the attack by delaying delivery of a response until
 the client sends a request with the same token. As long as the
 response is inside the replay window (which the attacker can make
 sure by blocking later responses), the response will be accepted by
 the client as a valid response to the later request. CoAP [RFC7252]
 does not give any guidelines for the use of token with DTLS, except
 that the tokens currently "in use" SHOULD (not SHALL) be unique.

 The attack can be performed by an attacker on the wire, or an
 attacker simultaneously recording what the server transmits while at
 the same time jamming the client. The response delay and mismatch
 attack is illustrated in Figure 5.

Mattsson, et al. Expires April 21, 2016 [Page 7]

Internet-Draft CoAP Actuators October 2015

 Client Foe Server
 | | |
 +------------>| Code: 0.03 (PUT)
 | PUT | | Token: 0x77
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |
 | @<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x77
 | | |

 | | |
 +----->X | Code: 0.03 (PUT)
 | PUT | | Token: 0x77
 | | | Uri-Path: lock
 | | | Payload: 0 (Lock)
 | | |
 <------@ | Code: 2.04 (Changed)
 | 2.04 | | Token: 0x77
 | | |

 Figure 5: Delaying and Mismatching Response to PUT

 If we once again take a lock as an example, the security consequences
 may be severe as the client receives a response message likely to be
 interpreted as confirmation of a locked door, while the received
 response message is in fact confirming an earlier unlock of the door.
 As the client is likely to leave the (believed to be locked) door
 unattended, the attacker may enter the home, enterprise, or car
 protected by the lock.

 The same attack may be performed on sensors, also this with serious
 consequences. As illustrated in Figure 6, an attacker may convince
 the client that the lock is locked, when it in fact is not. The
 "Unlock" request may be also be sent by another client authorized to
 control the lock.

Mattsson, et al. Expires April 21, 2016 [Page 8]

Internet-Draft CoAP Actuators October 2015

 Client Foe Server
 | | |
 +------------>| Code: 0.01 (GET)
 | GET | | Token: 0x77
 | | | Uri-Path: lock
 | | |
 | @<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0x77
 | | | Payload: 1 (Locked)
 | | |
 +------------>| Code: 0.03 (PUT)
 | PUT | | Token: 0x34
 | | | Uri-Path: lock
 | | | Payload: 1 (Unlock)
 | | |
 | X<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x34
 | | |
 +----->X | Code: 0.01 (GET)
 | GET | | Token: 0x77
 | | | Uri-Path: lock
 | | |
 <------@ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x77
 | | | Payload: 1 (Locked)
 | | |

 Figure 6: Delaying and Mismatching Response to GET

 As illustrated in Figure 7, an attacker may even mix responses from
 different resources as long as the two resources share the same DTLS
 connection on some part of the path towards the client. This can
 happen if the resources are located behind a common gateway, or are
 served by the same CoAP proxy. An on-path attacker (not necessarily
 a DTLS endpoint such as a proxy) may e.g. deceive a client that the
 living room is on fire by responding with an earlier delayed response
 from the oven (temperatures in degree Celsius).

Mattsson, et al. Expires April 21, 2016 [Page 9]

Internet-Draft CoAP Actuators October 2015

 Client Foe Server
 | | |
 +------------>| Code: 0.01 (GET)
 | GET | | Token: 0x77
 | | | Uri-Path: oven/temperature
 | | |
 | @<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0x77
 | | | Payload: 225
 | | |

 | | |
 +----->X | Code: 0.01 (GET)
 | GET | | Token: 0x77
 | | | Uri-Path: livingroom/temperature
 | | |
 <------@ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x77
 | | | Payload: 225
 | | |

 Figure 7: Delaying and Mismatching Response from other resource

 OSCOAP is not susceptible to these attacks since it provides a secure
 binding between request and response messages.

 Remedy: If CoAP is protected with a security protocol not providing
 bindings between requests and responses (e.g. DTLS) the client MUST
 NOT reuse any tokens for a given source/destination which the client
 has not received responses to. The easiest way to accomplish this is
 to implement the token as a counter and never reuse any tokens at
 all, this approach SHOULD be followed.

2.4. The Relay Attack

 Yet another type of attack can be performed in deployments where
 actuator actions are triggered automatically based on proximity and
 without any user interaction, e.g. a car (the client) constantly
 polling for the car key (the server) and unlocking both doors and
 engine as soon as the car key responds. An attacker (or pair of
 attackers) may simply relay the CoAP messages out-of-band, using for
 examples some other radio technology. By doing this, the actuator
 (i.e. the car) believes that the client is close by and performs
 actions based on that false assumption. The attack is illustrated in
 Figure 8. In this example the car is using an application specific
 challenge-response mechanism transferred as CoAP payloads.

Mattsson, et al. Expires April 21, 2016 [Page 10]

Internet-Draft CoAP Actuators October 2015

 Client Foe Foe Server
 | | | |
 +----->| +----->| Code: 0.02 (POST)
 | POST | | POST | Token: 0x3a
 | | | | Uri-Path: lock
 | | | | Payload: JwePR2iCe8b0ux (Challenge)
 | | | |
 |<-----+ |<-----+ Code: 2.04 (Changed)
 | 2.04 | | 2.04 | Token: 0x3a
 | | | | Payload: RM8i13G8D5vfXK (Response)
 | | | |

 Figure 8: Relay Attack (the client is the actuator)

 The consequences may be severe, and in the case of a car, lead to the
 attacker unlocking and driving away with the car, an attack that
 unfortunately is happening in practice.

 Remedy: Getting a response over a short-range radio MUST NOT be taken
 as proof of proximity and therefore MUST NOT be used to take actions
 based on such proximity. Any automatically triggered mechanisms
 relying on proximity MUST use other stronger mechanisms to guarantee
 proximity. Mechanisms that MAY be used are: measuring the round-trip
 time and calculate the maximum possible distance based on the speed
 of light, or using radio with an extremely short range like NFC
 (centimeters instead of meters). Another option is to including
 geographical coordinates (from e.g. GPS) in the messages and
 calculate proximity based on these, but in this case the location
 measurements MUST be very precise and the system MUST make sure that
 an attacker cannot influence the location estimation, something that
 is very hard in practice.

3. The Repeat Option

 The Repeat Option is a challenge-response mechanism for CoAP, binding
 a resent request to an earlier 4.03 forbidden response. The
 challenge (for the client) is simply to echo the Repeat Option value
 in a new request. The Repeat Option enables the server to verify the
 freshness of a request, thus mitigating the Delay Attack described in
 Section 2.2. An example message flow is illustrated in Figure 9.

Mattsson, et al. Expires April 21, 2016 [Page 11]

Internet-Draft CoAP Actuators October 2015

 Client Server
 | |
 +----->| Code: 0.03 (PUT)
 | PUT | Token: 0x41
 | | Uri-Path: lock
 | | Payload: 0 (Unlock)
 | |
 |<-----+ t0 Code: 4.03 (Forbidden)
 | 4.03 | Token: 0x41
 | | Repeat: 0x6c880d41167ba807
 | |
 +----->| t1 Code: 0.03 (PUT)
 | PUT | Token: 0x42
 | | Uri-Path: lock
 | | Repeat: 0x6c880d41167ba807
 | | Payload: 0 (Unlock)
 | |
 |<-----+ Code: 2.04 (Changed)
 | 2.04 | Token: 0x42
 | |

 Figure 9: The Repeat Option

 The Repeat Option may be used for all Methods and Response Codes. In
 responses, the value MUST be a (pseudo-)random bit string with a
 length of at least 64 bits. A new (pseudo-)random bit string MUST be
 generated for each response. In requests, the Repeat Option MUST
 echo the value from a previously received response.

 The Repeat Option is critical, Safe-to-Forward, not part of the
 Cache-Key, and not repeatable.

 Upon receiving a request without the Repeat Option to a resource with
 freshness requirements, the server sends a 4.03 Forbidden response
 with a Repeat Option and stores the option value and the response
 transmit time t0.

 Upon receiving a 4.03 Forbidden response with the Repeat Option, the
 client SHOULD resend the request, echoing the Repeat Option value.

 Upon receiving a request with the Repeat Option, the server verifies
 that the option value equals the previously sent value; otherwise the
 request is not processed further. The server calculates the round-
 trip time RTT = (t1 - t0), where t1 is the request receive time. The
 server MUST only accept requests with a round-trip time below a
 certain threshold T, i.e. RTT < T, otherwise the request is not
 processed further, and an error message MAY be sent. The threshold T
 is application specific.

Mattsson, et al. Expires April 21, 2016 [Page 12]

Internet-Draft CoAP Actuators October 2015

 An attacker able to control the server’s clock with high precision,
 could still be able to perform a delay attack by moving the server’s
 clock back in time, thus making the measured round-trip time smaller
 than the actual round-trip time. The times t0 and t1 MUST therefore
 be measured with a steady clock (one that cannot be adjusted).

 EDITORS NOTE: The mechanism described above gives the server
 freshness guarantee independently of what the client does. The
 disadvantages are that the mechanism always takes two round-trips and
 that the server has to save the option value and the time t0. Other
 solutions involving time may be discussed:

 o The server may simply send the client the current time in its
 timescale, i.e. a timestamp (option value = t0). The client may
 then use this timestamp to estimate the current time in the
 servers timescale when sending future requests (i.e. not echoing).
 This approach has the benefit of reducing round-trips and server
 state, but has the security problems discussed in Section 2.2.

 o The server may instead of a pseudorandom value send an encrypted
 timestamp (option value = E(k, t0)). CTR-mode would from a
 security point be like sending (value = t0). ECB-mode or CCM-mode
 would work, but would expand the value length. With CCM, the
 server might also bind the option value to request (value =
 AEAD(k, t0, parts of request)). This approach does not reduce the
 number of round-trips but eliminates server state.

4. IANA Considerations

 This document defines the following Option Number, whose value have
 been assigned to the CoAP Option Numbers Registry defined by
 [RFC7252].

 +--------+------------------+
 | Number | Name |
 +--------+------------------+
 | 29 | Repeat |
 +--------+------------------+

5. Security Considerations

 The whole document can be seen as security considerations for CoAP.

6. References

Mattsson, et al. Expires April 21, 2016 [Page 13]

Internet-Draft CoAP Actuators October 2015

6.1. Normative References

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

6.2. Informative References

 [I-D.selander-ace-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "June 29, 2015", draft-selander-ace-object-security-02
 (work in progress), June 2015.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

Authors’ Addresses

 John Mattsson
 Ericsson AB
 SE-164 80 Stockholm
 Sweden

 Email: john.mattsson@ericsson.com

 John Fornehed
 Ericsson AB
 SE-164 80 Stockholm
 Sweden

 Email: john.fornehed@ericsson.com

 Goran Selander
 Ericsson AB
 SE-164 80 Stockholm
 Sweden

 Email: goran.selander@ericsson.com

Mattsson, et al. Expires April 21, 2016 [Page 14]

Internet-Draft CoAP Actuators October 2015

 Francesca Palombini
 Ericsson AB
 SE-164 80 Stockholm
 Sweden

 Email: francesca.palombini@ericsson.com

Mattsson, et al. Expires April 21, 2016 [Page 15]

Internet Engineering Task Force Vasu K
INTERNET-DRAFT Rahul A J
Intended Status: Standard Track Yangneng
Expires: April 19, 2016 Huawei
 Oct 19, 2015

 Service Provisioning for Constrained Devices
 draft-vasu-core-ace-service-provisioning-00

Abstract

 As more constrained devices are integrating with current Internet,
 the ubiquitous computing in scenarios like smart home is very
 important. In smart home, the constrained devices (ex. thermostat)
 need to be provisioned in such a way that it can inter-operate with
 any kind of devices like other constrained devices (ex. Air
 conditioner) or client devices (ex. smart phone). This document
 provides a method to support service provisioning based on pre-
 configured admission and resource control policies, where this method
 explains device’s service access in two different use cases: first
 provisioning the service when a constrained device accessing the
 service provided by other constrained device, second, accessing the
 service provided by constrained device from the client device (non
 constrained device).

Status of this Memo This Internet-Draft is submitted to IETF in full
 conformance with the provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

 This Internet-Draft will expire on April 19, 2016.

Vasu K Expires April 19, 2016 [Page 1]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

Copyright and License Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1 Introduction . 3
 2 Motivation . 5
 3 Terminology . 5
 4 System Architecture . 6
 5 Network Topology . 9
 6 Operations . 10
 6.1 Register Service . 10
 6.3.1 Resource Control . 14
 6.4 Search for services by device 18
 6.5 Service request and response 18
 7 Security Considerations . 22
 8 IANA Considerations . 22
 9 References . 23
 9.1 Normative References 23
 9.2 Informative References 23
 10 Acknowledgements . 24
 Authors’ Addresses . 24

Vasu K Expires April 19, 2016 [Page 2]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

1 Introduction

 The work on Constrained Restful Environment (CoRE) aimed to realize
 the restful architecture for constrained devices [RFC7228] in
 constrained networks [RFC4944]. The CORE work group has recently
 standardized constrained application protocol (CoAP) [RFC7252] for
 interacting with constrained resources where general HTTP is not
 memory/energy efficient. The use of web linking for resources
 description and discovery hosted by constrained web servers is
 specified by CORE [RFC6690]. Even though, CoAP allows the direct
 resource access for constrained devices, it is not advisable for
 direct access of resources in networks where multicast procedures are
 infeasible due to heavy network load, and the networks where sleepy
 nodes exist. So, the CoRE working group comes up with a solution
 called resource directory (RD) [draft-ietf-core-resource-directory]
 to host the devices service information, and allow other devices to
 perform lookup procedures through .well-known/core path to resources.

 The services advertised by these constrained devices needs to be
 commissioned and provisioned properly to allow other devices to
 access it. CoRE RD solution is a directory based solution that
 depends on CoAP protocol. CORE RD solution uses
 registration/update/delete/lookup procedures for service
 registration, service update, deleting service, lookup of services
 respectively. Service commissioning is a method which verifies a pre
 registered services with special commissioning tools/agents. These
 tools can be tablets or special embedded devices which initially
 stores the devices identifications in secure manner. Once the
 services are advertised by any device, those services need to be
 verified using commissioner. CORE RD provides a standard procedure to
 interact with commissioner, where commissioner acts like a client
 device to look up and verify the advertised services. Once the
 commissioner verifies the pre-registered services, commissioner can
 put some policy rules on services hosted by devices for resource
 control. These rules defined on (1) how to access the services either
 with other constrained devices or client devices, and (2) on
 operational instructions.

 Architecture is defined to authenticate and authorize client requests
 for a resource on a server using logical entities such as client(C),
 client authorization manager(CAM), server(S), and server
 authorization manager(SAM)[draft-gerdes-ace-actors]. The main goal of
 delegated CoAP authentication and authorization framework (DCAF) is
 the setup of a datagram transport layer security channel between two
 nodes to securely transmit authorization tickets [draft-gerdes-
 core-dcaf-authorize]. The CAM sends an access request message on
 behalf of client by embedding requested permissions in client
 authorization information (CAI) field of access request message to

Vasu K Expires April 19, 2016 [Page 3]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 SAM. A ticket grant message is sent from SAM by embedding the
 permissions given from the server on a specific resource in server
 authorization information (SAI) field of ticket grant message to the
 client. These SAI, CAI use authorization information format (AIF)
 that describes the permissions requested from access request in a
 ticket request, where the underlying access control model will be
 that of an access matrix, which gives a set of permissions for each
 possible combination of a subject and an object [draft-bormann-core-
 ace-aif]. This simple information model also doesn’t allow
 conditional access (e.g.,"resource /s/tempC is accessible only if
 client belongs to group1 and does not belong to group2"). Finally,
 the model does not provide any dynamic functions such as enabling
 special access for a set of resources that are specific to a subject.
 But, the services provided by resources in constrained environment,
 need to be authorized and controlled conditionally based on some
 service level agreements or preconfigured policies on resource
 control.

 Considering an example use case scenario such as thermostat device
 measures the current room temperature, and can service for air
 conditioner device to set automatic temperatures. In a smart home,
 user wants to regulate his room temperature automatically using his
 airconditioner device. Here, this airconditioner device can adjust
 its temperature to either cool the room or heat the room by accessing
 the service provided by the thermostat. Suppose this user leaves the
 home in the morning in hot summer and leaves the office in the
 evening to reach to home. But, before he reaches his room he wants to
 make his room cool enough. So he has to switch on the airconditioner
 from his mobile one hour before he leaves the office. So, before
 adjusting his aircconditioner to make the room cool enough, he might
 have to know the current room temperature. Thus he access the service
 provided by the thermostat to read the room temperature and adjust
 the airconditioner. However, there is a problem here on how to access
 these services which are provided by user’s home devices itself, what
 is the authenticity level to access from outside the home, even
 within home what is the access control/resource control of these
 devices because the neighboring device which are not authenticated
 can also access these service if those devices are within the
 constrained network range. Finally it is important to admit access of
 the service by client based on the configuration policies so that the
 devices can be protected from hazardous conditions, and allows only
 pre-agreed operations on devices.

 The service provisioning presented in this document provides a method
 to support admission, and resource control policies using
 commissioning procedure. The method explains the device’s service
 access in two different use cases: first provisioning the service
 when a constrained device accessing the service provided by other

Vasu K Expires April 19, 2016 [Page 4]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 constrained device, second, accessing the service provided by
 constrained device from the client device. Even though it is out of
 scope of the present document, it also considers a secure way of
 service commissioning as part of security.

2 Motivation

 CORE RD solution provides various automated operations such as
 service registrations, service update, service removal, and service
 lookups initiated by endpoints and clients. However, managing this
 centralized directory server by allowing authorized users to perform
 these tasks, setting some service level agreements on clients to
 access these services, and providing limited or scope oriented
 lookups by other endpoints or clients require efficient service
 provisioning mechanism. The service provisioning method presented in
 this document deals on how a registered service from devices can be
 accessed by various clients or other devices. Moreover, it also
 provides a method for handling this resource/service access control
 mechanism using web service model for efficient service provisioning
 from outside the constrained home environment.

3 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 o "CORE", CORE is a Constrained RESTful Environment providing a
 framework for resource-oriented application intended to run on
 constrained networks [RFC7228].

 o "COAP" The Constrained Application Protocol (CoAP) is a
 specialized web transfer protocol for use with constrained nodes
 and networks [RFC7252].

 o "RD" The Resource Directory (RD) is a directory based server to
 host the descriptions of resources and allowing the lookups to be
 performed for those resources by various client devices.

 o "Commissioner" Commissioning agent is tool/device that verifies
 the devices operation, integrity check with the network.

 o "Constrained Device" These are embedded computing devices that
 are expected to be as resource constrained in terms of RAM/ROM
 size, and to be deployed with the constrained environment such as
 6LoWPAN Networks.

Vasu K Expires April 19, 2016 [Page 5]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 o "Client" A client device is like resource constrained client
 such as other constrained device (ex. Air conditioner) or rich
 client devices such as Mobile/Laptop/Tablet etc, which access the
 services hosted by constrained devices (ex. thermostat).

 o "Provisioning Server" this server is a process of verifying
 service requester, providing access controls or admission controls
 on resources to be accessed and inter-operating with various
 devices without bothering about kind of network protocols used. It
 also provides web access model outside the constrained
 environment.

 o "Device Profile" A device profile comprises a set of attributes
 that are associated with a particular device. These include
 services, features, names, descriptions etc.

4 System Architecture

 The system architecture is better explained with two different
 scenarios: (1) Constrained device access the service advertised by
 other constrained device is as shown in Fig 1. Here, one
 constrained device such as air-conditioner can access the service
 such as current room temperature advertised by other constrained
 device (ex. thermostat). This advertised service is to be
 commissioned by commissioner, and then it should be set with some
 admission and resource control policies by provisioning server.
 And, finally the service is allowed to advertise its service
 access from other constrained devices. Any device that is
 interested in that advertised service, need to do service lookup
 from RD Server. Once obtaining the path to the advertised service,
 the constrained client device can request a service to the
 device which hosts the service. Before sending the request, it
 MUST establish a secure channel between these two nodes [draft-
 schmitt-ace-twowayauth-for-iot]. Once the incoming request comes
 from the constrained client device, the device which hosts the
 service MUST authorize and provision for conditional access of its
 service from the provisioning server. The notification regarding
 the registered services to the commissioning agent can be sent
 from the RD server, which can be implementation specific and left
 for the user to choose any standard procedures and is out of scope
 of present document. Detailed operational procedure will be
 explained in the later sections of this document.

Vasu K Expires April 19, 2016 [Page 6]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 +------+ +-------+ +-----+ +--------+ +----------+
 |Device1 |Device2| | RD | |Provis | |Commision
 |(Air |(Thermo| | | |ioning | |ing |
 |Condi | | stat)| |Serv |Sever | |Agent |
 |tioner) | | |er | | | | |
 +--|---+ +----|--+ +--|--+ +----|---+ +-----|----+
 | | | | |
 | | | | |
 | |Register | | |
 | ----------// | |
 | | Service/| Verify Preregistered\ |/
 | | ------------------------//
 | | | Service| // |
 | | | | / |
 | | | | |
 | | | | |
 | | | | |
 | | | |//Define |
 | | | /-------------
 | | | / \ Policies |
 |Search a Service \ | | |
 ---------------------// | |
 | | //| | |
 | | / | | |
 | | | | |
 | | | | |
 |Request | | | |
 -----------/ | | |
 |Service /| | | |
 | / | | | |
 | |Check for authorization |
 | |admission, Resource | |
 | ---------------------// |
 | | Control Policies //| | |
 | | | / | |
 | | | | |
 | | | | |
 | | // Service Grant/Deny |
 | /--------------------- |
 | /|\ | | |
 | / | | | |
 \//Service | | | |
 /\---------- | | |
 | Grant/Deny | | |
 | | | | |

 Fig 1.Constrained device accessing service from constrained device

Vasu K Expires April 19, 2016 [Page 7]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 +--------+ +-------+ +-------+ +---------+ +---------+
 |Client | |Device2| |RD | |Provision| |Commissi |
 |(Smart | |(Thermo| |Server | |ing Server |oning |
 | Phone) | | stat) | | | | | |Agent |
 | | | | | | | | | |
 | | | | | | | | | |
 +---|----+ +---|---+ +---|---+ +----|----+ +-----|---+
 | | | | |
 | | | | |
 | |Register | | |
 | -----------/ | |
 | |Service / | |
 | | /| | |
 | | | / | |
 | | |//Verify Preregistered |
 | | --------------------------
 | | |\ Service | |
 | | | | |
 | | | | |
 | | | | / |
 | | | |//Define |
 | | | -------------
 | | | |\ Policies |
 | | | | |
 | Request for Service | \ |
 ----------------------------------// |
 | | | //| |
 | | | / | |
 | | | | |
 | | / | | |
 | |// Request| for Service | |
|---|---|---|---|
 | | | | |
 | | | | |
 | | | | |
 | | Service Grant/Deny\ | |
 | ----------------------/ |
 | | | //| |
 | | | / | |
 | | | | |
 | | | | |
 | // | | | |
 |// Service Grant/Deny | |
 \---------------------------------- |
 | \ | | | |
 | | | | |

 Fig 2. Client accessing service from Constrained device

Vasu K Expires April 19, 2016 [Page 8]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 2) Client device access the service advertised by constrained
 device is as shown in Fig 2. For example, the client device such
 as smart phone can access the service (ex. room temperature)
 advertised by other constrained device (ex. thermostat). The
 client can access the service within a home environment or outside
 the home environment. So, in this scenario, the provisioning
 server maintains the service as a web service.

 This advertised service is to be commissioned by commissioner,
 then to be set with some admission and resource control policies
 by provisioning server. And, finally the service is allowed to
 advertise its access from the client devices. Any client that
 wishes to access this web service looks for corresponding
 operations provided from the provisioning server.

5 Network Topology

 The constrained devices such as Thermostat, Airconditioner may use
 small memory constrained sensors/actuators for simple services
 such as cooling/heating the room or just to measure the current
 room temperature. These memory constrained embedded devices may
 implement the 6LoWPAN stack such as uIP (provided by Contiki), and
 provide access for communication to other external queries from
 client devices such as smart phone which typically implements rich
 stack TCP/IP. Even though RD server or Provisioning server are
 shown as separate servers in the LAN as given in Fig 3, these can
 be hosted on a single server running two different processes.
 Moreover, the commissioner implements a standard procedure to
 interact with devices as a separate agent process which is out of
 scope of the present document and has been left to user’s choice
 while satisfying the mentioned operations in the current draft. On
 the other hand, these specific operations can be implemented
 separately as a third party and to be used at the commissioning
 agent. The lower level communication technology can be implemented
 either through Bluetooth (BT) or near field communication (NFC) to
 verify the devices unique ID (for ex. using MAC). Even though, the
 implementation procedure for commissioner is out of scope for the
 present document, it is shown as sample interaction with RD
 server/provisioning server as part of commissioning procedure in
 subsequent sections. Even though the present document discusses
 about 6LoWPAN based sensor network, it can be easily moved to any
 other technology such as Zigbee/BLE/Wireless HART without any
 changes in the architecture or design, because the present
 document abstracted the communication networks with their edge
 routers. The communication and routing mechanisms or procedure
 between edge router and sensor devices/client devices are out of
 scope of the present document.

Vasu K Expires April 19, 2016 [Page 9]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 ------- --------
 // \ // \
 / // \
 / /
 / /
 | +--------+ | | +--------+| | | |
 | |RD Server---| | | +-----+ |Thermostat|
 | +--------+ | | LAN | |Edge | +--------+ |
 | |------|------- | |
 | +----------+ | | | | |Router 6LoWPAN |
 | |Provision --|| | |+-----+ |
 |Server | / | +--------+ /
 +----------+ / | |Aircondioner
 / | \ +--------+//
 \ // | \ //
 ------- | --------
 |
 |
 |
 |
 |
 -|-----
 //- | -\
 // +-|----+ \
 / |Edge |
 / |Router|
 | +------+ |
 | |
 | WiFi |
 | +-------+ +-----+ |
 | |Smart | |Commisioning
 | |Phone | | Agent|
 +-------+ +-----+/
 /
 \ //
 \- -//

 Fig 3. Network Topology

6 Operations

6.1 Register Service

 The constrained device which hosts the service MUST register its
 service with the RD server using its unique identifier (for ex.
 MAC id, UDDI registry etc.) and IP address as shown in Fig 4. The
 device MUST send a POST request for registering its service.

Vasu K Expires April 19, 2016 [Page 10]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 Before sending a request, it MUST establish a secure channel
 between these two nodes [draft-schmitt-ace-twowayauth-for-iot].
 Once the service has been registered with the RD server, the RD
 server may notify the registered information of a device (for
 ex.its unique identifier and device name) to a commissioning
 agent.

 +---------+ +---------+
 | | | |
 | Device | |RD Server|
 | | | |
 +----+----+ +-----+---+
 | |
 | |
 | ‘. |
 | POST /rd?ep=node1&d=example.com&et=temperature-no‘.|
 +--,’.
 | gp=thermostat&con=DeviceID(100) ,’ |
 | ,’ |
 | ,’ |
 | ,’ 2.01 Created Location: /rd/7521 |
 ‘.--
 | ‘-. |
 | ‘. |
 | |

 Fig. 4 Registering a Service

 6.2 Verify pre-registered service

 The commissioning agent MUST verify any pre registered service
 with the RD server as shown in Fig 5. The commissioning agent
 sends a GET request for domain lookup. Before sending the request,
 it MUST establish a secure channel between these two nodes
 [DTLS][TLS]. Once obtaining the specific domain, it MUST look for
 the group to which the service belongs. Once obtaining the
 specific domain and group, it MUST send a service look up with the
 RD server for the registered service. Once obtaining the service
 information about a specific device, the commissioning agent MUST
 verify the registered service. This service information is later
 used to create service registry in the provisioning server as
 explained in the following section. The example service
 information (denoted as SRV) looks like as shown in Fig 6.

Vasu K Expires April 19, 2016 [Page 11]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 +---------------+ +----------+
 |Commissioning | | RD Server|
 |Agent | | |
 +------+--------+ +--------+-+
 | |
 | |
 | GET /rd-lookup/d ‘. |
 +--:’.
 | .’ |
 | |
 | .’2.05 Content </rd>;d=example.com,</rd>;d=example.com
 ::---+
 | ‘-. |
 | GET /rd-lookup/gp?ep=node1&d=example.com ‘. |
 +---/.
 | .’ |
 | |
 | .’2.05 Content <coap://ip:port>;gp=thermostat;ep=node1
 ::---+
 | ‘-. |
 | ‘. |
 | GET /rd-lookup/res?rt=temp&gp=thermostat&d=example.com
 +--:’.
 | .’ |
 | |
 | .’2.05 Content <coap://host:port>;rt=temp;gp=thermostat
 ::---+
 | ‘-. d=example.com |
 +---------------------------+ |
 |Authentication of Service | |
 |Info and DeviceID | |
 +---------------------------+ POST Verified User; DeviceID‘. |
 +---::
 | .’ .-’ |
 .‘.__|
 | ‘. 2.00 OK |

 Fig. 5 Verify pre registered service

 SRV {
 Name: Node1
 Group: Thermostat
 Domain: myhome.com
 Type: Temperature node
 Device ID: 1001
 Device IP: <host:port>
 }
 Fig 6. Example Service Informaion

Vasu K Expires April 19, 2016 [Page 12]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 6.3 Define policies on resource control

 +----------------+ +---------------+
 |Commissioning | |Provisioning |
 | Agent | | Server |
 +------+---------+ +--------+------+
 | POST /thermostat /HTTP/1.1 ‘. |
 +--/.
 | HOST thermostat.ps.example.com .’ |
 | Content-Type: application/text |
 | SRV { Name: Node1 |
 | Group: Thermostat |
 | Domain: myhome.com |
 | Type: Temperature-node |
 | DeviceID: 1001 |
 | DeviceIP: <host:port> } |
 | |
 | .’ HTTP/1.1 200 OK |
 ::--’
 | ‘. Content-Type: application/text |
 | { sID (service ID) } |
 | |
 | POST /thermostat /HTTP/1.1 ‘. |
 +--::
 | HOST thermostat.ps.example.com .’ |
 | Content-Type: application/text |
 | AC { ServiceID: 1234 |
 | Auth: Basic Auth Support |
 | Count: 10 |
 | Admission Control: R,W,R/W,D } |
 | |
 | .’ HTTP/1.1 200 OK |
 ::--+
 | ‘. Content-Type: application/text |
 | |
 | POST /thermostat /HTTP/1.1 ‘. |
 +--::
 | HOST thermostat.ps.example.com .’ |
 | Content-Type: application/text |
 | RC { If C is from G1 allow {R,W}; |
 | If C is from G2&!G3 allow {R}; |
 | If C is from d1&g1 allow {R,W,D}; |
 | : } |
 | .’ HTTP/1.1 200 OK |
 ::--+
 | ‘. Content-Type: application/text |
 | |
 Fig. 7 Defining Policies on Resource and Access Control

Vasu K Expires April 19, 2016 [Page 13]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 Once the hosted service has been verified by commissioning agent
 (CA), the CA MUST create a service registry with the provisioning
 server as explained in Fig 7. The provisioning server SHOULD send
 a service ID as a response back to the commissioning agent after
 creating the service entry.

 This service ID can be later used by the commissioning agent to
 permanently DELETE the service entry (if required). The
 commissioning agent MUST create some admission control policies
 such as read (R), write (W), read/write (R/W), delete (D), number
 of simultaneous connection on resource etc. on the registered
 service. Once the admission control policies has been set on a
 specific device, the resource control policies such as conditional
 access of a service, quality of service agreements (based on the
 priority levels set for clients) can be set on that registered
 service. These conditional access on service can be implemented
 with simple conditional statements as explained in section 6.3.1
 (for ex. "client (c) can access service with only read (R), write
 (W) permissions if it only belongs to group (g)"). The
 implementation or information format details of these conditional
 statements is out of scope of the present document (TBD). The
 example admission control and resource control policies are as
 shown in Fig 8, and Fig 9 respectively.

 AC {
 Service ID: 12345
 Auth: Basic Auth Support
 Count: 10
 Admission Control: R, W, R/W, D
 :
 :
 }

 Fig 8. Example Admission Control Policies

 RC {
 If c is from g1 allow {R,W}
 If C is from g2 & !g3 {R}
 If C is from d1 & g1 allow {R, W, D}
 :
 :
 }

 Fig 9. Example Resource Control Policies

6.3.1 Resource Control

 Resource control policies for constrained devices are expressed in

Vasu K Expires April 19, 2016 [Page 14]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 terms of conditional expressions as explained in Fig. 9. Consider
 a scenario where we define the client (C) (who accesses the
 resource) in terms of groups/levels. For example in a typical home
 building, we assign each floor as a group. Suppose for a three
 floor building, the clients such as mobile phone/air conditioner
 can belong to any of the floor within a building. And we allow
 various permissions for the clients according to the group it
 belongs to, as specified in Fig 10.

 | | | | | |
 |Client | R | W | U | D |
 |-------------|---|---|---|
 |G1 | * | - | * | - |
 | | | | | |
 |G2 | * | * | - | - |
 | | | | | |
 |G3 | - | - | - | * |
 |--------------------------
 Fig 10. Example Permissions on Methods

 Supposed we assigned the priorities for different groups as C
 belongs to {G1, G2, G3} => {P1, P3, P2}. Moreover, if we would
 like to assign different QoS classes for clients, depending on the
 applications they use then it is required to control QoS policies
 in resource control. QoS is defined in terms of various parameters
 such as {availability, reliability, serviceability, data accuracy,
 aggregation delay, coverage, fault tolerance, network lifetime} in
 wireless sensor networks. It is assumed that based on these
 parameters, QoS is defined in terms of various classes such as
 {Q1, Q2, Q3}, then it is required that some of the clients can
 make some pre-level agreements on QoS requirement for their
 applications either based on the groups it belongs to or based on
 the priority of the clients request (Suppose, C belongs to {Q1,
 Q2, Q3}). Method for defining QoS classes is out of scope of the
 present document. Once defining the groups, its priorities, QoS
 classes, and permissions, then the conditional statements which
 define the resource control policies can be defined as follows:

 ST1: If the client belongs to G1 then it is allowed with
 permissions {R, R/W, U}, priority {P1}, QoS {Q1}, and operations
 {turn it up, read}; else if the client belongs to G2 then it is
 allowed with permissions {R, W, R/W}, priority {P3}, QoS {Q2}, and
 operations {turn it up, read}; else if the client belongs to G3
 then it is allowed with permissions {D}, priority {P2}, QoS {Q3},
 and operations {turn it down}.

 ST2: Allow the client with priority {P1}, QoS {Q1}, operations

Vasu K Expires April 19, 2016 [Page 15]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 {turn it up, turn it down, read}, and allow only with permissions
 {R} in G1; permissions {R, R/W, D} in G2; and permissions {D} in
 G3.

 ST3: Allow the client with priority {P1}, QoS {Q1}, and allow with
 permissions {R}, operations {read} in G1; allow with permissions
 {R, R/W, D}, operations {turn it up, turn it down, read} in G2;
 and allow with permissions {D}, operations {turn it down} in G3.

 Above conditional statements are few examples on how to define the
 conditional statements, the statements can be defined on any
 manner based on the resource control policies we would like to
 achieve. The above statements can be better explained in plain
 semantic notation as shown in Fig 11(a)-13(a), and the
 corresponding JSON representations for message exchange is
 explained in Fig 11(b)-13(b). These statements can be even
 implemented using data modeling language such as YANG or ASN 1.1
 which is out of scope of the present document.

 C
 {
 G1 |"[
 { |"C":{"G1":{"Allow":"R,U",
 Allow {R,U} |"Priority":"P1","QoS":"Q1",
 Priority {P1} |"Operations":"turnup,read"},
 QoS {Q1} |"G2":{"Allow":"R,W",
 Operations {tunr it up, read}|"Priority":"P3","QoS":"Q2",
 } |"Operations":"turn it
 G2 |up,read"},"G3":{"Allow":"D",
 { |"Priority":"P2","QoS":"Q3",
 Allow {R,W} |"Operations":"turn it down"
 Priority {P3} |}}]"
 QoS {Q2} |
 Operations {turn it up, read}|
 } |
 G3 |
 { |
 Allow {D} |
 Priority {P2} |
 QoS {Q2} |
 Operations {turn it down} |
 } |
 } |

 (a) (b)

 Fig 11. ST1: (a) Semantic Notation (b) JSON Representation

Vasu K Expires April 19, 2016 [Page 16]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 C | "[
 { | "Priority":"P1","QoS":"Q1",
 Priority {P1} | "Operations":"turn it up,
 QoS {Q1} | turn it down, read",
 Operations {turn it up,turn it | "C":{"G1":{"Allow":"R"},
 down, read} | "G2":{"Allow":"R,W,D"},
 G1 | "G3":{"Allow":"D"}}
 { |]"
 Allow {R} |
 }; |
 G2 |
 { |
 Allow {R,W,D} |
 }; |
 G3 |
 { |
 Allow {D} |
 }; |
 } |

 (a) (b)
 Fig 12. ST2: (a) Semantic Notation (b) JSON Representation

 C | "[
 { | "Priority":"P1","QoS":
 Priority {P1} | "Q1","C":{"G1": {"Allow":
 QoS {Q1} | "R","Operations":"read"},
 G1 | "G2":{"Allow":"R,W,D",
 { | "Operations":"turn it up,
 Allow {R} | turn it down, read"},
 Operations {read} | "G3":{"Allow":"D",
 }; | "Operations":"turn it
 G2 | down"}}]"
 { |
 Allow {R,W,D} |
 Operations {turn it up, turn |
 down, read} |
 }; |
 G3 |
 { |
 Allow {D} |
 Operations {turn it down} |
 }; |
 } |

 (a) (b)
 Fig 13. ST3: (a) Semantic Notation (b) JSON Representation

Vasu K Expires April 19, 2016 [Page 17]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

6.4 Search for services by device

 Any client device (as explained for scenario 2) MUST interacts
 with the provisioning server and looks for deployed services by
 devices. Moreover, the provisioning server can verify the complete
 authorization, admission, and resource control of any device’s
 services. Whereas, if any other constrained devices (ex. air
 conditioner) searches for services hosted by other constrained
 device (as explained for scenario 1) MUST interact with the RD
 server as shown in Fig 10. Here, initially the device queries for
 all services that are hosted by other devices, then it searches
 within the domain for specific service, its SRV info, and path to
 the hosted service. Before sending a request, it MUST establish a
 secure channel between these two nodes [draft-schmitt-ace-
 twowayauth-for-iot].

 +---------------+ +----------+
 | Device | | RD Server|
 | (aircondit | | |
 | ioner) | | |
 +-----+---------+ +-------+--+
 | |
 | GET /rd-lookup/gp?d=example.com ‘. |
 +---‘.:
 | .-’ |
 | .’2.05 Content <gp="thermostat"> |
 ::--+
 | ‘-. |
 | GET /rd-lookup/ep?gp=thermostat ‘. |
 +--::
 | .’ |
 | .’2.05 Content <Node1> <Node2> |
 ::--+
 | ‘. |
 | |
 | GET /rd-lookup/ep?et=temperature&gp=thermostat ‘. |
 +--‘.
 | .’ |
 | |
 | .’2.05 Content <coap://ip:port>;ep="Node1" |
 ::--+
 | ‘-. |
 | |
 Fig. 10 Search for services by device

6.5 Service request and response

Vasu K Expires April 19, 2016 [Page 18]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 In scenario 1 (as shown in Fig 1), service request and response
 MUST use coap based communication to access the service as shown
 in Fig 11. Before sending a request, it MUST establish a secure
 channel between these two nodes [draft-schmitt-ace-twowayauth-for-
 iot]. Suppose, the constrained client device (for ex.
 airconditioner) want to access the service hosted by another
 constrained device (for ex. thermostat), then the client device
 MUST send a coap based GET request to thermostat. Then, this
 device (thermostat) SHOULD send a POST request to provision this
 service request with the provisioning server by sending clients
 <IP:port>. Based on the clients <IP:port>, the provisioning server
 MUST find the client (ex. airconditioner) details such as service
 information, group, domain, and type details.

 +------------+ +-------------+ +-----------+
 |Airconditi | |Thermostat | |Provision |
 |oner | | (IP1) | |ining Server
 | (IP2) | | | | (IP3) |
 +-----+------+ +------+------+ +--------+--+
 | | |
 |coap://thermostat. ‘.| |
 +----------------------------:: |
 | example.com/temp .’ |POST /thermostat ‘. |
 | +-------------------------::
 | |HOST thermostat.ps. .’ |
 | | example.com |
 | |Content-Type: application/txt
 | |{ SRC: <IP1,port> |
 | | DST: <IP3,port> |
 | | Client: <IP2,port> } |
 | | |
 | | +--------------------------+
 | | |Check for Admission, |
 | | |ResourceControl of thermost
 | | |for airconditioner |
 | | +--------------------------+
 | | |
 | | .’2.00 OK { Permit/Deny }|
 | .’URI-Path: temp CON 200 ::------------------------+
 ::---------------------------+ ‘-. |
 | ‘.("thermostat","aaaa::212.| |
 | 7402.2.202","temp",27) | |
 | | |
 Fig. 11 Request/Response within Constrained Environment

 Once the client is identified, the provisioning server MUST check
 for authorization, admission and resource control policies of

Vasu K Expires April 19, 2016 [Page 19]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 hosted service (ex. thermostat). Once the service request is
 authorized to access then the URI-Path for hosted service along
 with the value is sent as a coap response to client device (air
 conditioner). Here, the request is conditional i.e. based on the
 resource control policies of a resource (such as thermostat) for a
 client (airconditioner), the permissions are given to access the
 resource.

 +-------------+ +------------+ +---------+
 | | |Provision | | |
 | Client | |ining Server| |Thermostat
 | | | | | |
 +-----+-------+ +-----+------+ +------+--+
 | | |
 |http://thermostat. ‘. | |
 +----------------------------:: |
 | example.com/temp .’ | |
 | +-----------------------------+ |
 | |Check for Admission, | |
 | |Resource Control of thermostat |
 | |for airconditioner | |
 | +-----------------------------+ |
 | | |
 | | coap://thermostat. ‘. |
 | +------------------------::
 | |example.com/temp .’ |
 | | |
 | | |
 | | .’URI-Path: temp CON 200|
 | ::------------------------+
 | | ‘. |
 | .’ HTTP/1.1 200 OK | |
 ::----------------------------+ |
 | ‘. Temperature: 27 | |
 | | |
 Fig. 12 Request/Response from outside Constrained Environment

 Service request and response in scenario 2 (as shown in Fig 2),
 uses simple http based communication to access the service from
 the PS. Provisioning Server then sends a coap based GET request to
 the ultimate device that hosts service. Before sending this
 request to the actual device for service, PS authorizes the
 service request. Once, the service request is authorized to
 access, then the URI-path for hosted service along with the value
 is sent as HTTP response to client device. PS can implement a
 reverse proxy case for HTTP-CoAP protocol translation defined in

Vasu K Expires April 19, 2016 [Page 20]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 [draft-ietf-core-http-mapping].

 ------------------HTTP begin -------------------------------------
 HTTP POST
 Request:
 POST /thermostat /HTTP/1.1
 HOST thermostat.example.com
 Content-Type: application/x-www-form-urlencoded
 Content-Length: length
 licenseID=string & content=string & paramsXML=string

 Response:
 HTTP/1.1 200 OK
 Content-Type: text/xml; charset=utf-8
 Content-Length: length
 <?xml version="1.0" encoding="utf-8"?>
 <string xmlns="http://xyz.com/">
 string
 </string>

 ------------------HTTP end -------------------------------------

 ------------------ REST via HTTP begin --------------------------
 REST via HTTP POST
 Request:
 POST /thermostat /HTTP/1.1
 HOST thermostat.example.com
 Content-Type: application/x-www-form-urlencoded
 Content-Length: length

 licenseID=string & content=string & paramsXML=string

 Response:
 HTTP/1.1 200 OK
 Content-Type: text/xml; charset=utf-8
 Content-Length: length

 string

 ------------------REST via HTTP end -----------------------------

 ------------------SOAP begin ------------------------------------

 SOAP 1.2
 Request:
 POST /Thermostat /HTTP/1.1
 HOST: www.example.org

Vasu K Expires April 19, 2016 [Page 21]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 Content-Type: application/soap+xml; charset=utf-8
 Content-Length: length

 <?xml version="1.0"?>
 <soap:envelop>
 Xmlns:soap=http://www.w3.org/2001/12/soap-envelop
 Soap:encodingStyle=http://www.w3.org/2001/12/soapencoding>
 <soap:body xmlns: m="http://www.myhome.org/thermostat">
 <m:GetTemperature>
 <m:thermostat>1</m:thermostat>
 </m:GetTemperature>
 </soap:body>
 </soap:envelop>

 Response:
 HTTP/1.1 200 OK
 Content-Type: application/soap+xml; charset=utf-8
 Content-Length: length

 <?xml version="1.0"?>
 <soap:envelop>
 Xmlns:soap=http://www.w3.org/2001/12/soap-envelop
 Soap:encodingStyle=http://www.w3.org/2001/12/soapencoding>
 <soap:body xmlns: m="http://www.example.org/thermostat">
 <m:GetTemperatureResponse>
 <m:temperature>27.8</m:temperature>
 </m:GetTemperatureResponse>
 </soap:body>
 </soap:envelop>

 ------------------SOAP end ----------------------------------

7 Security Considerations

 Security level for message authentication is out of scope of the
 present document. However, the following security consideration
 needs to be considered for the present proposed method. Services
 that run over UDP are unprotected and vulnerable to unknowingly
 become part of a DDoS attack as UDP does not require return
 routability check. Therefore, an attacker can easily spoof the
 source IP of the target entity and send requests to such a service
 which would then respond to the target entity. The TLS/DTLS based
 security solution can be considered for secure message
 communication.

8 IANA Considerations

Vasu K Expires April 19, 2016 [Page 22]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 TBD

9 References

9.1 Normative References

9.2 Informative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228, May 2014.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4 Networks", RFC
 4944, September 2007.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, June 2014.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, August 2012.

 [draft-ietf-core-resource-directory] Shelby, Z., and Bormann, C.,
 "CoRE Resource Directory", draft-ietf-core-resource-directory-02
 (work in progress), November 2014.

 [draft-gerdes-ace-actors] Gerdes, S., "Actors in the ACE
 Architecture", draft-gerdes-ace-actors-03 (work in progress),
 March 2015.

 [draft-gerdes-ace-dcaf-authorize] Gerdes, S., Bergmann, O., Bormann,
 C., "Delegated CoAP Authentication and Authorization Framework
 (DCAF)", draft-gerdes-ace-dcaf-authorize-02, March 2015.

 [draft-bormann-core-ace-aif] Bormann, C., "An Authorization
 Information Format (AIF) for ACE", draft-bormann-core-ace-aif-oo,
 January 2014.

 [draft-schmitt-ace-twowayauth-for-iot] Schmitt, C., Stiller, B.,
 "Two-way Authentication for IoT", draft-schmitt-ace- twowayauth-
 for-iot-01, December 2014.

 [DTLS] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 6347, January 2012.

Vasu K Expires April 19, 2016 [Page 23]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

 [TLS] Dierks, T. and C. Allen, "The TLS Protocol Version 1.2", RFC
 5246, August 2008.

 [draft-ietf-core-http-mapping] Castellani, A., Loreto, S., Rahman,
 A., Fossati, T., and Dijk, E., "Guidelines for HTTP-CoAP Mapping
 Implementations", draft-ietf-core-http-mapping-05, (work in
 progress), Oct 2015.

10 Acknowledgements

 Special thanks to Amit Kumar S,Zhengfei, Fubaicheng,
 Yangjun,Vijayachandran Mariappan, Shashidhar C Shekar,
 Jayaraghavendran K, Ajay Sankar, Puneet Balmukund Sharma, and Rabi
 Narayan Sahoo for extensive comments and contributions that improved
 the text.

 Thanks to Hedanping (Ana), Behcet Sarikaya, and Carsten Bormann for
 helpful comments and discussions that have shaped the document.

Authors’ Addresses

 Vasu K
 Huawei Technologies
 Bangalore
 India

 EMail: vasu.kantubukta@huawei.com

 Rahul A Jadhav
 Huawei Technologies
 Bangalore
 India

 EMail: rahul.jadhav@huawei.com

 yangneng
 Huawei Technologies
 Shenzhen
 China

 EMail: yangneng@huawei.com

Vasu K Expires April 19, 2016 [Page 24]

Internet-Draft Service Provisioning for Constrained Nodes Oct 19, 2015

Vasu K Expires April 19, 2016 [Page 25]

	draft-baba-iot-problems-07
	draft-burgess-promise-iot-arch-00
	draft-garcia-core-security-06
	draft-he-iot-security-bootstrapping-01
	draft-keranen-t2trg-rest-iot-00
	draft-mattsson-core-coap-actuators-00
	draft-vasu-core-ace-service-provisioning-00

