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Abstract

   This document contains opinions gathered from enterprises engaging in

   the IoT business as stated in the preceding version hereof, and also

   examines the possibilities of new social problems in the IoT era.

   Recognition of the importance of information security has grown in

   step with the rising use of the Internet.  Closer examination reveals

   that the IoT era may see a new direct physical threat to users.  For

   instance, the situation at a smart house may lead it to judge that

   the owner has only temporarily stepped out, causing it to unlock the

   front door, which in turn makes it easier for thieves to enter.

   These kinds of scenarios may occur without identity fraud, hacking,

   and other means of compromising information security.  Therefore, for

   the purpose of this document, this issue shall be referred to as "IoT

   Safety" to distinguish it from Information Security.

   We believe that it is necessary to deepen our understanding of these

   new IoT-related threats through discussion and ensure there are

   measures to address these threats in the future.  At the same time,

   we must also coordinate these measures with the solutions to the

   problems described in the previous version of this document.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the

   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering

   Task Force (IETF).  Note that other groups may also distribute

   working documents as Internet-Drafts.  The list of current Internet-

   Drafts is at https://datatracker.ietf.org/drafts/current/.
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   Internet-Drafts are draft documents valid for a maximum of six months

   and may be updated, replaced, or obsoleted by other documents at any

   time.  It is inappropriate to use Internet-Drafts as reference

   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 18, 2019.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the

   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal

   Provisions Relating to IETF Documents

   (https://trustee.ietf.org/license-info) in effect on the date of

   publication of this document.  Please review these documents

   carefully, as they describe your rights and restrictions with respect

   to this document.  Code Components extracted from this document must

   include Simplified BSD License text as described in Section 4.e of

   the Trust Legal Provisions and are provided without warranty as

   described in the Simplified BSD License.
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1.  Introduction

   Many activities are progressing in various fields, such as the

   proposal of standards for creating an IoT world.  There are also many

   reports that analyze and predict the benefits that IoT can bring to

   the economy and society.  These developments remind us of the end of

   the 20th century, when the effect and impact of the Internet was

   actively debated.
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   The authors tried using the following approach to clarify the issues

   for the prompt realization of IoT.  First, the players were

   conveniently divided into two groups: ICT industry players and Things

   industry players.  Next, we met major players in the ICT industry and

   Things industry and asked about the challenges they faced and the

   challenges the other side faced in creating IoT.

   The ICT industry players mentioned here include communication

   carriers, ICT equipment vendors, the Internet service providers,

   application vendors, and software houses.  The Things industry

   players include home and housing equipment manufacturers,

   infrastructure providers such as railways companies and power

   companies, and manufacturers of home appliances such as air

   conditioners and refrigerators, which are also the ICT users.

   This paper is principally a summary of the meetings results, and a

   presentation of the micro case studies about the challenges for

   realizing IoT services.  It is not an overview of the IoT world or a

   macro-proposal intended to promote the benefits of IoT.

   In addition, the revised version includes an examination of the

   possibilities of new direct physical threats in the IoT era that have

   not yet been seen.  These threats should affect the safety of our

   bodies, lives, and "things," which includes property.  For this

   reason, this issue shall be referred to as "IoT Safety" to

   distinguish it from Information Security for the purpose of this

   document.

   For the past few years, we got new findings through COMMA House, the

   experimental smart house owned by The University of Tokyo.

   Therefore, we will add new topics to the next version.

2.  Technical Challenges

2.1.  Safety, Security and Privacy

2.1.1.  Challenges in protecting lives and property from IoT-related

        threats (IoT Safety)

   The introduction of IoT may generate threats to "Safety" through the

   actual operation of mechanical devices, in addition to the

   Information Security problems discussed in Section 2.1.2 below.  For

   example, the spread of applications for visualizing electric power

   consumption allows for mischief in device operation without the use

   of identity fraud or hacking.  In addition, there is the potential

   for problems to arise in the normal operation of individual devices

   that are not caused by abnormal current or voltage, another troubling

   aspect of the introduction of IoT.  These issues cannot be resolved
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   with ordinary information security measures for Network Layer 4 or

   lower.  In another case, a command to an IoT device is proper by

   itself, but it may conflict with the other commands or its

   environmental status.  Therefore, the authors consider it necessary

   to have a system for interpreting the details of operations of many

   appliances and preventing operations according to the necessity in

   Layer 7 (what the authors tentatively call "Sekisyo".)

   These threats are categorized into three types: threat to physical

   safety; the threat of the failure or destruction of equipment and

   property; and the threat of impeding the proper performance of

   equipment.  The following section introduces examples of the

   different threats.

2.1.1.1.  Safety of body/life

   Information on things such as the use of faucets and housing

   equipment, the locking of the front doors and windows, and the state

   of electric power consumption based on the smart meter is used by

   smart houses to regulate homes.  This information is used to

   determine whether anyone is at home, and the electronic lock of the

   front door and windows is unlocked and a notice of absence is issued

   to a thief.

2.1.1.2.  Safety of equipment

   Air conditioners and other equipment that normally are not expected

   to be frequently started or stopped each a day can be caused to break

   down by repeatedly turning them on and off as many as hundreds of

   times a day.

2.1.1.3.  Proper performance of equipment

   Water heaters containing a hot well can be caused to operate

   erratically.  This is done by frequently transmitting signals from

   the mischief application instead of operation panel to tell the water

   heater that only 10% of the normal amount of hot water is needed,

   leaving the water heater perpetually low on water.

2.1.2.  Information Security

   We have confirmed two viewpoints regarding the information security

   of services using IoT equipment and devices.  The first is tangible

   information security involving the critical infrastructure.  The

   second concerns the information security of individuals and homes.

   In regards to information security involving the critical

   infrastructure, the basic policy in the past was to stay physically
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   disconnected from an external network, such as the Internet, to

   ensure information security.  However, because of the advance in the

   systems from proprietary communication protocols to open IP protocols

   to detect symptoms of problems and to remotely maintain a large

   number of facilities spread over a wide area, connecting to an

   external network will become unavoidable to achieve various goals.

   In addition, it is clear that isolated networks are also subject to

   the same kind of risks, even though it is not directly connected to

   the outside.  There is no major difference in the information

   security risks because isolated networks are already the target of

   international cyber terrorism, with internal crimes and targeted

   attacks occurring more frequently.  Based on these reasons, the ICT

   security of the social infrastructure requires an extremely high

   level of information security.

   Looking at the information security of micro units, such as

   individuals and homes, the improved convenience provided by the

   introduction of IoT will lead to greater risks.  For example, there

   is a product available for connecting the entrance door to the

   network.  In ICT security technology, increasing the key length of

   the encryption makes it much harder to break.  But even if the latest

   information security technology is used when it is installed, the

   information security technology will become obsolete and even pose a

   risk about halfway through the twenty- to thirty-year lifetime of the

   entrance door.  As has been explained in other items, the ICT sense

   of time is completely different from that of Things.

2.1.3.  Privacy in acquiring data

   The problem of privacy in handling acquired data is a huge challenge

   for companies promoting IoT.  In addition, the ownership of this data

   poses yet another challenge.

   For example, railway companies have installed many cameras for

   station security and for marketing beverage vending machines.  This

   creates problems for personal identification and privacy.  At the

   present time, the companies are processing the images in real time

   and do not store the images to avoid the problems.

   Another huge challenge is the ownership of data.  Up until now, there

   has been a divided debate on whether data belonged to the company or

   to the users.  Likewise, the relationship inside a small user group

   is also extremely diverse and complicated.  One specific example is

   of a company that had obtained permission from the head of the

   household to use the data when it carried out an HEMS trial.  Later

   on, the spouse of the head of the household disagreed and as a result

   permission to use the data was withdrawn.
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2.2.  Challenges posed by data acquisition, data distribution, data

      management and data quantity

2.2.1.  Traffic patterns

   The manner in which data is acquired from and distributed to IoT

   equipment/devices differs immensely from the traffic patterns of the

   present Internet.  The present form of the Internet focuses on

   distributing information, and its systems focus on effectively

   delivering contents to the users.  On the other hand, routinely or

   temporarily sending or receiving data through a huge number of

   various sensors and devices presents a very different kind of

   Internet traffic.  However, questions such as how much traffic will

   come from what kind of Things, and how will they superimpose each

   other have not been sufficiently studied.  There is no concrete

   explanation about the backbone design and operation of traffic, and

   there have been many cases in which the unclear specifications for

   IoT traffic made the design difficult on the communication company

   side.  There are many challenges related to the set up and management

   of IoT equipment.  We have heard from the construction companies that

   the configuration of IoT equipment with a large number of sensors

   involves a lot of hard work.

2.2.2.  Acquired mass data

   It is necessary to develop a management method to reuse acquired data

   safely and effectively.  Even now, there are occasional instances of

   the theft and leakage of social data (such as IDs) that can be used

   to identify individuals.  In the IoT era, there will be mass data

   that can lead to Things, and the Things in turn will lead to

   individuals.  There are IoT industry players who do not invest as

   much in ICT systems as government agencies and large companies do,

   and thus a management system to safely and effectively reuse the

   acquired data needs to be developed.  The laws and regulations

   related to ID management differ vastly by country and region.  These

   issues related to society and individuals are largely affected by

   differences in common sense, and therefore need to be localized.

2.2.3.  Explosive increase and diversity of data

   In the future IoT era, there are concerns about the explosive

   increase in data quantity and the diversity of data sent from sensors

   and IoT equipment.  On the other hand, M2M communication does not

   require mass data like images, and an extraordinary increase in

   traffic will be unlikely despite the increase in the number of

   sensors.
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   If data is sent from all Things, there will be an infinite number of

   different kinds of data.  In addition, with the present form of

   Internet traffic, data is received by people, and most of it consists

   of video or image downloads.  The download traffic is several times

   greater than that of the upload traffic.  If there is a tremendous

   increase in the use of IoT, such as M2M communication, the difference

   between upload and download traffic will probably not be that much.

   It might be necessary to fundamentally review the network and in

   particular the last mile characteristics.  The importance of this

   issue is not yet widely recognized.

2.3.  Mapping of the physical world and the virtual world

2.3.1.  Physically handling acquired data

   The acquired data simply represents certain kinds of digital value,

   and it is important to uncover the meaning of this data.  As

   described previously, configuration of IoT equipment, such as the

   large number of installed sensors, requires a lot of hard work.  An

   even greater amount of effort will be needed to determine the meaning

   of the data and connect it to the physical world.

   In energy management experiments, data is mapped manually.  This is a

   time consuming process, and one that is prone to human error.  Cases

   that rely on the use of human hands require the configuration of

   automated setting systems to reduce labor, costs, and human errors to

   introduce IoT

2.3.2.  Data calibration

   Another important thing is calibration.  This involves properly

   linking the data sent from Things to the Things concerned, and

   correctly indicating the operating conditions.

   It may be necessary to have a tool to treat this problem concerning

   continuation of operation and the one pertaining to introduction of

   IoT described previously as a package.

2.4.  Product lifetime, generation management, and the cost of equipment

      updates

2.4.1.  Product lifetime

   The life of most ICT equipment is about 5 years or less, while the

   life of IoT equipment and devices is at least 10 years.  There is a

   clear gap between these two types of equipment.
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   In the example of the entrance door connected to the network

   mentioned earlier, the door is often used for about twenty to thirty

   years after installed.  If is connected to a network, the

   communication technology and communication service will most likely

   have undergone numerous generation changes in that twenty- to thirty-

   year time span.  This presents a large gap between the ICT industry

   and the Things industry.

   A solution to this problem that was reached during the meeting with

   the housing equipment manufacturers is that with the automatic

   control of multiple shutters in a building, the portion between the

   controller and the multiple shutters, the so-called mature

   technology, can be placed under the control of the shutter

   manufacturers, while the controller connected to the network will

   deal with the generation changes of the communication service.

2.4.2.  Introducing IoT equipment into commodity equipment

   It costs a lot to make the many different types of commodity

   equipment popular around the world usable as IoT equipment and

   devices.  There are two ways to change commodity equipment into IoT

   equipment.  One way is to convert it to IoT compatible equipment.

   The other way involves adding devices to commodity equipment.  There

   are costs in both cases, and it will take a long time to introduce

   IoT unless different incentives are offered to help to overcome the

   burden of cost.

2.5.  Too many related standards and the speed of standardization

2.5.1.  Too many related standards

   There are many standards related to IoT equipment and devices.  There

   are multiple standards, technologies and services for communication

   technology, such as Bluetooth, Wi-Fi, NFC, and LTE, and it is

   difficult to choose which to apply.

   The Things industry players do not always have the communication

   technology professionals needed for IoT.  In the meeting, we learned

   that many companies were uncertain and hesitant about fields outside

   their own area of expertise.  On the other hand, technological

   competition will improve quality as well as the level of completion,

   and thus will be beneficial for users.

   In the future, a consulting business for clarifying ICT technology

   for the Things industry players may emerge.  If there is a system

   that can interconnect multiple standards, it will accelerate the

   Things industry to enter IoT
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2.5.2.  Speed of standardization

   The concept of product life in ICT industry is completely different

   from that of the Things industry, and as a result the concept of

   standardization also varies greatly.  Before standardization occurs

   in the ICT industry, many different proposals are made, from which

   the best is selected.  The final decision often changes, and products

   have to be updated in order to follow the changes in standards.  But

   in the Things industry, the standards have to remain unchanged for as

   long as possible because of the long product lifetimes.  Therefore,

   it takes a long time to determine when a particular standard has

   become mature.  When the Things industry goes to implement a standard

   from the ICT industry, it feels that the standard is incredibly fluid

   and seemingly undecided.  Furthermore, the standardization process of

   the two industries is very different, and making it difficult to work

   on the other side when trying to determine a standard.

2.6.  Interoperability, fault isolation, and total quality assurance

2.6.1.  Interoperability

   The verification of interoperability poses a major challenge because

   of the configuration used by multi-vendors.  In addition to

   interoperability between equipment, the ability to ensure backward

   compatibility is also important for bringing about the IoT world.

   If these capabilities cannot be provided, it will be very difficult

   to create an IoT world in which past products can function.

2.6.2.  Fault isolation

   The method for fault isolation that may occur presents another

   challenge.

   Many PC users have experienced various kinds of problems.  When their

   PC experiences a problem, they have to isolate the faults by

   themselves, with no one available to lend a helping hand.

   In the IoT world, these issues become more difficult and complicated.

   For example, a smart home is equipped with air conditioners, kitchen

   supplies, and doors connected to the Internet.  A problem that occurs

   in the smart home poses a much more serious problem to end users than

   an e-mail failure or problem with a PC.

   If users are left to isolate the fault on their own, they may not

   know which manufacturer they contact for repairs if they are unable

   to isolate the fault on their own, or the manufacturer may refuse to

   perform repairs because they fall outside the scope of their
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   responsibility.  As can be seen, the issue is an important challenge

   that will determine whether the B2C specific IoT world can be

   established.

2.6.3.  Quality assurance

   The quality assurance of individual pieces of IoT equipment does not

   guarantee the total quality of IoT.  Since IoT involves connecting

   multiple Things and communication, it is natural to assume that the

   total service quality will depend on the quality of the IoT equipment

   and devices, which can sometimes become bottleneck.  However, users

   are not aware of this.

   As was mentioned previously in Section 2.6 issues that are not

   directly related to the quality of an individual component can be

   important factors in determining the quality of the service.  In this

   way, the quality of IoT is not decided by each individual Thing, but

   needs to be considered as a service spread across the network.

2.7.  Product design policy

2.7.1.  Changes in design policy

   The design policy has to be changed from placing emphasis on the high

   functionality of a single product to stressing the singular function

   of individual products as well as how they work in coordination with

   other products.  For many years, the Things industry has focused on

   producing high functionality products with added value.  But in the

   IoT era, the implicit assumption is to confine Things to their basic

   function and enhance the level of coordination between Things, rather

   than focusing on the added value.  Simplified Things must be able to

   be controlled with an external application that can also be used by

   the Things of cross manufacturers.

   Given this situation, the Things industry faces the challenge of

   adopting a completely different policy.  During the meeting with the

   manufacturing industries, we could sense their difficulty in

   understanding and recognizing the need to change the policy.

2.8.  Various technology restrictions within actual usage

2.8.1.  Using radio waves

   There are many cases that have provided us with insight about issues

   related to the use of radio waves in IoT (such as the wave traveling

   range and whether or not it travels further than stated in

   assumptions available).  The suppliers or providers who configure IoT

   are not always wave communication technology experts.  People who are
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   unfamiliar with radio waves seem to think that waves travel from

   antenna to antenna in a straight line, and that they can be blocked

   by obstacles.  As a result, they often ask questions about how many

   meters radio waves can travel or whether radio waves can actually

   travel.  Few people understand the fact that the emitted radio waves

   are reflected from various locations and are superimposed at the

   reception point where they are received, or that depending on how

   waves are reflected a change in the reception signal intensity,

   called fading, may occur.  The lack of engineers who can advise on

   specialized matters such as these poses a major obstacle.

2.8.2.  Batteries

   The power capacity and lifetime of batteries represent another set of

   challenges similar in nature to the issue of radio waves traveling

   distance.  There are questions such as the difference between the

   real and catalog specifications, as well as factors that affect the

   battery power capacity.  The IoT providers, who are also users of

   IoT, have to solve these issues, while these are difficult problems

   even for experts.

2.8.3.  Wiring

   The incredible amount of wiring and its complexity (power lines and

   communication lines) pose major challenges.  The complexity of

   wiring- such as the large number of sensors and equipment, the power

   lines that drive them, and the communication lines that connect them

   to the network for acquiring information-is to the point that people

   doing IoT installation work will start wishing for a wire harness.

   In addition, the installation of cables and electric work are often

   done by different engineers.  This make the issue even more

   complicated.

2.8.4.  Being open

   A single company alone cannot make all the commodities for IoT.  The

   IoT world needs to be open, and this can only be achieved with the

   cooperation of many different industries.  Up until now, companies in

   the Things industry have developed products in a closed loop process,

   seeking to capture users with their company’s own products.  For this

   reason, they lack an open design concept of interoperability.  Today,

   an entirely new design concept is needed to design products that can

   interconnect with the products of other companies.
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3.  Non-technical Challenges

3.1.  Changing the product paradigm

3.1.1.  Ecosystems

   While the goal of setting up IoT is to generate new value, it may

   actually lead to the destruction of the ecosystems in which

   industries operate.  In the IoT era, the traditional vertically

   integrated way of producing Things in manufacturing industries will

   consume too much time and cost.  This approach also makes it

   difficult to incorporate the ideas of other cultures.  The need for

   paradigm shift is easy to understand, but difficult to implement.

   Promoting this shift will pose a management challenge that requires a

   considerable amount of skill and effort to overcome.

3.1.2.  Coordination and significant changes in strategy

   It will become necessary to run businesses jointly with new partners,

   as well as cooperate and work in coordination with other industries

   and competitors.  This issue-even when it is fully understood-will be

   very difficult to address and put into practice.

   We have seen instances in which only a limited amount of information

   was given when parties exchanged opinions.  There have also been

   instances in which communication was difficult because of differences

   in terminology and culture.

3.1.3.  Competition with existing industries

   The issue of competition with existing industries often arises when

   attempts are made to change or reform a business model change or

   reform.  This issue can also be viewed as the reorganization of

   industries, rather than competition between existing industries.

   However, this realignment of industries is difficult to move forward

   in the absence of supervisors.

3.2.  Benefits

3.2.1.  Rising costs and monetization

   Introducing IoT within products will cause costs to go up, and yet

   the benefits it provides are unclear.  There is no specific killer

   application available, and the number of users will not rise

   immediately.  Therefore, finding a way to make the business

   profitable will be very difficult.  This issue is especially

   difficult for businesses and products that rely on cost reductions to

   deliver low prices that make them competitive.
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3.3.  Information security and privacy of social systems

3.3.1.  Classification of ownership, location, and the usage of data

   There are many questions regarding the wide variety of data gathered

   from IoT equipment, including questions related to ownership, storage

   location, and the authorization to grant a license to use data.

   These need to be addressed so that the system and equipment can be

   accepted by society.

   For example, if a company installs a door in a house that gathers

   data on the opening and closing of the door, questions about the data

   will arise.  Does it belong to the users or the company?  Can another

   company use this data?

3.4.  Disclosure of data

3.4.1.  Side effects and malicious use potentially caused by the

        disclosure of data

   For example, it has been shown that the electricity smart meter can

   lead to burglary because it shows when electricity is used and not

   used, providing an indication of the time when no one is home.  This

   particular example demonstrates the importance of ensuring

   information security and privacy.

3.5.  Preparing social support

3.5.1.  Regulations

   Systems of laws and regulations are important for ensuring the safety

   of the conventional products, but they can also be a barrier for

   innovation.

   IoT can be affected by laws and regulations at home and abroad, and

   can also be influenced by regulations that extend across multiple

   countries.  Regulatory authorities need to monitor IoT carefully and

   adjust the regulations and laws they oversee in a way that does not

   negatively impact the global competition environment.

3.5.2.  Corporate social responsibility

   In addition to pursuing profit, companies that promote IoT also need

   to improve the benefits offered to users and society
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3.5.3.  Customization for individual customers

   There is an ongoing shift in demand away from general products to

   customized products for individual customers.  This could also be

   viewed as a shift away from manufacturing businesses to service

   businesses.  IoT will play an important role in this shift.

   Instead of manufacturing Things through mass production, it will be

   easier to customize a product by moving some of the functions to an

   application.  Likewise, the manufacturing business also needs to move

   forward with the previously mentioned paradigm shift in order to

   achieve customization

3.5.4.  IoT literacy of the users

   Because Things are connected to the network, apps will need to be

   created.  Some of these will serve as the interface with which people

   interact with IoT.

   In the IoT era of the future, users will need to possess a certain

   amount of knowledge about IoT apps

3.5.5.  Individual vs. family

   The issue of whether the data of Things in the house belongs to the

   family or the individual will largely affect data analysis and the

   handling of privacy.

   As was mentioned in Section 2.1.2, the spouse could later object to

   the head of the household granting authorization to use data.

4.  Information Security Considerations

   Meetings with the players in various IoT fields provided insight into

   information security issues.  These issues are described in the

   following sections.

   o  Section 2.1.2 Physical damper of devices

   o  Section 2.1.2 Product lifetime and encryption strength

   For details, please see the corresponding text.

5.  Privacy Considerations

   Similarly, issues regarding privacy are described in the following

   sections.
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   o  Section 2.1.2, Section 3.3.1 Ownership of the data

   o  Section 3.4.1 Data disclosure and malicious use

   o  Section 3.5.5 Individual vs. family

   For details, please see the corresponding text.
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1.  Introduction

   The scenario we call the Internet of Things (IoT) is an inflection
   point in the development of information local and global
   infrastructure.  The facilitation of a platform for the next
   generation of global commerce presents a challenge of both
   technological and human dimensions.  This is a challenge that spans
   every layer of the software and networking stacks, but can be
   described in general terms without the need to specific
   implementations.  That is our goal in this draft.  Only a few new
   ideas are needed to synthesize this infrastructure, however several
   old technology practices must be deprecated for scaling and security
   considerations.
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   A platform for society must be vendor agnostic at its root, and must
   leave ample space for vendor specific creativity on top.  What
   distinguishes IoT from past scenarios is the prolific contact surface
   it will expose to the physical world, embedding devices pervasively
   in our close environments, and touching every part of human life.  At
   the time of writing, IoT has barely begun to emerge in domestic and
   industrial settings; however, choices we make now could help or
   hinder the development of an adequate platform over the coming
   decades.  The proposed architecture not only scales up to large
   numbers, it also scales down to small devices of low capability; from
   the largest installations to the smallest, and from the tiniest
   amounts of data, to vast data-stores collected by scientific
   computing at the limits of possibility.

2.  Requirements and Promises Language

   The term "PROMISE", "PROMISES" in this document are to be interpreted
   as described in Promise Theory [Bergstra1]

   When used, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
   "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in RFC
   2119 [RFC2119].

3.  Definitions and concepts

   IP endpoint  A hardware or software agent that is IP addressable, via
             a TCP/IP capable interface.

   Static endpoint  A hardware or software agent with an IP address
             (prefix and subnet) that is fixed over the timescale of
             application service interactions.

   Mobile endpoint  A hardware or software agent whose IP address
             location can change on the timescale of application service
             interactions.

   Application server/service  Any agent that promises to respond to
             requests, from external parties, and perform services of
             any kind, on a timescale that we may call the application
             service timescale.

   Multi-tenant application service  A collection of agents housed as
             tenants within a single host device, each offering
             different services, with potentially different timescales.
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   Client application  An agent that consumes data from an application
             service, requested either by imposed query or by promised
             schedule.

   Standalone Thing (FFD)  A full function device (FFD)[OneM2M], with an
             IP address, that can present its own service gateway or
             interface to the IP network.

   Peripheral Thing (RFD)  A reduced function device (RFD)[OneM2M], with
             no IP address, that attaches to a host gateway device as a
             peripheral, over an arbitrary network (USB, PCIe, CANbus,
             Profibus, ModBus, wireless sensor network, etc).  Devices
             are addressable, only through the gateway service.  This
             includes portmapped devices.

   Embedded network  Any network (IP or non-IP) that is non-IP routed,
             i.e. contained within a host endpoint as part of a black
             box, e.g. isolated NAT, device bus, serial channels.

   Transducer  An agent that consumes a service from another agent, and
             provides a new service based on the consumed service, e.g.
             a router, encrypter, compressor, etc.

   Trust     A unilateral policy assessment of one agent by another,
             concerning its reliability in honouring promises.  Trust is
             not necessarily a transitive property.

   Partial connectivity  A device is said to have partial connectivity
             if it is unavailable for intervals of time, e.g. due to
             loss of connectivity, mobility, or power napping.

4.  Device interconnection

   All devices are assumed to live in a partially connected environment.
   They MUST be fault tolerant to loss of communications, both with
   other agents in the course of providing application services, and
   with trusted sources of information.  A minimum interdependency
   design may be recommended to facilitate this.

   For a nascent Internet of Things, the focus is naturally drawn to the
   specialized leaf devices, where data may be produced or consumed.
   However, these are only half the picture. ‘Thing’ devices, by design,
   also communicate with online services deployed ‘higher up’, or
   ‘Northbound’ in the system, to offload analysis and decision-making.
   Their physical capabilites thus place them into two broad categories:

   Standalone devices  These are assumed to connect by an IP addressable
             underlay network.  Connectivity is assumed end-to-end,
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             without reference to tunnels or software defined overlays.
             Routing is assumed to be provided end-to-end, and fully
             decoupled from the registration of devices.  Segregation
             and firewalling of certain network regions may be included
             in network design, but will not be considered here.

   Peripherals  These include bare sensors and actuators, which do not
             possess sufficient onboard resources or software
             interfaces, may attach to hosting standalone devices that
             act as a gateway and IP endpoint on their behalf.

   Transducers  These pass-through devices transformers, converters,
             encapsulation services, etc

     +------------------+
     | FFD / Standalone |--> IP Endpoint
     +------------------+

     +------------------+
     | RFD / Peripheral |--+
     +------------------+  |      +------------------+
                           +------| FFD / Standalone |--> IP Endpoint
     +------------------+  |      +------------------+
     | RFD / Peripheral |--+
     +------------------+

    Devices may be standalone (FFD), with service interfaces, or hosted
   peripherals (RFD), where data are exposed through service interfaces
        from other buses, e.g.  USB, CANbus, MODbus, Profibus, etc.

                                 Figure 1

   Standalone devices are full stack devices that provide data oriented
   services to data clients

   Stand-alone devices and transducers can vary considerably in their
   processing, memory and connectivity resources and constraints.  This
   architecture assumes a minimum resource level at the stand-alone
   device, but the device must support ‘full stack’ implementations.  In
   practice, this implies that they contain an embedded OS (e.g.
   Linux), and are capable of running an agent providing secure service
   and connectivity interfaces.
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5.  Federation of agency

   Centralization of intent or control is not practical in environments
   with the density of devices and overlapping concerns exhibited by a
   pervasive Internet of Things.

5.1.  Ownership

   Device ownership is an important issue in a multi-tenant consumer
   environment.  While some devices will be centrally managed by
   providers, many devices in an Internet of Things will be personally
   owned, and would not be managed completely by centralized services.
   Devices may thus be managed by:

   Their owners  This applies in particular to personal consumer
             electronics, phones, cars, domestic appliances, etc, where
             users need to retain trusted ownership of their personal
             belongings.

   A service provider  This applies to managed services, factory
             machinery, fleet vehicles, set-top boxes placed in the
             home, power controllers, etc, where users do not need to
             interact with the devices on a management level, but there
             is an advantage to placing a device as a local presence in
             a smart environment.

5.2.  Tenancy and separation of concerns

   Federation of intent, aka multi-tenancy or diversity, all point to
   the need for Special Interest Groups (SIG) or work groups.
   Workspaces are places that are set aside for a particular purpose,
   that act as umbrellas for special interest groups.  For this, we
   introduce the notion of workspaces.

   Federation can be along a number of lines:

   o  Geographic partitioning (location)

   o  Separation of timescales (fast and slow)

   o  By special interest group (functional)

   See sections below for further information.
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5.3.  Proximity of services to Things

   Although devices will be separate from the agencies processing their
   sensory data, and feeding their guidance systems (policies and
   renderers), it is impractical to transport data over long distances
   between leaf devices and ‘cloud’ services.  The logical outcome is
   therefore a decentralization of the cloud itself to insert converged
   resources close to the data sources themselves.  To scale such a
   distribution, the data services will naturally associate with private
   workspaces, which bound the scope of data generated by Things.

6.  Workspaces

   Workspaces may be thought of as a modernization of the domain
   concept.  Domains are typically linked to directory services (DNS,
   Active Directory, LDAP etc).  The demands of multi-tenant
   environments, where shared resources and separate business-processes
   mix and compete, make these older services less than optimal, though
   not inherently flawed.

   Workspaces are related to the more familiar notion of namespaces in
   information technology; however, namespaces refer only to a priority
   in name-referencing of objects, without underlying resource
   segmentation.  Workspaces MUST support multi-tenant separation of
   concerns within a hosted space.  Today, workspace facilities are
   commonly offered by user logins on computing devices, and quasi-
   workspace-like facilities are offered by virtual private networks,
   and VLANs, etc, in networking.

   For a collaborative Internet of Things, where interests span many
   issues from manufacturer interests, to personal ownership, functional
   responsibility, and security, the technologies for inter-group
   collaboration must be modernized to support logical, authenticated
   segmentation, shared directory information, as well as private
   naming, across converged resources: compute, network, and storage.

   1.  Workspaces may or may not be private, but they must be self-
       contained and separable, in the manner of namespaces.

   2.  Workspaces may or may not be associated with multiple tenants;
       but they are associated with multiple issues.

   3.  They represent a context for human activity, or separation of
       concerns, e.g.  some human activities might be modelled as
       workspaces include: the home, a children’s playground, a squash
       court, an office, a shop, a factory floor, building, district,
       city, emergency channel frequency, hot and cold water pipes,
       dining room, drinks cabinet, etc.
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   Ubiquitous computing (the Internet of Things) is all about how
   networked devices support a wider variety of workspaces.  As the
   density of device resources (compute, storage, sensors, actuators) in
   a workplace or home environment increases, isolation of regions, and
   mapping of resources to responsible or interested parties become more
   difficult problems, both to implement and to understand.

   A detailed description of workspaces will be given separately
   [WORKSPC].

7.  Generic Promise-Oriented Architecture

   A promise-oriented architecture is described implicitly in [DSOM2005]
   and [Bergstra1].  It lays out a generic ‘bottom up’ management
   concept, in which devices each have the responsibility for their own
   state and roles.  It resembles Service Oriented Architecture (SOA)
   superficially, without reference to specific technologies,
   implementations or protocols, and relates to the modern notion of
   microservices [MicroS]

   By formulating architecture from the bottom up, one can easily
   account for multi-contextual concerns, from developer concerns about
   realtime software updates (Continuous Delivery and DevOps etc), to
   operational service scaling, governance, and security, in a way that
   top-down schemes cannot easily achieve.

7.1.  Control

   A promise-oriented architecture communicates (e.g. intent and data)
   by authenticated publish-subscribe (aka "pull") methods, for security
   and predictability.  Thing devices MUST not accept control commands
   imposed upon them by "push" methods, as this exposes a security risk
   and may lead to inconclusive results if there are uncoordinated
   pushes.  In the vernacular usage of "control plane" and "data plane",
   control is asserted through agreed service level policies, and data
   are exchanged within services to carry out functions.

   Every standalone device operates autonomously, with direct policy
   input from its owner, without being managed from an external
   collective.  Similarly, any standalone device can give up that
   autonomy to a trusted manager, offering policy updates as a service.

7.2.  Services

   All devices provide services in varying degrees of sophistication.
   Peripheral devices serve data or actuators to host devices, and
   standalone devices expose functions to one another as software
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   services.  Each server plays a role to be composed into the wider
   system.

   Services may be used both for basic infrastructure support, and for
   driving user applications.  No limitations need be stated about
   applications.  Each fully functional, standalone device is free to
   host any application services.  The result is superficially similar
   to the Service Oriented Architecture [SOA], but without reference to
   a specific technology or methodology.  In modern parlance, the model
   is an example of microservices [MicroS].

   Data services are also best implemented as with pull methods, for
   resource-light scalability and security, but extremely limited
   application devices might initially struggle to support this mode.

7.3.  Promises

   The basic atom of bottom-up policy is a promise.  Each promise
   consists of three things:

   A ‘promiser’  i.e. a resource that will affect a change by keeping
             its promise to the system, e.g. a file, a process, a
             transaction, a measurement, device settings, etc.

   A description body  i.e. the desired-outcome that is achieved when
             the promise is kept.  This SHOULD be implemented in a
             convergent, idempotent manner [CFENGINE], [CONVERGE].

   A context in which the promise applies, based on time, location, type
             and group membership of the devices referred to in the
             model.

7.4.  Agents and their promises

   In a promise architecture, every device is contextually evaluated and
   integrated from the bottom up, according to the promises is keeps,
   e.g. the services it provides, its behaviours and properties, etc.
   Thus every device is modelled by its individual degree of agency to
   act as a proxy for human intent (policy).

   Standalone devices are assumed to be equipped with policy-keeping
   software agents.  Peripheral devices, such as sensors or actuators,
   are assumed to be integral parts of the standalone devices, and hence
   maintainable by the their software agents.

   No system must push changes or data to such agents ad hoc, without a
   documented promise to accept; thereafter, ‘fault tolerance’ demands
   that we reject the word ‘must’ from most descriptions, and replace it
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   with ‘promise of best effort’, as to reply on perfect behaviour leads
   to brittle systems with unrealistic expectations.  For human safety
   in a rapidly expanding sphere of human involvement, the only ‘must’
   is for each agent to be stable and self-correcting, subject to the
   guidance of policy.

7.5.  Standard promises

   The following characteristics describe the cooperation between
   agents:

   1.  Standalone devices promise to bootstrap to some trusted
       bootservice, i.e. register to one or more workspaces.

   2.  Standalone devices promise to refuse direct commands imposed from
       network peers (as mentioned above).

   3.  Policy consists of a collection of promises that apply in
       labelled contexts, each of which describes a unique desired end-
       state.

   4.  Promises are kept in a convergent manner, so that all promise-
       keeping actions lead to the desired end-state, no matter what the
       initial state of the device.

   5.  Agents that live on every device have drivers/renderers and make
       all changes without remote communication.

7.6.  Contextual policy-based adaptation

   Each policy agent promises to maintain a context evaluator that
   computes a set of classifying ‘tags’ or ‘labels’ that characterize
   the state of the agent.  This is updated every time the agent
   verifies policy, as its state may change as a result of repairs.
   These may be used as conditionals for distributed policy-based
   decision-making.

   Contextual labels characterize the device, its environment, and its
   location and time.  The labels can then be used in policy to make
   certain promises apply only in specific contexts.

   When promises, within a policy, are tagged by issue or context,
   agents can select those that apply to its condition, within a larger
   trust relationship implied by policy sourcing.  This simplifies logic
   and promotes stability, as evidenced by experience with software
   agents [CFENGINE].
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7.7.  Workspace maintenance

   The following characteristics describe compatible policy update
   processes:

   1.  Devices subscribe to policy from a trusted source, download
       changes to the policy model when they can, and cache it locally
       so that it is always available.

   2.  Local agents implement cached policy, without any dependence on
       remote communication, and in a fault tolerant fashion.  The
       failure to keep one promise should have minimal impact on the
       ability to keep others.

   3.  By verifying promises continuously, the agent that runs on each
       standalone device will know (or be able to calculate) its
       operational context, and can decide which promises are needed
       from the policy model, and whether or not to keep the promises.
       This scales O(1), i.e. without bottleneck.

   4.  Each promise that documents and intended outcome of the system is
       verified and measured in the process, providing immediate and
       statistical feedback to policy designers about the success of the
       policy in describing a stable desired outcome.

7.8.  Change of policy (system intent)

   Policy change can be initiated from within a workspace, subject to a
   defined quality assurance, or fit-for-purpose review.  Thus change of
   infrastructure may be instigated from the bottom-up also, as a self-
   service request.

   1.  Human operators (owners or managers) decide on a policy model for
       all devices in an organization or policy group.  This may be
       informed by the feedback about the success rate of previously
       kept promises.

   2.  The changes are edited into a model, which consists of a
       collection of promises that should be kept by all resources on
       all devices.

   3.  Changes are checked and tested before publishing.

   4.  Once changes are approved, they are published by a policy service
       for download at the convenience of the standalone device.
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7.9.  Separation of concerns versus timescales

   infrastructure stability is supported by a separation of systems into
   agencies that act in alignment with specific, separable timescales.
   Separation of fast and slow timescales avoids tight coupling and
   associated complex behaviours and should be considered a priority for
   maintaining safe, stable systems for human dependence.

   Systems scale along two broad lines, which a promise-oriented
   architecture helps to resolve:

   Dynamical scaling  Workload timescales concern the quantitative
             activity of the system: how fast requests are handled, how
             quickly service is delivered, and promises are kept.

   Semantic (functional) scaling  Semantics are normally the concern of
             software engineers and system designers.  This facilitates
             functional understanding.  It is a form of human interface
             or knowledge management.  It is sometimes at odds with the
             needs of dynamical scaling.

   Changes to semantics should generally be slow compared to the
   workload related dynamical activity, in order to maintain functional
   stability.  Cooperative design of workspaces may observe this
   principle to foster functional stability and workload efficiency.

7.10.  Device roles per workspace or region

   A number of functional roles are required to maintain a service
   lifecycle in a distributed environment.  Making these roles self-
   managed within each workspace is how one scales the diversity of
   human intent and concerns.  Roles are defined by the kinds of
   promises kept by devices:

   Bootstrap server  To provide trusted need-to-know data and local
             contacts so that clients can begin working within a policy
             domain.

   Bootstrap client  To accept essential directory information on trust
             in order to join a local policy domain.

   Policy server  To deliver current policy from an authorized source,
             appropriate for each client (tenancy terms) from its global
             perspective

   Policy client  To subscribe to the policy, selectively, depending on
             context from its local perspective.
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   Data server  data server (aka ‘‘Thing’’) To offer a catalogue of data
             streams to different tenants This includes sensors,
             actuators.

   Data Client  To subscribe to the policy, selectively, depending on
             context from its local perspective.

   Identity server  Manufacturer User Description service is promised by
             all Things providing a URI that points to a description of
             the device, its serial number characteristics, service
             details etc.

   Identity client  Identity clients promise to make use of data schemas
             and encodings involved in the interpretation of data
             pertaining to the device.

                         "Control data"                            "Application 
data"
 +--------------------------------------------------------------+
 |+------------------+ +------------------+ +----------------- +| +-------------
----+
 || Bootstrap server | | Policy server    | | Directory server || |  Data client
(s) |
 |+------------------+ +------------------+ +----------------- +| +-------------
----+
 +--------|---------------------|----------------------|--------+          |
          |                     |                      |                   |
          +----------------+    |                      |                   |
                           |    |                      |                   |
     +------------------+  |    |                      |                   |
     | FFD / Standalone |  |    |                      |                   |
     |  Bootstrap client|--+    |                      |                   |
     |  Policy client   |-------+                      |                   |
     |  Directory server|------------------------------+                   |
     |  Data client     |--------------------------------------------------+
     +------------------+

        "Thing(s)"

   The roles in each collaborative workspace.  Devices at the bottom of
   the figure typically coordinate through workspace services hosted in
     the "cloud" or any nearby compute resource.  Efficiency suggests
     avoiding long data paths, instead moving computational resources
                     closer to data collection points.

                                 Figure 2
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   Bootstrapping new devices into a workspace represents the beginning
   of a device lifecycle.  Devices must begin with the location of a
   known bootstrap server.  Devices must also promise to advertise their
   nature and capabilities, called ‘identification’.  This may include
   Manufacturer Usage Description (MUD) identifiers [MUD].

7.11.  Connectivity and Network Policy

   So far, much as been said on how the application devices provide
   services via promises, and how system intent can be described and
   orchestrated via policy.  There is also a connectivity (transport)
   fabric for these devices that operates on a set of promises that
   underly the described service framework, i.e. the network.  Each
   network endpoint can be seen as providing its own set of promises
   that are used by other network elements to deliver routing and
   switching capabilities [PromiseNet].

   Intent driven networking is becoming more relevant as Software
   Defined Networking (SDN) deployments proliferate.  In the described
   IoT architecture, service policies that describe the IoT system
   intent can be used as an input to derive partial network policies
   (e.g.  Group Based Policy or some other model-based approach), with
   modulation by other data discovered from bootstrapping, etc.  The
   figure below illustrates the relationship between the service and
   network layer policies for IoT.
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                   +--------------------+
                   | IoT Service Policy |
                   +--------------------+
                             |
     +---------------------+ | +--------------------+
     | Topology / Location | | |   Orchestration    |
     |                     +-+-+
     |   Bootstrap data    | | | Organization policy|
     +---------------------+ | +--------------------+
                             |
                            \|/
                             v
                 +--------------------+
                 |   IoT SDN policy   |
                 +--------------------+

     Service policy could be partially rendered as an SDN baseline for
                    simplifying dependency management.

                                 Figure 3

8.  Characteristics

   The architecture, described in this draft, enables densely clustered
   IT resources to form arbitrary self-service communities that span
   local or wide area networks.  This is decouples a logical patchwork
   of segments on top of a plain end-to-end IP network.  By basing on
   principles of fault-tolerance, including publish-subscribe
   dissemination semantics, this may be scaled, without bottleneck, by
   only the well-known methods currently employed by the World Wide Web.

   IPv6 and successors will play a key role in recapturing network
   simplicity from the many workarounds that have been stacked on top of
   IPv4 and its limitations.  However, currently missing are adequate
   directory services to support a transparent workgroup concept.  The
   present Internet architecture is still geared principally towards a
   crudely shared single-tenant, top-down management model, with
   authority at the top.  Top down methods require the leaf domains to
   be exposed to attack from high up in the network.  However, shrink-
   wrapping workspace boundaries closer around their private resources,
   their management could be simplified, speeded up, and become less
   exposed.
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9.  Summary and Outlook

   The issues discussed and laid out in this draft address key issues of
   scalability, fault tolerance, separation of concerns, and federation
   of intent within networked information systems.  The platform is a
   synthesis of well-known techniques, and is deliberately aligned with
   the needs of agile commercial spaces, as well as large industrial
   distributions, and small domestic needs.  We purposely leave open
   vendor specific concerns, which can easily fit into the described
   architecture, on top of this common set of principles.
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11.  Security Considerations

   With a pervasive contact surface onto both the Internet and the real
   world, security is obvious a major concern.  Experience with
   pervasive frameworks like [CFENGINE], as well as theoretical studies
   of pull-based architectures, suggest that the promise-oriented pull-
   only architecture can reduce the exposure to denial of service
   attacks and data-based overflow attacks, by rejecting all external
   data sent without invitation.  Moreover, the tie-in between service
   and network policy reduces the likelihood of errors in policy across
   the layers.

   Workspaces can play a role too here, as a shrink-wrapping of service
   scope around minimal set of endpoints, thus reducing the logical
   contact surface for data communications, and publishing information
   purely on a need-to-know basis.  We take is for granted that
   workspace data are encrypted with workspace authorized credentials.
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Abstract

   A direct interpretation of the Internet of Things concept refers to
   the usage of standard Internet protocols to allow for human-to-thing
   or thing-to-thing communication.  Although the security needs are
   well-recognized, it is still not fully clear how existing IP-based
   security protocols can be applied to this new setting.  This
   Internet-Draft first provides an overview of security architecture,
   its deployment model and general security needs in the context of the
   lifecycle of a thing.  Then, it presents challenges and requirements
   for the successful roll-out of new applications and usage of standard
   IP-based security protocols when applied to get a functional Internet
   of Things.
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1.  Conventions and Terminology Used in this Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in "Key words for use in
   RFCs to Indicate Requirement Levels" [RFC2119].

2.  Introduction

   The Internet of Things (IoT) denotes the interconnection of highly
   heterogeneous networked entities and networks following a number of
   communication patterns such as: human-to-human (H2H), human-to-thing
   (H2T), thing-to-thing (T2T), or thing-to-things (T2Ts).  The term IoT
   was first coined by the Auto-ID center [AUTO-ID] in 1999.  Since
   then, the development of the underlying concepts has ever increased
   its pace.  Nowadays, the IoT presents a strong focus of research with
   various initiatives working on the (re)design, application, and usage
   of standard Internet technology in the IoT.

   The introduction of IPv6 and web services as fundamental building
   blocks for IoT applications [RFC6568] promises to bring a number of
   basic advantages including: (i) a homogeneous protocol ecosystem that
   allows simple integration with Internet hosts; (ii) simplified
   development of very different appliances; (iii) an unified interface
   for applications, removing the need for application-level proxies.
   Such features greatly simplify the deployment of the envisioned
   scenarios ranging from building automation to production environments
   to personal area networks, in which very different things such as a
   temperature sensor, a luminaire, or an RFID tag might interact with
   each other, with a human carrying a smart phone, or with backend
   services.

   This Internet Draft presents an overview of the security aspects of
   the envisioned all-IP architecture as well as of the lifecycle of an
   IoT device, a thing, within this architecture.  In particular, we
   review the most pressing aspects and functionalities that are
   required for a secure all-IP solution.

   With this, this Internet-Draft pursues several goals.  First, we aim
   at presenting a comprehensive view of the interactions and
   relationships between an IoT application and security.  Second, we
   aim at describing challenges for a secure IoT in the specific context
   of the lifecycle of a resource-constrained device.  The final goal of
   this draft is to discuss the next steps towards a secure IoT.

   The rest of the Internet-Draft is organized as follows.  Section 3
   depicts the lifecycle of a thing and gives general definitions for
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   the main security aspects within the IoT domain.  In Section 4, we
   review existing protocols and work done in the area of security for
   wireless sensor networks.  Section 5 identifies general challenges
   and needs for an IoT security protocol design and discusses existing
   protocols and protocol proposals against the identified requirements.
   Section 6 proposes a number of illustrative security suites
   describing how different applications involve distinct security
   needs.  Section 7 includes final remarks and conclusions.

3.  The Thing Lifecycle and Architectural Considerations

   We consider the installation of a Building Automation and Control
   (BAC) system to illustrate the lifecycle of a thing in a BAC
   scenario.  A BAC system consists of a network of interconnected nodes
   that perform various functions in the domains of HVAC (Heating,
   Ventilating, and Air Conditioning), lighting, safety etc.  The nodes
   vary in functionality and a majority of them represent resource
   constrained devices such as sensors and luminaries.  Some devices may
   also be battery operated or battery-less nodes, demanding for a focus
   on low energy consumption and on sleeping devices.

   In our example, the life of a thing starts when it is manufactured.
   Due to the different application areas (i.e., HVAC, lighting, safety)
   nodes are tailored to a specific task.  It is therefore unlikely that
   one single manufacturer will create all nodes in a building.  Hence,
   interoperability as well as trust bootstrapping between nodes of
   different vendors is important.  The thing is later installed and
   commissioned within a network by an installer during the
   bootstrapping phase.  Specifically, the device identity and the
   secret keys used during normal operation are provided to the device
   during this phase.  Different subcontractors may install different
   IoT devices for different purposes.  Furthermore, the installation
   and bootstrapping procedures may not be a defined event but may
   stretch over an extended period of time.  After being bootstrapped,
   the device and the system of things are in operational mode and run
   the functions of the BAC system.  During this operational phase, the
   device is under the control of the system owner.  For devices with
   lifetimes spanning several years, occasional maintenance cycles may
   be required.  During each maintenance phase, the software on the
   device can be upgraded or applications running on the device can be
   reconfigured.  The maintenance tasks can thereby be performed either
   locally or from a backend system.  Depending on the operational
   changes of the device, it may be required to re-bootstrap at the end
   of a maintenance cycle.  The device continues to loop through the
   operational phase and the eventual maintenance phase until the device
   is decommissioned at the end of its lifecycle.  However, the end-of-
   life of a device does not necessarily mean that it is defective but
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   rather denotes a need to replace and upgrade the network to next-
   generation devices in order to provide additional functionality.
   Therefore the device can be removed and re-commissioned to be used in
   a different network under a different owner by starting the lifecycle
   over again.  Figure 1 shows the generic lifecycle of a thing.  This
   generic lifecycle is also applicable for IoT scenarios other than BAC
   systems.

   At present, BAC systems use legacy building control standards such as
   BACNet [BACNET] or DALI [DALI] with independent networks for each
   subsystem (HVAC, lighting, etc.).  However, this separation of
   functionality adds further complexity and costs to the configuration
   and maintenance of the different networks within the same building.
   As a result, more recent building control networks employ IP-based
   standards allowing seamless control over the various nodes with a
   single management system.  While allowing for easier integration,
   this shift towards IP-based standards results in new requirements
   regarding the implementation of IP security protocols on constrained
   devices and the bootstrapping of security keys for devices across
   multiple manufacturers.

            _Manufactured           _SW update          _Decommissioned
   /                       /                   /
   |   _Installed          |   _ Application   |   _Removed &
   |  /                    |  / reconfigured   |  /  replaced
   |  |   _Commissioned    |  |                |  |
   |  |  /                 |  |                |  |   _Reownership &
   |  |  |    _Application |  |   _Application |  |  / recommissioned
   |  |  |   /   running   |  |  / running     |  |  |
   |  |  |   |             |  |  |             |  |  |             \\
   +##+##+###+#############+##+##+#############+##+##+##############>>>
       \/  \______________/ \/  \_____________/ \___/         time //
       /           /         \          \          \
   Bootstrapping  /      Maintenance &   \     Maintenance &
                 /      re-bootstrapping  \   re-bootstrapping
           Operational                Operational

            The lifecycle of a thing in the Internet of Things.

                                 Figure 1

3.1.  Threat Analysis

   This section explores the security threats and vulnerabilities of a
   network of things in the IoTs.  Security threats have been analyzed
   in related IP protocols including HTTPS [RFC2818], 6LoWPAN [RFC4919],
   ANCP [RFC5713], DNS security threats [RFC3833], SIP [RFC3261], IPv6
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   ND [RFC3756], and PANA [RFC4016].  Nonetheless, the challenge is
   about their impacts on scenarios of the IoTs.  In this section, we
   specifically discuss the threats that could compromise an individual
   thing, or network as a whole, with regard to different phases in the
   thing’s lifecycle.  Note that these set of threats might go beyond
   the scope of Internet protocols but we gather them here for the sake
   of completeness.

   1   Cloning of things: During the manufacturing process of a thing,
       an untrusted manufacturer can easily clone the physical
       characteristics, firmware/software, or security configuration of
       the thing.  Subsequently, such a cloned thing may be sold at a
       cheaper price in the market, and yet be still able to function
       normally, as a genuine thing.  For example, two cloned devices
       can still be associated and work with each other.  In the worst
       case scenario, a cloned device can be used to control a genuine
       device.  One should note here, that an untrusted manufacturer may
       also change functionality of the cloned thing, resulting in
       degraded functionality with respect to the genuine thing
       (thereby, inflicting potential reputational risk to the original
       thing manufacturer).  Moreover, it can implement additional
       functionality with the cloned thing, such as a backdoor.

   2   Malicious substitution of things: During the installation of a
       thing, a genuine thing may be substituted with a similar variant
       of lower quality without being detected.  The main motivation may
       be cost savings, where the installation of lower-quality things
       (e.g., non-certified products) may significantly reduce the
       installation and operational costs.  The installers can
       subsequently resell the genuine things in order to gain further
       financial benefits.  Another motivation may be to inflict
       reputational damage on a competitor’s offerings.

   3   Eavesdropping attack: During the commissioning of a thing into a
       network, it may be susceptible to eavesdropping, especially if
       operational keying materials, security parameters, or
       configuration settings, are exchanged in clear using a wireless
       medium.  After obtaining the keying material, the attacker might
       be able to recover the secret keys established between the
       communicating entities (e.g., H2T, T2Ts, or Thing to the backend
       management system), thereby compromising the authenticity and
       confidentiality of the communication channel, as well as the
       authenticity of commands and other traffic exchanged over this
       communication channel.  When the network is in operation, T2T
       communication may be eavesdropped upon if the communication
       channel is not sufficiently protected or in the event of session
       key compromise due to a long period of usage without key renewal
       or updates.
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   4   Man-in-the-middle attack: The commissioning phase may also be
       vulnerable to man-in-the-middle attacks, e.g., when keying
       material between communicating entities is exchanged in the clear
       and the security of the key establishment protocol depends on the
       tacit assumption that no third party is able to eavesdrop on or
       sit in between the two communicating entities during the
       execution of this protocol.  Additionally, device authentication
       or device authorization may be nontrivial, or may need support of
       a human decision process, since things usually do not have a
       priori knowledge about each other and can, therefore, not always
       be able to differentiate friends and foes via completely
       automated mechanisms.  Thus, even if the key establishment
       protocol provides cryptographic device authentication, this
       knowledge on device identities may still need complementing with
       a human-assisted authorization step (thereby, presenting a weak
       link and offering the potential of man-in-the-middle attacks this
       way).

   5   Firmware Replacement attack: When a thing is in operation or
       maintenance phase, its firmware or software may be updated to
       allow for new functionality or new features.  An attacker may be
       able to exploit such a firmware upgrade by replacing the thing’s
       with malicious software, thereby influencing the operational
       behaviour of the thing.  For example, an attacker could add a
       piece of malicious code to the firmware that will cause it to
       periodically report the energy usage of the lamp to a data
       repository for analysis.

   6   Extraction of security parameters: A thing deployed in the
       ambient environment (such as sensors, actuators, etc.) is usually
       physically unprotected and could easily be captured by an
       attacker.  Such an attacker may then attempt to extract security
       information such as keys (e.g., device’s key, private-key, group
       key) from this thing or try and re-program it to serve his needs.
       If a group key is used and compromised this way, the whole
       network may be compromised as well.  Compromise of a thing’s
       unique key has less security impact, since only the communication
       channels of this particular thing in question are compromised.
       Here, one should caution that compromise of the communication
       channel may also compromise all data communicated over this
       channel.  In particular, one has to be weary of, e.g., compromise
       of group keys communicated over this channel (thus, leading to
       transitive exposure ripple effects).

   7   Routing attack: As highlighted in [ID-Daniel], routing
       information in IoT can be spoofed, altered, or replayed, in order
       to create routing loops, attract/repel network traffic, extend/
       shorten source routes, etc.  Other relevant routing attacks
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       include 1) Sinkhole attack (or blackhole attack), where an
       attacker declares himself to have a high-quality route/path to
       the base station, thus allowing him to do anything to all packets
       passing through it. 2) Selective forwarding, where an attacker
       may selectively forward packets or simply drop a packet. 3)
       Wormhole attack, where an attacker may record packets at one
       location in the network and tunnel them to another location,
       thereby influencing perceived network behaviour and potentially
       distorting statistics, thus greatly impacting the functionality
       of routing. 4) Sybil attack, whereby an attacker presents
       multiple identities to other things in the network.

   8   Privacy threat: The tracking of a thing’s location and usage may
       pose a privacy risk to its users.  An attacker can infer
       information based on the information gathered about individual
       things, thus deducing behavioural patterns of the user of
       interest to him.  Such information can subsequently be sold to
       interested parties for marketing purposes and targeted
       advertizing.

   9   Denial-of-Service attack: Typically, things have tight memory and
       limited computation, they are thus vulnerable to resource
       exhaustion attack.  Attackers can continuously send requests to
       be processed by specific things so as to deplete their resources.
       This is especially dangerous in the IoTs since an attacker might
       be located in the backend and target resource-constrained devices
       in an LLN.  Additionally, DoS attack can be launched by
       physically jamming the communication channel, thus breaking down
       the T2T communication channel.  Network availability can also be
       disrupted by flooding the network with a large number of packets.

   The following table summarizes the security threats we identified
   above and the potential point of vulnerabilities at different layers
   of the communication stack.  We also include related RFCs that
   include a threat model that might apply to the IoTs.
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              +------------------+------------------+------------------+
              | Manufacturing    | Installation/    | Operation        |
              |                  | Commissioning    |                  |
 +------------+------------------+------------------+------------------+
 |Thing’s     | Device Cloning   |Substitution      |Privacy threat    |
 |Model       |                  |                  |Extraction of     |
 |            |                  |                  |security params   |
 +------------+------------------+------------------+------------------+
 |Application |                  |RFC2818           |RFC2818, Firmware |
 |Layer       |                  |RFC4016           |replacement       |
 +------------+------------------+------------------+------------------+
 |Transport   |                  |                  |Eavesdropping     |
 |Layer       |                  |Eavesdropping &   |Man-in-the-middle |
 +------------+------------------|Man-in-the-middle |------------------+
 |Network     |                  |attack            |RFC4919,DoS attack|
 |Layer       |                  |RFC4919, RFC5713  |Routing attack    |
 |            |                  |RFC3833, RFC3756  |RFC3833           |
 +------------+------------------+------------------+------------------+
 |Physical    |                  |                  |DoS attack        |
 |Layer       |                  |                  |                  |
 +-------------------------------+------------------+------------------+

                       The security threat analysis

                                 Figure 2

3.2.  Security Aspects

   The term security subsumes a wide range of different concepts.  In
   the first place, it refers to the basic provision of security
   services including confidentiality, authentication, integrity,
   authorization, non-repudiation, and availability, and some augmented
   services, such as duplicate detection and detection of stale packets
   (timeliness).  These security services can be implemented by a
   combination of cryptographic mechanisms, such as block ciphers, hash
   functions, or signature algorithms, and non-cryptographic mechanisms,
   which implement authorization and other security policy enforcement
   aspects.  For each of the cryptographic mechanisms, a solid key
   management infrastructure is fundamental to handling the required
   cryptographic keys, whereas for security policy enforcement, one
   needs to properly codify authorizations as a function of device roles
   and a security policy engine that implements these authorization
   checks and that can implement changes hereto throughout the system’s
   lifecycle.

   In the context of the IoT, however, the security must not only focus
   on the required security services, but also how these are realized in
   the overall system and how the security functionalities are executed.
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   To this end, we use the following terminology to analyze and classify
   security aspects in the IoT:

   1   The security architecture refers to the system elements involved
       in the management of the security relationships between things
       and the way these security interactions are handled (e.g.,
       centralized or distributed) during the lifecycle of a thing.

   2   The security model of a node describes how the security
       parameters, processes, and applications are managed in a thing.
       This includes aspects such as process separation, secure storage
       of keying materials, etc.

   3   Security bootstrapping denotes the process by which a thing
       securely joins the IoT at a given location and point in time.
       Bootstrapping includes the authentication and authorization of a
       device as well as the transfer of security parameters allowing
       for its trusted operation in a given network.

   4   Network security describes the mechanisms applied within a
       network to ensure trusted operation of the IoT.  Specifically, it
       prevents attackers from endangering or modifying the expected
       operation of networked things.  Network security can include a
       number of mechanisms ranging from secure routing to data link
       layer and network layer security.

   5   Application security guarantees that only trusted instances of an
       application running in the IoT can communicate with each other,
       while illegitimate instances cannot interfere.
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              ..........................
              :           +-----------+:
              :       *+*>|Application|*****
              :       *|  +-----------+:   *
              :       *|  +-----------+:   *
              :       *|->| Transport |:   *
              :    * _*|  +-----------+:   *
              :    *|  |  +-----------+:   *
              :    *|  |->|  Network  |:   *
              :    *|  |  +-----------+:   *
              :    *|  |  +-----------+:   *    *** Bootstrapping
              :    *|  +->|     L2    |:   *    ˜˜˜ Application Security
              :    *|     +-----------+:   *
              :+--------+              :   *
              :|Security| Configuration:   *
              :|Service |   Entity     :   *
              :+--------+              :   *
              :........................:   *
                                           *
  .........................                *  .........................
  :+--------+             :                *  :             +--------+:
  :|Security|   Node B    :                *  :   Node A    |Security|:
  :|Service |             :                *  :             |Service |:
  :+--------+             :                *  :             +--------+:
  :    |     +-----------+:                *  :+-----------+     |*   :
  :    |  +->|Application|:                ****|Application|<*+* |*   :
  :    |  |  +-----------+:                   :+-----------+  |* |*   :
  :    |  |  +-----------+:                   :+-----------+  |* |*   :
  :    |  |->| Transport |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜| Transport |<-|* |*   :
  :    |__|  +-----------+: ................. :+-----------+  |*_|*   :
  :       |  +-----------+: : +-----------+ : :+-----------+  | *     :
  :       |->|  Network  |: : |  Network  | : :|  Network  |<-|       :
  :       |  +-----------+: : +-----------+ : :+-----------+  |       :
  :       |  +-----------+: : +-----------+ : :+-----------+  |       :
  :       +->|     L2    |: : |     L2    | : :|     L2    |<-+       :
  :          +-----------+: : +-----------+ : :+-----------+          :
  :.......................: :...............: :.......................:
                     Overview of Security Mechanisms.

                                 Figure 3

   We now discuss an exemplary security architecture relying on a
   configuration entity for the management of the system with regard to
   the introduced security aspects (see Figure 2).  Inspired by the
   security framework for routing over low power and lossy network
   [ID-Tsao], we show an example of security model and illustrates how
   different security concepts and the lifecycle phases map to the
   Internet communication stack.  Assume a centralized architecture in
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   which a configuration entity stores and manages the identities of the
   things associated with the system along with their cryptographic
   keys.  During the bootstrapping phase, each thing executes the
   bootstrapping protocol with the configuration entity, thus obtaining
   the required device identities and the keying material.  The security
   service on a thing in turn stores the received keying material for
   the network layer and application security mechanisms for secure
   communication.  Things can then securely communicate with each other
   during their operational phase by means of the employed network and
   application security mechanisms.

4.  State of the Art

   Nowadays, there exists a multitude of control protocols for the IoT.
   For BAC systems, the ZigBee standard [ZB], BACNet [BACNET], or DALI
   [DALI] play key roles.  Recent trends, however, focus on an all-IP
   approach for system control.

   In this setting, a number of IETF working groups are designing new
   protocols for resource constrained networks of smart things.  The
   6LoWPAN working group [WG-6LoWPAN] concentrates on the definition of
   methods and protocols for the efficient transmission and adaptation
   of IPv6 packets over IEEE 802.15.4 networks [RFC4944].  The CoRE
   working group [WG-CoRE] provides a framework for resource-oriented
   applications intended to run on constrained IP network (6LoWPAN). One
   of its main tasks is the definition of a lightweight version of the
   HTTP protocol, the Constrained Application Protocol (CoAP) [ID-CoAP],
   that runs over UDP and enables efficient application-level
   communication for things.

4.1.  IP-based Security Solutions

   In the context of the IP-based IoT solutions, consideration of TCP/IP
   security protocols is important as these protocols are designed to
   fit the IP network ideology and technology.  While a wide range of
   specialized as well as general-purpose key exchange and security
   solutions exist for the Internet domain, we discuss a number of
   protocols and procedures that have been recently discussed in the
   context of the above working groups.  The considered protocols are
   IKEv2/IPsec [RFC4306], TLS/SSL [RFC5246], DTLS [RFC5238], HIP
   [RFC5201][ID-Moskowitz], PANA [RFC5191], and EAP [RFC3748] in this
   Internet-Draft.  Application layer solutions such as SSH [RFC4251]
   also exist, however, these are currently not considered.  Figure 3
   depicts the relationships between the discussed protocols in the
   context of the security terminology introduced in Section 3.1.

Garcia-Morchon, et al.   Expires March 15, 2014                [Page 13]



Internet-Draft    Security Considerations for the IoT September 11, 2013

             ..........................
             :           +-----------+:
             :       *+*>|Application|*****     *** Bootstrapping
             :       *|  +-----------+:   *     ### Application Security
             :       *|  +-----------+:   *     === Network security
             :       *|->| Transport |:   *
             :    * _*|  +-----------+:   *
             :    *|  |  +-----------+:   *
             :    *|  |->|  Network  |:   *--> -PANA/EAP
             :    *|  |  +-----------+:   *    -HIP
             :    *|  |  +-----------+:   *
             :    *|  +->|     L2    |:   *     ## DTLS
             :    *|     +-----------+:   *     ##
             :+--------+              :   *
             :|Security| Configuration:   *     [] HIP,IKEv2
             :|Service |   Entity     :   *     [] ESP/AH
             :+--------+              :   *
             :........................:   *
                                          *
 .........................                *    .........................
 :+--------+             :                *    :             +--------+:
 :|Security|   Node B    :                *    :   Node A    |Security|:
 :|Service |             :                *    :             |Service |:
 :+--------+             :     Secure     *    :             +--------+:
 :    |     +-----------+:     routing    *    :+-----------+     |*   :
 :    |  +->|Application|:    framework   ******|Application|<*+* |*   :
 :    |  |  +----##-----+:        |            :+----##-----+  |* |*   :
 :    |  |  +----##-----+:        |            :+----##-----+  |* |*   :
 :    |  |->| Transport |#########|#############| Transport |<-|* |*   :
 :    |__|  +----[]-----+:  ......|..........  :+----[]-----+  |*_|*   :
 :       |  +====[]=====+=====+===========+=====+====[]=====+  | *     :
 :       |->|| Network  |:  : |  Network  | :  :|  Network ||<-|       :
 :       |  +|----------+:  : +-----------+ :  :+----------|+  |       :
 :       |  +|----------+:  : +-----------+ :  :+----------|+  |       :
 :       +->||    L2    |:  : |     L2    | :  :|     L2   ||<-+       :
 :          +===========+=====+===========+=====+===========+          :
 :.......................:  :...............:  :.......................:
            Relationships between IP-based security protocols.

                                 Figure 4

   The Internet Key Exchange (IKEv2)/IPsec and the Host Identity
   protocol (HIP) reside at or above the network layer in the OSI model.
   Both protocols are able to perform an authenticated key exchange and
   set up the IPsec transforms for secure payload delivery.  Currently,
   there are also ongoing efforts to create a HIP variant coined Diet
   HIP [ID-HIP] that takes lossy low-power networks into account at the
   authentication and key exchange level.
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   Transport Layer Security (TLS) and its datagram-oriented variant DTLS
   secure transport-layer connections.  TLS provides security for TCP
   and requires a reliable transport, while DTLS secures and uses
   datagram-oriented protocols such as UDP.  Both protocols are
   intentionally kept similar and share the same ideology and cipher
   suites.

   The Extensible Authentication Protocol (EAP) is an authentication
   framework supporting multiple authentication methods.  EAP runs
   directly over the data link layer and, thus, does not require the
   deployment of IP.  It supports duplicate detection and
   retransmission, but does not allow for packet fragmentation.  The
   Protocol for Carrying Authentication for Network Access (PANA) is a
   network-layer transport for EAP that enables network access
   authentication between clients and the network infrastructure.  In
   EAP terms, PANA is a UDP-based EAP lower layer that runs between the
   EAP peer and the EAP authenticator.

4.2.  Wireless Sensor Network Security and Beyond

   A variety of key agreement and privacy protection protocols that are
   tailored to IoT scenarios have been introduced in the literature. For
   instance, random key pre-distribution schemes [PROC-Chan] or more
   centralized solutions, such as SPINS [JOURNAL-Perrig], have been
   proposed for key establishment in wireless sensor networks.  The
   ZigBee standard [ZB] for sensor networks defines a security
   architecture based on an online trust center that is in charge of
   handling the security relationships within a ZigBee network. Personal
   privacy in ubiquitous computing has been studied extensively, e.g.,
   in [THESIS-Langheinrich].  Due to resource constraints and the
   specialization to meet specific requirements, these solutions often
   implement a collapsed cross layer optimized communication stack
   (e.g., without task-specific network layers and layered packet
   headers).  Consequently, they cannot directly be adapted to the
   requirements of the Internet due to the nature of their design.

   Despite important steps done by, e.g., Gupta et al.  [PROC-Gupta], to
   show the feasibility of an end-to-end standard security architecture
   for the embedded Internet, the Internet and the IoT domain still do
   not fit together easily.  This is mainly due to the fact that IoT
   security solutions are often tailored to the specific scenario
   requirements without considering interoperability with Internet
   protocols.  On the other hand, the direct use of existing Internet
   security protocols in the IoT might lead to inefficient or insecure
   operation as we show in our discussion below.
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5.  Challenges for a Secure Internet of Things

   In this section, we take a closer look at the various security
   challenges in the operational and technical features of the IoT and
   then discuss how existing Internet security protocols cope with these
   technical and conceptual challenges through the lifecycle of a thing.
   Table 1 summarizes which requirements need to be met in the lifecycle
   phases as well as the considered protocols.  The structure of this
   section follows the structure of the table.  This discussion should
   neither be understood as a comprehensive evaluation of all protocols,
   nor can it cover all possible aspects of IoT security.  Yet, it aims
   at showing concrete limitations of existing Internet security
   protocols in some areas rather than giving an abstract discussion
   about general properties of the protocols.  In this regard, the
   discussion handles issues that are most important from the authors’
   perspectives.

5.1.  Constraints and Heterogeneous Communication

   Coupling resource constrained networks and the powerful Internet is a
   challenge because the resulting heterogeneity of both networks
   complicates protocol design and system operation.  In the following
   we briefly discuss the resource constraints of IoT devices and the
   consequences for the use of Internet Protocols in the IoT domain.

5.1.1.  Tight Resource Constraints

   The IoT is a resource-constrained network that relies on lossy and
   low-bandwidth channels for communication between small nodes,
   regarding CPU, memory, and energy budget.  These characteristics
   directly impact the threats to and the design of security protocols
   for the IoT domain.  First, the use of small packets, e.g., IEEE
   802.15.4 supports 127-byte sized packets at the physical layer, may
   result in fragmentation of larger packets of security protocols. This
   may open new attack vectors for state exhaustion DoS attacks, which
   is especially tragic, e.g., if the fragmentation is caused by large
   key exchange messages of security protocols.  Moreover, packet
   fragmentation commonly downgrades the overall system performance due
   to fragment losses and the need for retransmissions.  For instance,
   fate-sharing packet flight as implemented by DTLS might aggravate the
   resulting performance loss.
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              +--------------------------------------------------------+
              | Bootstrapping phase        | Operational Phase         |
 +------------+--------------------------------------------------------+
 |            |Incremental deployment      |End-to-End security        |
 |Requirements|Identity and key management |Mobility support           |
 |            |Privacy-aware identification|Group membership management|
 |            |Group creation              |                           |
 +------------+--------------------------------------------------------+
 |            |IKEv2                       |IKEv2/MOBIKE               |
 |Protocols   |TLS/DTLS                    |TLS/DTLS                   |
 |            |HIP/Diet-HIP                |HIP/Diet-HIP               |
 |            |PANA/EAP                    |                           |
 +---------------------------------------------------------------------+

            Relationships between IP-based security protocols.

                                 Figure 5

   The size and number of messages should be minimized to reduce memory
   requirements and optimize bandwidth usage.  In this context, layered
   approaches involving a number of protocols might lead to worse
   performance in resource-constrained devices since they combine the
   headers of the different protocols.  In some settings, protocol
   negotiation can increase the number of exchanged messages.  To
   improve performance during basic procedures such as, e.g.,
   bootstrapping, it might be a good strategy to perform those
   procedures at a lower layer.

   Small CPUs and scarce memory limit the usage of resource-expensive
   cryptoprimitives such as public-key cryptography as used in most
   Internet security standards.  This is especially true, if the basic
   cryptoblocks need to be frequently used or the underlying application
   demands a low delay.

   Independently from the development in the IoT domain, all discussed
   security protocols show efforts to reduce the cryptographic cost of
   the required public-key-based key exchanges and signatures with
   ECC[RFC5246][RFC5903][ID-Moskowitz][ID-HIP].  Moreover, all protocols
   have been revised in the last years to enable crypto agility, making
   cryptographic primitives interchangeable.  Diet HIP takes the
   reduction of the cryptographic load one step further by focusing on
   cryptographic primitives that are to be expected to be enabled in
   hardware on IEEE 802.15.4 compliant devices.  For example, Diet HIP
   does not require cryptographic hash functions but uses a CMAC [NIST]
   based mechanism, which can directly use the AES hardware available in
   standard sensor platforms.  However, these improvements are only a
   first step in reducing the computation and communication overhead of
   Internet protocols.  The question remains if other approaches can be
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   applied to leverage key agreement in these heavily resource-
   constrained environments.

   A further fundamental need refers to the limited energy budget
   available to IoT nodes.  Careful protocol (re)design and usage is
   required to reduce not only the energy consumption during normal
   operation, but also under DoS attacks.  Since the energy consumption
   of IoT devices differs from other device classes, judgments on the
   energy consumption of a particular protocol cannot be made without
   tailor-made IoT implementations.

5.1.2.  Denial-of-Service Resistance

   The tight memory and processing constraints of things naturally
   alleviate resource exhaustion attacks.  Especially in unattended T2T
   communication, such attacks are difficult to notice before the
   service becomes unavailable (e.g., because of battery or memory
   exhaustion).  As a DoS countermeasure, DTLS, IKEv2, HIP, and Diet HIP
   implement return routability checks based on a cookie mechanism to
   delay the establishment of state at the responding host until the
   address of the initiating host is verified.  The effectiveness of
   these defenses strongly depends on the routing topology of the
   network.  Return routability checks are particularly effective if
   hosts cannot receive packets addressed to other hosts and if IP
   addresses present meaningful information as is the case in today’s
   Internet.  However, they are less effective in broadcast media or
   when attackers can influence the routing and addressing of hosts
   (e.g., if hosts contribute to the routing infrastructure in ad-hoc
   networks and meshes).

   In addition, HIP implements a puzzle mechanism that can force the
   initiator of a connection (and potential attacker) to solve
   cryptographic puzzles with variable difficulties.  Puzzle-based
   defense mechanisms are less dependent on the network topology but
   perform poorly if CPU resources in the network are heterogeneous
   (e.g., if a powerful Internet host attacks a thing).  Increasing the
   puzzle difficulty under attack conditions can easily lead to
   situations, where a powerful attacker can still solve the puzzle
   while weak IoT clients cannot and are excluded from communicating
   with the victim.  Still, puzzle-based approaches are a viable option
   for sheltering IoT devices against unintended overload caused by
   misconfigured or malfunctioning things.

5.1.3.  Protocol Translation and End-to-End Security

   Even though 6LoWPAN and CoAP progress towards reducing the gap
   between Internet protocols and the IoT, they do not target protocol
   specifications that are identical to their Internet pendants due to
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   performance reasons.  Hence, more or less subtle differences between
   IoT protocols and Internet protocols will remain.  While these
   differences can easily be bridged with protocol translators at
   gateways, they become major obstacles if end-to-end security measures
   between IoT devices and Internet hosts are used.

   Cryptographic payload processing applies message authentication codes
   or encryption to packets.  These protection methods render the
   protected parts of the packets immutable as rewriting is either not
   possible because a) the relevant information is encrypted and
   inaccessible to the gateway or b) rewriting integrity-protected parts
   of the packet would invalidate the end-to-end integrity protection.

   There are essentially four solutions for this problem:

   1   Sharing symmetric keys with gateways enables gateways to
       transform (e.g., de-compress, convert, etc.) packets and re-apply
       the security measures after transformation.  This method abandons
       end-to-end security and is only applicable to simple scenarios
       with a rudimentary security model.

   2   Reusing the Internet wire format in the IoT makes conversion
       between IoT and Internet protocols unnecessary.  However, it
       leads to poor performance because IoT specific optimizations
       (e.g., stateful or stateless compression) are not possible.

   3   Selectively protecting vital and immutable packet parts with a
       MAC or with encryption requires a careful balance between
       performance and security.  Otherwise, this approach will either
       result in poor performance (protect as much as possible) or poor
       security (compress and transform as much as possible).

   4   Message authentication codes that sustain transformation can be
       realized by considering the order of transformation and
       protection (e.g., by creating a signature before compression so
       that the gateway can decompress the packet without recalculating
       the signature).  This enables IoT specific optimizations but is
       more complex and may require application-specific transformations
       before security is applied.  Moreover, it cannot be used with
       encrypted data because the lack of cleartext prevents gateways
       from transforming packets.

   To the best of our knowledge, none of the mentioned security
   protocols provides a fully customizable solution in this problem
   space.  In fact, they usually offer an end-to-end secured connection.
   An exception is the usage layered approach as might be PANA and EAP.
   In such a case, this configuration (i) allows for a number of
   configurations regarding the location of, e.g., the EAP authenticator
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   and authentication server and (ii) the layered architecture might
   allow for authentication at different places.  The drawback of this
   approach, however, lies in its high signaling traffic volume compared
   to other approaches.  Hence, future work is required to ensure
   security, performance and interoperability between IoT and the
   Internet.

5.2.  Bootstrapping of a Security Domain

   Creating a security domain from a set of previously unassociated IoT
   devices is a key operation in the lifecycle of a thing and in the IoT
   network.  In this section, we discuss general forms of network
   operation, how to communicate a thing’s identity and the privacy
   implications arising from the communication of this identity.

5.2.1.  Distributed vs. Centralized Architecture and Operation

   Most things might be required to support both centralized and
   distributed operation patterns.  Distributed thing-to-thing
   communication might happen on demand, for instance, when two things
   form an ad-hoc security domain to cooperatively fulfill a certain
   task.  Likewise, nodes may communicate with a backend service located
   in the Internet without a central security manager.  The same nodes
   may also be part of a centralized architecture with a dedicated node
   being responsible for the security management for group communication
   between things in the IoT domain.  In today’s IoT, most common
   architectures are fully centralized in the sense that all the
   security relationships within a segment are handled by a central
   party.  In the ZigBee standard, this entity is the trust center.
   Current proposals for 6LoWPAN/CoRE identify the 6LoWPAN Border Router
   (6LBR) as such a device.

   A centralized architecture allows for central management of devices
   and keying materials as well as for the backup of cryptographic keys.
   However, it also imposes some limitations.  First, it represents a
   single point of failure.  This is a major drawback, e.g., when key
   agreement between two devices requires online connectivity to the
   central node.  Second, it limits the possibility to create ad-hoc
   security domains without dedicated security infrastructure.  Third,
   it codifies a more static world view, where device roles are cast in
   stone, rather than a more dynamic world view that recognizes that
   networks and devices, and their roles and ownership, may change over
   time (e.g., due to device replacement and hand-over of control).

   Decentralized architectures, on the other hand, allow creating ad-hoc
   security domains that might not require a single online management
   entity and are operative in a much more stand-alone manner.  The ad-
   hoc security domains can be added to a centralized architecture at a
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   later point in time, allowing for central or remote management.

5.2.2.  Bootstrapping a thing’s identity and keying materials

   Bootstrapping refers to the process by which a device is associated
   to another one, to a network, or to a system.  The way it is
   performed depends upon the architecture: centralized or distributed.
   It is important to realize that bootstrapping may involve different
   types of information, ranging from network parameters and information
   on device capabilities and their presumed functionality, to
   management information related to, e.g., resource scheduling and
   trust initialization/management.  Furthermore, bootstrapping may
   occur in stages during the lifecycle of a device and may include
   provisioning steps already conducted during device manufacturing
   (e.g., imprinting a unique identifier or a root certificate into a
   device during chip testing), further steps during module
   manufacturing (e.g., setting of application-based configurations,
   such as temperature read-out frequencies and push-thresholds), during
   personalization (e.g., fine-tuned settings depending on installation
   context), during hand-over (e.g., transfer of ownership from supplier
   to user), and, e.g., in preparation of operation in a specific
   network.  In what follows, we focus on bootstrapping of security-
   related information, since bootstrapping of all other information can
   be conducted as ordinary secured communications, once a secure and
   authentic channel between devices has been put in place.

   In a distributed approach, a Diffie-Hellman type of handshake can
   allow two peers to agree on a common secret.  In general, IKEv2, HIP,
   TLS, DTLS, can perform key exchanges and the setup of security
   associations without online connections to a trust center.  If we do
   not consider the resource limitations of things, certificates and
   certificate chains can be employed to securely communicate
   capabilities in such a decentralized scenario.  HIP and Diet HIP do
   not directly use certificates for identifying a host, however
   certificate handling capabilities exist for HIP and the same protocol
   logic could be used for Diet HIP.  It is noteworthy, that Diet HIP
   does not require a host to implement cryptographic hashes.  Hence,
   some lightweight implementations of Diet HIP might not be able to
   verify certificates unless a hash function is implemented by the
   host.

   In a centralized architecture, preconfigured keys or certificates
   held by a thing can be used for the distribution of operational keys
   in a given security domain.  A current proposal [ID-OFlynn] refers to
   the use of PANA for the transport of EAP messages between the PANA
   client (the joining thing) and the PANA Authentication Agent (PAA),
   the 6LBR.  EAP is thereby used to authenticate the identity of the
   joining thing.  After the successful authentication, the PANA PAA
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   provides the joining thing with fresh network and security
   parameters.

   IKEv2, HIP, TLS, and DTLS could be applied as well for the transfer
   of configuration parameters in a centralized scenario.  While HIP’s
   cryptographic secret identifies the thing, the other protocols do not
   represent primary identifiers but are used instead to bind other
   identifiers such as the operation keys to the public-key identities.

   In addition to the protocols, operational aspects during
   bootstrapping are of key importance as well.  Many other standard
   Internet protocols assume that the identity of a host is either
   available by using secondary services like certificate authorities or
   secure name resolution (e.g., DNSsec) or can be provided over a side
   channel (entering passwords via screen and keyboard).  While these
   assumptions may hold in traditional networks, intermittent
   connectivity, localized communication, and lack of input methods
   complicate the situation for the IoT.

   The order in which the things within a security domain are
   bootstrapped plays an important role as well.  In [RFC6345], the PANA
   relay element is introduced, relaying PANA messages between a PaC
   (joining thing) and PAA of a segment [ID-OFlynn].  This approach
   forces commissioning based on distance to PAA, i.e., things can only
   be bootstrapped hop-by-hop starting from those closer to the PAA, all
   things that are 1-hop away are bootstrapped first, followed by those
   that are 2-hop away, and so on.  Such an approach might impose
   important limitations on actual use cases in which, e.g., an
   installer without technical background has to roll-out the system.

5.2.3.  Privacy-aware Identification

   During the last years, the introduction of RFID tags has raised
   privacy concerns because anyone might access and track tags.  As the
   IoT involves not only passive devices, but also includes active and
   sensing devices, the IoT might irrupt even deeper in people’s privacy
   spheres.  Thus, IoT protocols should be designed to avoid these
   privacy threats during bootstrapping and operation where deemed
   necessary.  In H2T and T2T interactions, privacy-aware identifiers
   might be used to prevent unauthorized user tracking.  Similarly,
   authentication can be used to prove membership of a group without
   revealing unnecessary individual information.

   TLS and DTLS provide the option of only authenticating the responding
   host.  This way, the initiating host can stay anonymous.  If
   authentication for the initiating host is required as well, either
   public-key certificates or authentication via the established
   encrypted payload channel can be employed.  Such a setup allows to
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   only reveal the responder’s identity to possible eavesdroppers.

   HIP and IKEv2 use public-key identities to authenticate the initiator
   of a connection.  These identities could easily be traced if no
   additional protection were in place.  IKEv2 transmits this
   information in an encrypted packet.  Likewise, HIP provides the
   option to keep the identity of the initiator secret from
   eavesdroppers by encrypting it with the symmetric key generated
   during the handshake.  However, Diet HIP cannot provide a similar
   feature because the identity of the initiator simultaneously serves
   as static Diffie-Hellman key.  Note that all discussed solutions
   could use anonymous public-key identities that change for each
   communication.  However, such identity cycling may require a
   considerable computational effort for generating new asymmetric key
   pairs.  In addition to the built-in privacy features of the here
   discussed protocols, a large body of anonymity research for key
   exchange protocols exists.  However, the comparison of these
   protocols and protocol extensions is out of scope for this work.

5.3.  Operation

   After the bootstrapping phase, the system enters the operational
   phase.  During the operational phase, things can relate to the state
   information created during the bootstrapping phase in order to
   exchange information securely and in an authenticated fashion.  In
   this section, we discuss aspects of communication patterns and
   network dynamics during this phase.

5.3.1.  End-to-End Security

   Providing end-to-end security is of great importance to address and
   secure individual T2T or H2T communication within one IoT domain.
   Moreover, end-to-end security associations are an important measure
   to bridge the gap between the IoT and the Internet.  IKEv2 and HIP,
   TLS and DTLS provide end-to-end security services including peer
   entity authentication, end-to-end encryption and integrity protection
   above the network layer and the transport layer respectively.  Once
   bootstrapped, these functions can be carried out without online
   connections to third parties, making the protocols applicable for
   decentralized use in the IoT.  However, protocol translation by
   intermediary nodes may invalidate end-to-end protection measures (see
   Section 5.1).

5.3.2.  Group Membership and Security

   In addition to end-to-end security, group key negotiation is an
   important security service for the T2Ts and Ts2T communication
   patterns in the IoT as efficient local broadcast and multicast relies
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   on symmetric group keys.

   All discussed protocols only cover unicast communication and
   therefore do not focus on group-key establishment.  However, the
   Diffie-Hellman keys that are used in IKEv2 and HIP could be used for
   group Diffie-Hellman key-negotiations.  Conceptually, solutions that
   provide secure group communication at the network layer (IPsec/IKEv2,
   HIP/Diet HIP) may have an advantage regarding the cryptographic
   overhead compared to application-focused security solutions (TLS/
   DTLS).  This is due to the fact that application-focused solutions
   require cryptographic operations per group application, whereas
   network layer approaches may allow to share secure group associations
   between multiple applications (e.g., for neighbor discovery and
   routing or service discovery).  Hence, implementing shared features
   lower in the communication stack can avoid redundant security
   measures.

   A number of group key solutions have been developed in the context of
   the IETF working group MSEC in the context of the MIKEY architecture
   [WG-MSEC][RFC4738].  These are specifically tailored for multicast
   and group broadcast applications in the Internet and should also be
   considered as candidate solutions for group key agreement in the IoT.
   The MIKEY architecture describes a coordinator entity that
   disseminates symmetric keys over pair-wise end-to-end secured
   channels.  However, such a centralized approach may not be applicable
   in a distributed environment, where the choice of one or several
   coordinators and the management of the group key is not trivial.

5.3.3.  Mobility and IP Network Dynamics

   It is expected that many things (e.g., wearable sensors, and user
   devices) will be mobile in the sense that they are attached to
   different networks during the lifetime of a security association.
   Built-in mobility signaling can greatly reduce the overhead of the
   cryptographic protocols because unnecessary and costly re-
   establishments of the session (possibly including handshake and key
   agreement) can be avoided.  IKEv2 supports host mobility with the
   MOBIKE [RFC4555][RFC4621] extension.  MOBIKE refrains from applying
   heavyweight cryptographic extensions for mobility.  However, MOBIKE
   mandates the use of IPsec tunnel mode which requires to transmit an
   additional IP header in each packet.  This additional overhead could
   be alleviated by using header compression methods or the Bound End-
   to-End Tunnel (BEET) mode [ID-Nikander], a hybrid of tunnel and
   transport mode with smaller packet headers.

   HIP offers a simple yet effective mobility management by allowing
   hosts to signal changes to their associations [RFC5206].  However,
   slight adjustments might be necessary to reduce the cryptographic
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   costs, for example, by making the public-key signatures in the
   mobility messages optional.  Diet HIP does not define mobility yet
   but it is sufficiently similar to HIP to employ the same mechanisms.
   TLS and DTLS do not have standards for mobility support, however,
   work on DTLS mobility exists in the form of an Internet draft
   [ID-Williams].  The specific need for IP-layer mobility mainly
   depends on the scenario in which nodes operate.  In many cases,
   mobility support by means of a mobile gateway may suffice to enable
   mobile IoT networks, such as body sensor networks.  However, if
   individual things change their point of network attachment while
   communicating, mobility support may gain importance.

6.  Security Suites for the IP-based Internet of Things

   Different applications have different security requirements and needs
   and, depending on various factors, such as device capability,
   availability of network infrastructure, security services needed,
   usage, etc., the required security protection may vary from "no
   security" to "full-blown security".  For example, applications may
   have different needs regarding authentication and confidentiality.
   While some application might not require any authentication at all,
   others might require strong end-to-end authentication.  In terms of
   secure bootstrapping of keys, some applications might assume the
   existence and online availability of a central key-distribution-
   center (KDC) within the 6LoWPAN network to distribute and manage
   keys; while other applications cannot rely on such a central party or
   their availability.

   Thus, it is essential to define security profiles to better tailor
   security solutions for different applications with the same
   characteristics and requirements.  This provides a means of grouping
   applications into profiles and then defines the minimal required
   security primitives to enable and support the security needs of the
   profile.  The security elements in a security profile can be
   classified according to Section 3.1, namely:

   1   Security architecture,

   2   Security model,

   3   Security bootstrapping,

   4   Network security, and
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   5   Application security.

   In order to (i) guide the design process by identifying open gaps;
   (ii) allow for later interoperability; and (iii) prevent possible
   security misconfigurations, this section defines a number of generic
   security profiles with different security needs.  Each security
   profile is identified by:

   1   a short description,

   2   an exemplary application that might use/require such a security
       policy,

   3   the security requirements for each of the above security aspects
       according to our classification in Section 3.1.

   These security profiles can serve to guide the standardization
   process, since these explicitly describe the basic functionalities
   and protocols required to get different use cases up and running.  It
   can allow for later interoperability since different manufacturers
   can describe the implemented security profile in their products.
   Finally, the security profiles can avoid possible security
   misconfigurations, since each security profile can be bound to a
   different application area so that it can be clearly defined which
   security protocols and approaches can be applied where and under
   which circumstances.

   Note that each of these security profiles aim at summarizing the
   required security requirements for different applications and at
   providing a set of initial security features.  In other words, these
   profiles reflect the need for different security configurations,
   depending on the threat and trust models of the underlying
   applications.  In this sense, this section does not provide an
   overview of existing protocols as done in previous sections of the
   Internet Draft, but it rather explicitly describes what should be in
   place to ensure secure system operation.  Observe also that this list
   of security profiles is not exhaustive and that it should be
   considered just as an example not related to existing legal
   regulations for any existing application.  These security profiles
   are summarized in the table below:
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             +---------------------------------------------------------+
             | Application     |          Description                  |
  +----------+---------------------------------------------------------+
  |SecProf_0 |No security needs|6LoWPAN/CoAP is used without security  |
  +----------+-----------------+---------------------------------------+
  |SecProf_1 |Home usage       |Enables operation between home things  |
  |          |                 |without interaction with central device|
  +----------+-----------------+---------------------------------------+
  |SecProf_2 |Managed Home     |Enables operation between home things. |
  |          | usage           |Interaction with a central and local   |
  |          |                 |device is possible                     |
  +----------+-----------------+---------------------------------------+
  |SecProf_3 |Industrial usage |Enables operation between things.      |
  |          |                 |Relies on central (local or backend)   |
  |          |                 |device for security                    |
  +----------+-----------------+---------------------------------------+
  |SecProf_4 |Advanced         |Enables ad-hoc operation between things|
  |          |Industrial usage |and relies on central device or        |
  |          |                 |on a collection of control devices     |
  +----------+-----------------+---------------------------------------+

                 Security profiles and application areas.

                                 Figure 6

   The classification in the table considers different potential
   applications and situations in which their security needs change due
   to different operational features (network size, existence of a
   central device, connectivity to the Internet, importance of the
   exchanged information, etc) or threat model (what are the assets that
   an attacker looks for).  As already pointed out, this set of
   scenarios is exemplary and they should be further discussed based on
   a broader consensus.

   SecProf_0 is meant for any application that does not require
   security.  Examples include applications during system development,
   system testing, or some very basic applications in which security is
   not required at all.

   The second security suite (SecProf_1) is catered for environments in
   which 6LoWPAN/CoAP can be used to enable communication between things
   in an ad-hoc manner and the security requirements are minimal.  An
   example, is a home application in which two devices should exchange
   information and no further connection with other devices (local or
   with a backend) is required.  In this scenario, value of the
   exchanged information is low and that it usually happen in a confined
   room, thus, it is possible to have a short period of time during
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   which initial secrets can be exchanged in the clear.  Due to this
   fact, there is no requirement to enable devices from different
   manufacturers to interoperate in a secure way (keys are just
   exchanged).  The expected network size of applications using this
   profile is expected to be small such that the provision of network
   security, e.g., secure routing, is of low importance.

   The next security suite (SecProf_2) represents an evolution of
   SecProf_1 in which, e.g., home devices, can be managed locally.  A
   first possibility for the securing domain management refers to the
   creation of a centrally managed security domain without any
   connectivity to the Internet.  The central device used for management
   can serve as, e.g., a key distribution center including policies for
   key update, storage, etc.  The presence of a central device can help
   in the management of larger networks.  Network security becomes more
   relevant in this scenario since the 6LoWPAN/CoAP network can be prone
   to Denial of Service attacks (e.g., flooding if L2 is not protected)
   or routing attacks.

   SecProf_3 considers that a central device is always required for
   network management.  Example applications of this profile include
   building control and automation, sensor networks for industrial use,
   environmental monitoring, etc.  As before, the network manager can be
   located in the 6LoWPAN/CoAP network and handle key management.  In
   this case, the first association of devices to the network is
   required to be done in a secure way.  In other words, the threat
   model requires measurements to protect against any vulterable period
   of time.  This step can involve the secure transmission of keying
   materials used for network security at different layers.  The
   information exchanged in the network is considered to be valuable and
   it should be protected in the sense of pairwise links.  Commands
   should be secured and broadcast should be secured with entity
   authentication [ID-CoAPMulticast].  Network should be protected from
   attacks.  A further extension to this use case is to allow for remote
   management.  A "backend manager" is in charge of managing SW or
   information exchanged or collected within the 6LoWPAN/CoAP network.
   This requires connection of devices to the Internet over a 6LBR
   involving a number of new threats that were not present before.  A
   list of potential attacks include: resource-exhaustion attacks from
   the Internet; amplification attacks; trust issues related a HTTP-CoAP
   proxy [ID-proHTTPCoAP], etc.  This use case requires protecting the
   communication from a device in the backend to a device in the
   6LoWPAN/CoAP network, end-to-end.  This use case also requires
   measures to provide the 6LBR with the capability of dropping fake
   requests coming from the Internet.  This becomes especially
   challenging when the 6LBR is not trusted and access to the exchanged
   information is limited; and even more in the case of a HTTP-CoAP
   proxy since protocol translation is required.  This use case should
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   take care of protecting information accessed from the backend due to
   privacy issues (e.g., information such as type of devices, location,
   usage, type and amount of exchanged information, or mobility patterns
   can be gathered at the backend threatening the privacy sphere of
   users) so that only required information is disclosed.

   The last security suite (SecProf_4) essentially represents
   interoperability of all the security profiles defined previously.  It
   considers applications with some additional requirements regarding
   operation such as: (i) ad-hoc establishment of security relationships
   between things (potentially from different manufacturers) in non-
   secure environments or (ii) dynamic roaming of things between
   different 6LoWPAN/CoAP security domains.  Such operational
   requirements pose additional security requirements, e.g., in addition
   to secure bootstrapping of a device within a 6LoWPAN/CoAP security
   domain and the secure transfer of network operational key, there is a
   need to enable inter-domains secure communication to facilitate data
   sharing.

   The above description illustrates how different applications of
   6LoWPAN/CoAP networks involve different security needs.  In the
   following sections, we summarize the expected security features or
   capabilities for each the security profile with regards to "Security
   Architecture", "Security Model", "Security Bootstrapping", "Network
   Security", and "Application Security".

6.1.  Security Architecture

   The choice of security architecture has many implications regarding
   key management, access control, or security scope.  A distributed (or
   ad-hoc) architecture means that security relationships between things
   are setup on the fly between a number of objects and kept in a
   decentralized fashion.  A locally centralized security architecture
   means that a central device, e.g., the 6LBR, handles the keys for all
   the devices in the security domain.  Alternatively, a central
   security architecture could also refer to the fact that smart objects
   are managed from the backend.  The security architecture for the
   different security profiles is classified as follows.
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             +---------------------------------------------------------+
             |                 Description                             |
  +----------+---------------------------------------------------------+
  |SecProf_0 |                     -                                   |
  +----------+---------------------------------------------------------+
  |SecProf_1 |                Distributed                              |
  +----------+---------------------------------------------------------+
  |SecProf_2 |     Distributed able to move centralized (local)        |
  +----------+---------------------------------------------------------+
  |SecProf_3 |         Centralized (local &/or backend)                |
  +----------+---------------------------------------------------------+
  |SecProf_4 |      Distributed & centralized (local &/or backend)     |
  +----------+---------------------------------------------------------+

          Security architectures in different security profiles.

                                 Figure 7

   In "SecProf_1", management mechanisms for the distributed assignment
   and management of keying materials is required.  Since this is a very
   simple use case, access control to the security domain can be enabled
   by means of a common secret known to all devices.  In the next
   security suite (SecProf_2), a central device can assume key
   management responsibilities and handle the access to the network. The
   last two security suites (SecProf_3 and SecProf_4) further allow for
   the management of devices or some keying materials from the backend.

6.2.  Security Model

   While some applications might involve very resource-constrained
   things such as, e.g., a humidity, pollution sensor, other
   applications might target more powerful devices aimed at more exposed
   applications.  Security parameters such as keying materials,
   certificates, etc must be protected in the thing, for example by
   means of tamper-resistant hardware.  Keys may be shared across a
   thing’s networking stack to provide authenticity and confidentiality
   in each networking layer.  This would minimize the number of key
   establishment/agreement handshake and incurs less overhead for
   constrained thing.  While more advance applications may require key
   separation at different networking layers, and possibly process
   separation and sandboxing to isolate one application from another. In
   this sense, this section reflects the fact that different
   applications require different sets of security mechanisms.
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             +---------------------------------------------------------+
             |Description                                              |
  +----------+---------------------------------------------------------+
  |SecProf_0 |  -                                                      |
  +----------+---------------------------------------------------------+
  |SecProf_1 |No tamper resistant                                      |
  |          |Sharing keys between layers                              |
  +----------+---------------------------------------------------------+
  |SecProf_2 |No tamper resistant                                      |
  |          |Sharing keys between layers                              |
  +----------+---------------------------------------------------------+
  |SecProf_3 |Tamper resistant                                         |
  |          |Key and process separation                               |
  +----------+---------------------------------------------------------+
  |SecProf_4 |(no) Tamper resistant                                    |
  |          |Sharing keys between layers/Key and process separation   |
  |          |Sandbox                                                  |
  +----------+---------------------------------------------------------+

           Thing security models in different security profiles.

                                 Figure 8

6.3.  Security Bootstrapping and Management

   Bootstrapping refers to the process by which a thing initiates its
   life within a security domain and includes the initialization of
   secure and/or authentic parameters bound to the thing and at least
   one other device in the network.  Here, different mechanisms may be
   used to achieve confidentiality and/or authenticity of these
   parameters, depending on deployment scenario assumptions and the
   communication channel(s) used for passing these parameters.  The
   simplest mechanism for initial set-up of secure and authentic
   parameters is via communication in the clear using a physical
   interface (USB, wire, chip contact, etc.).  Here, one commonly
   assumes this communication channel is secure, since eavesdropping
   and/or manipulation of this interface would generally require access
   to the physical medium and, thereby, to one or both of the devices
   themselves.  This mechanism was used with the so-called original
   "resurrecting duckling" model, as introduced in [PROC-Stajano].  This
   technique may also be used securely in wireless, rather than wired,
   set-ups, if the prospect of eavesdropping and/or manipulating this
   channel are dim (a so-called "location-limited" channel [PROC-
   Smetters-04, PROC-Smetters-02]).  Examples hereof include the
   communication of secret keys in the clear using near field
   communication (NFC) - where the physical channel is purported to have
   very limited range (roughly 10cm), thereby thwarting eavesdropping by
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   far-away adversarial devices, and in-the-clear communication during a
   small time window (triggered by, e.g., a button-push) - where
   eavesdropping is presumed absent during this small time window.  With
   the use of public-key based techniques, assumptions on the
   communication channel can be relaxed even further, since then the
   cryptographic technique itself provides for confidentiality of the
   channel set-up and the location-limited channel - or use of
   certificates - rules out man-in-the-middle attacks, thereby providing
   authenticity [PROC-Smetters-02].  The same result can be obtained
   using password-based public-key protocols [SPEKE], where authenticity
   depends on the (weak) password not being guessed during execution of
   the protocol.  It should be noted that while most of these techniques
   realize a secure and authentic channel for passing parameters, these
   generally do not provide for explicit authorization.  As an example,
   with use of certificate-based public-key based techniques, one may
   obtain hard evidence on whom one shares secret and/or authentic
   parameters with, but this does not answer the question as to whether
   one wishes to share this information at all with this specifically
   identified device (the latter usually involves a human-decision
   element).  Thus, the bootstrapping mechanisms above should generally
   be complemented by mechanisms that regulate (security policies for)
   authorization.  Furthermore, the type of bootstrapping is very
   related to the required type of security architecture.  Distributed
   bootstrapping means that a pair of devices can setup a security
   relationship on the fly, without interaction with a central device
   elsewhere within the system.  In many cases, it is handy to have a
   distributed bootstrapping protocol based on existing security
   protocols (e.g., DTLS in CoAP) required for other purposes: this
   reduces the amount of required software.  A centralized boostrapping
   protocol is one in which a central device manages the security
   relationships within a network.  This can happen locally, e.g.,
   handled by the 6LBR, or remotely, e.g., from a server connected via
   the Internet.  The security bootstrapping for the different security
   profiles is as follows.
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             +---------------------------------------------------------+
             |Description                                              |
  +----------+---------------------------------------------------------+
  |SecProf_0 |  -                                                      |
  +----------+---------------------------------------------------------+
  |SecProf_1 |* Distributed, (e.g., Resurrecting duckling)             |
  |          |* First key distribution happens in the clear            |
  +----------+---------------------------------------------------------+
  |SecProf_2 |* Distributed, (e.g., Resurrecting duckling )            |
  |          |* Centralized (local), 6LBR acts as KDC                  |
  |          |* First key distribution occurs in the clear, if the KDC |
  |          |  is available, the KDC can manage network access        |
  +----------+---------------------------------------------------------+
  |SecProf_3 |* 6LBR acts as KDC. It handles node joining, provides    |
  |          |  them with keying material from L2 to application layers|
  |          |* Bootstrapping occurs in a secure way - either in secure|
  |          |  environment or the security mechanisms ensure that     |
  |          |  eavesdropping is not possible.                         |
  |          |* KDC and backend can implement secure methods for       |
  |          |  network access                                         |
  +----------+---------------------------------------------------------+
  |SecProf_4 |* As in SecProf_3.                                       |
  +----------+---------------------------------------------------------+

       Security boostrapping methods in different security profiles

                                 Figure 9

6.4.  Network Security

   Network security refers to the mechanisms used to ensure the secure
   transport of 6LoWPAN frames.  This involves a multitude of issues
   ranging from secure discovery, frame authentication, routing
   security, detection of replay, secure group communication, etc.
   Network security is important to thwart potential attacks such as
   denial-of-service (e.g., through message flooding) or routing
   attacks.

   The Internet Draft [ID-Tsao] presents a very good overview of attacks
   and security needs classified according to the confidentiality,
   integrity, and availability needs.  A potential limitation is that
   there exist no differentiation in security between different use
   cases and the framework is limited to L3.  The security suites
   gathered in the present ID aim at solving this by allowing for a more
   flexible selection of security needs at L2 and L3.
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             +---------------------------------------------------------+
             |Description                                              |
  +----------+---------------------------------------------------------+
  |SecProf_0 |  -                                                      |
  +----------+---------------------------------------------------------+
  |SecProf_1 |* Network key creating a home security domain at L2      |
  |          |  ensuring authentication and freshness of exchanged data|
  |          |* Secure multicast does not ensure origin authentication |
  |          |* No need for secure routing at L3                       |
  +----------+---------------------------------------------------------+
  |SecProf_2 |* Network key creating a home security domain at L2      |
  |          |  ensuring authentication and freshness of exchanged data|
  |          |* Secure multicast does not ensure origin authentication |
  |          |* No need for secure routing at L3                       |
  +----------+---------------------------------------------------------+
  |SecProf_3 |* Network key creating an industry security domain at L2 |
  |          |  ensuring authentication and freshness of exchanged data|
  |          |* Secure routing needed (integrity & availability) at L3 |
  |          |  within 6LoWPAN/CoAP                                    |
  |          |* Secure multicast requires origin authentication        |
  +----------+---------------------------------------------------------+
  |SecProf_4 |* Network key creating an industry security domain at L2 |
  |          |  ensuring authentication and freshness of exchanged data|
  |          |* Inter-domain authentication/secure handoff             |
  |          |* Secure routing needed at L3                            |
  |          |* Secure multicast requires origin authentication        |
  |          |* 6LBR (HTTP-CoAP proxy) requires verification of        |
  |          |  forwarded messages and messages leaving or entering the|
  |          |  6LoWPAN/CoAP network.                                  |
  +----------+---------------------------------------------------------+

           Network security needs in different security profiles

                                 Figure 10

6.5.  Application Security

   In the context of 6LoWPAN/CoAP networks, application security refers
   firstly to the configuration of DTLS used to protect the exchanged
   information.  It further refers to the measures required in potential
   translation points (e.g., a (HTTP-CoAP) proxy) where information can
   be collected and the privacy sphere of users in a given security
   domain is endangered.  Application security for the different
   security profiles is as follows.
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             +---------------------------------------------------------+
             |Description                                              |
  +----------+---------------------------------------------------------+
  |SecProf_0 |  -                                                      |
  +----------+---------------------------------------------------------+
  |SecProf_1 |  -                                                      |
  +----------+---------------------------------------------------------+
  |SecProf_2 |* DTLS is used for end-to-end application security       |
  |          |  between management device and things and between things|
  |          |* DTLS ciphersuites configurable to provide              |
  |          |  confidentiality and/or authentication and/or freshness |
  |          |* Key transport and policies for generation of session   |
  |          |  keys are required                                      |
  +----------+---------------------------------------------------------+
  |SecProf_3 |* Requirements as in SecProf_2 and                       |
  |          |* DTLS is used for end-to-end application security       |
  |          |  between management device and things and between things|
  |          |* Communication between KDC and each thing secured by    |
  |          |  pairwise keys                                          |
  |          |* Group keys for communication in a group distributed    |
  |          |  by KDC                                                 |
  |          |* Privacy protection should be provided in translation   |
  |          |  points                                                 |
  +----------+---------------------------------------------------------+
  |SecProf_4 |* Requirements as in SecProf_3 and                       |
  |          |* TLS or DTLS can be used to send commands from the      |
  |          |  backend to the 6LBR or things in a 6LoWPAN/CoAP network|
  |          |* End-to-end secure connectivity from backend required   |
  |          |* Secure broadcast in a network from backend required    |
  +----------+---------------------------------------------------------+

        Application security methods in different security profiles

                                 Figure 11

   The first two security profiles do not include any security at the
   application layer.  The reason is that, in the first case, security
   is not provided and, in the second case, it seems reasonable to
   provide basic security at L2.  In the third security profile
   (SecProf_2), DTLS becomes the way of protecting messages at
   application layer between things and with the KDC running on a 6LBR.
   A key option refers to the capability of easily configuring DTLS to
   provide a subset of security services (e.g., some applications do not
   require confidentiality) to reduce the impact of security in the
   system operation of resource-constrained things.  In addition to
   basic key management mechanisms running within the KDC, communication
   protocols for key transport or key update are required.  These
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   protocols could be based on DTLS.  The next security suite
   (SecProf_3) requires pairwise keys for communication between things
   within the security domain.  Furthermore, it can involve the usage of
   group keys for group communication.  If secure multicast is
   implemented, it should provide origin authentication.  Finally,
   privacy protection should be taken into account to limit access to
   valuable information -- such as identifiers, type of collected data,
   traffic patterns -- in potential translation points (proxies) or in
   the backend.  The last security suite (SecProf_4) further extends the
   previous set of requirements considering security mechanisms to deal
   with translations between TLS and DTLS or for the provision of secure
   multicast within a 6LoWPAN/CoAP network from the backend.

7.  Next Steps towards a Flexible and Secure Internet of Things

   This Internet Draft included an overview of both operational and
   security requirements of things in the Internet of Things, discussed
   a general threat model and security issues, and introduced a number
   of potential security suites fitting different types of IoT
   deployments.

   We conclude this document by giving our assessment of the current
   status of CoAP security with respect to addressing the IP security
   challenges we identified, so as to facilitate discussion of next
   steps towards workable security design concepts suitable for IP-based
   IoT in the broader community.  Hereby, we focus on the employed
   security protocols and the type of security architecture.

   With current status, we refer to the feasibility of realizing secure
   deployments with existing CoAP protocols and the practicality of
   creating comprehensive security architectures based on those
   protocols:

   1   DTLS has been defined as the basic building block for protecting
       CoAP.  At the time it was first proposed, no DTLS implementation
       for small, constrained devices was available.  In the mean-time,
       TinyDTLS [TinyDTLS] has been developed offering the first open-
       source implementation of the protocol for small devices. However,
       more experience with the protocol is required.  In particular, a
       performance evaluation and comparison should be made with a well-
       defined set of standard node platforms/networks. The results will
       help understand the limitations and the benefits of DTLS as well
       as to give recommended usage scenarios for this security
       protocol.
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   2   (D)TLS was designed for traditional computer networks and, thus,
       some of its features may not be optimal for resource-constrained
       networks.  This includes:

       a   Basic DTLS features that are, in our view, not ideal for
           resource-constrained devices.  For instance, the loss of a
           message in-flight requires the retransmission of all messages
           in-flight.  On the other hand, if all messages in-flight are
           transmitted together in a single UDP packet, more resources
           are required for handling of large buffers.  As pointed out
           in [ID-Hartke] , the number of flights in the DTLS handshake
           should be reduced, so that a faster setup of a secure channel
           can be realized.  This would definitely improve the
           performance of DTLS significantly.

       b   Fragmentation of messages due to smaller MTUs in resource-
           constrained networks is problematic.  This implies that the
           node must have a large buffer to store all the fragments and
           subsequently perform re-ordering and reassembly in order to
           construct the entire DTLS message.  The fragmentation of the
           handshake messages can, e.g., allow for a very simple method
           to carry out a denial of service attack.

       c   The completion of the DTLS handshake is based on the
           successful verification of the Finished message by both
           client and server.  As the Finished message is computed based
           on the hash of all handshake messages in the correct order,
           the node must allocate a large buffer to queue all handshake
           messages.

       d   DTLS is thought to offer end-to-end security; however, end-
           to-end security also has to be considered from the point of
           view of LLN protection, so that end-to-end exchanges can
           still be verified and the LLN protected from, e.g., DoS
           attacks.

   3   Raw public-key in DTLS has been defined as mandatory.  However,
       memory-optimized public-key libraries still require several KB of
       flash and several hundreds of B of RAM.  Although Moore’s law
       still applies and an increase of platform resources is expected,
       many IoT scenarios are cost-driven, and in many use cases, the
       same work could be done with symmetric-keys.  Thus, a key
       question is whether the choice for raw public-key is the best
       one.  In addition, using raw public keys rather than certified
       public keys hard codes identities to public keys, thereby
       inhibiting public key updates and potentially complicating
       initial configuration.
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   4   Performance of DTLS from a system perspective should be evaluated
       involving not just the cryptographic constructs and protocols,
       but should also include implementation benchmarks for security
       policies, since these may impact overall system performance and
       network traffic (an example of this would be policies on the
       frequency of key updates, which would necessitate securely
       propagating these to all devices in the network).

   5   Protection of lower protocol layers is a must in networks of any
       size to guarantee resistance against routing attacks such as
       flooding or wormhole attacks.  The wireless medium that is used
       by things to communicate is broadcast in nature and allows
       anybody on the right frequency to overhear and even inject
       packets at will.  Hence, IP-only security solutions may not
       suffice in many IoT scenarios.  At the time of writing the
       document, comprehensive methods are either not in place or have
       not been evaluated yet.  This limits the deployment of large-
       scale systems and makes the secure deployment of large scale
       networks rather infeasible.

   6   The term "bootstrapping" has been discussed in many occasions.
       Although everyone agrees on its importance, finding a good
       solution applicable to most use cases is rather challenging.
       While usage of existing methods for network access might
       partially address bootstrapping in the short-term and facilitate
       integration with legacy back-end systems, we feel that, in the
       medium-term, this may lead to too large of an overhead and
       imposes unnecessary constraints on flexible deployment models.
       The bootstrapping protocol should be reusable and light-weight to
       fit with small devices.  Such a standard bootstrapping protocol
       must allow for commissioning of devices from different
       manufacturers in both centralized and ad-hoc scenarios and
       facilitate transitions of control amongst devices during the
       device’s and system’s lifecycle.  Examples of the latter include
       scenarios that involve hand-over of control, e.g., from a
       configuration device to an operational management console and
       involving replacement of such a control device.  A key challenge
       for secure bootstrapping of a device in a centralized
       architecture is that it is currently not feasible to commission a
       device when the adjacent devices have not been commissioned yet.
       In view of the authors, a light-weight approach is still required
       that allows for the bootstrapping of symmetric-keys and of
       identities in a certified public-key setting.

   7   Secure resource discovery has not been discussed so far. However,
       this issue is currently gaining relevance.  The IoT, comprising
       sensors and actuators, will provide access to many resources to
       sense and modify the environment.  The usage of DNS presents
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       well-known security issues, while the application of secure DNS
       may not be feasible on small devices.  In general, security
       issues and solutions related to resource discovery are still
       unclear.

   8   A security architecture involves, beyond the basic protocols,
       many different aspects such as key management and the management
       of evolving security responsibilities of entities during the
       lifecycle of a thing.  This document discussed a number of
       security suites and argued that different types of security
       architectures are required.  A flexible IoT security architecture
       should incorporate the properties of a fully centralized
       architecture as well as allow devices to be paired together
       initially without the need for a trusted third party to create
       ad-hoc security domains comprising a number of nodes.  These ad-
       hoc security domains could then be added later to the Internet
       via a single, central node or via a collection of nodes (thus,
       facilitating implementation of a centralized or distributed
       architecture, respectively).  The architecture should also
       facilitate scenarios, where an operational network may be
       partitioned or merged, and where hand-over of control
       functionality of a single device or even of a complete subnetwork
       may occur over time (if only to facilitate smooth device repair/
       replacement without the need for a hard "system reboot" or to
       realize ownership transfer).  This would allow the IoT to
       transparently and effortlessly move from an ad-hoc security
       domain to a centrally-managed single security domain or a
       heterogeneous collection of security domains, and vice-versa.
       However, currently, these features still lack validation in real-
       life, large-scale deployments.

   9   Currently, security solutions are layered, in the sense that each
       layer takes care of its own security needs.  This approach fits
       well with traditional computer networks, but it has some
       limitations when resource-constrained devices are involved and
       these devices communicate with more powerful devices in the back-
       end.  We argue that protocols should be more interconnected
       across layers to ensure efficiency as resource limitations make
       it challenging to secure (and manage) all layers individually. In
       this regard, securing only the application layer leaves the
       network open to attacks, while security focused only at the
       network or link layer might introduce possible inter-application
       security threats.  Hence, the limited resources of things may
       require sharing of keying material and common security mechanisms
       between layers.  It is required that the data format of the
       keying material is standardized to facilitate cross-layer
       interaction.  Additionally, cross-layer concepts should be
       considered for an IoT-driven re-design of Internet security
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       protocols.

8.  Security Considerations

   This document reflects upon the requirements and challenges of the
   security architectural framework for Internet of Things.

9.  IANA Considerations

   This document contains no request to IANA.
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   Network level security bootstrapping and joining device level
   security bootstrapping mechanisms are described in this document.
   They are proposed for security bootstrapping of the Internet of
   Things networks, which implement IETF protocols (e.g. 6LoWPAN, 6lo,
   RPL, AODV, DSR) over IEEE 802.15.4.  The network level security
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1.  Introduction

   An IoT network is composed of various numbers of connected things
   with communication ability and different functionalities (sensing
   unit, control logic).  They cooperate together to accomplish specific
   tasks required by users.  Things in an IoT network might be supplied
   by different vendors, and are normally resource-constrained devices
   that with limited power supply, communication capability, CPU
   performance and memory volume.

   [IEEE802.15.4]is a standard which specifies the physical layer and
   media access control for low-rate wireless personal area networks
   (LR-WPANs).  It is widely used in wireless sensor networks nowadays,
   6LoWPAN WG (concluded) developed RFC 4944[RFC4944] to describe how to
   transmit IPv6 packets over 802.15.4, and support mesh routing in LR-
   WPANs. 6lo WG defines generic IPv6 packet header compression method
   [RFC7400] for LR-WPANs. 6tisch tries to build adaptation protocol for
   802.15.4e protocol.  Roll develops routing protocol RPL[RFC6550] for
   IPv6 based low power and lossy networks.  IEEE 802.15.4 is foreseen
   as the most used lower layer protocol for low rate IoT networks with
   resource constrained devices.
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   Creating security domains from previously unassociated IoT devices is
   a key operation in the IoT network and in the lifecycle of a thing.
   Because IEEE 802.15.4 maximum payload size is 128 Bytes, a standard
   security bootstrapping protocol should be light-weight with low
   complexity.  The protocol must allow for commissioning of devices
   from different manufacturers and facilitate transitions of control
   amongst devices during the device’s and system’s lifecycle.

   Traditional security bootstrapping approaches include device
   authentication and key generation/distribution, which tend to impose
   configuration burdens upon users.  For example, users need to follow
   a series of instruction steps for WPA2-PSK (WiFi Protected Access 2,
   Pre-shared key) configuration, even though the pre-shared key mode is
   the simplest option for using WPA.  Establishing security among IoT
   devices becomes more complicated since they don’t always provide user
   interface to input necessary security information.  Furthermore, the
   scale of the IoT network can be large, human intervention in large
   scale security bootstrapping is expensive and low efficient.

   [I-D.pritikin-anima-bootstrapping-keyinfra] proposes a zero-touch
   bootstrapping key infrastructure to allow joining device securely and
   automatically bootstraps itself based on 802.1AR certificate.  It
   can’t be directly used in 802.15.4 devices due to the high security
   complexity and heavy communication overhead.  Its architecture is not
   built by considering different possible 802.15.4 network topologies
   and the underlying routing protocols developed by IETF.

   [I-D.struik-6tisch-security-considerations]defines high level
   requirements and proposes two types of security mechanisms: single-
   stage and two-stage.  Even though the two types of security AA
   mechanisms offer flexible solutions.  The underlying security
   architecture can neither be used directly by 802.15.4 IoT networks.
   IEEE 802.15.4 also defines two-step mechanism for nodes joining
   network with layer 2 authentication.  Without considering use of IPv6
   infrastructure, the solution is not comprehensive.

   Another key challenge for security bootstrapping of a device the
   above mentioned mechanisms is that they are not feasible to
   commission a device when the adjacent devices have not been
   commissioned yet.  As a result, this document describes and
   standardizes two types of automatic bootstrapping methods for
   802.15.4 based IoT networks: network level security bootstrapping and
   joining device level security bootstrapping.
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2.  new section

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   [RFC2119].

   This specification requires readers to be familiar with all the terms
   and concepts that are discussed in "Neighbor Discovery for IP version
   6 (IPv6)" [RFC4861], "IPv6 over Low-Power Wireless Personal Area
   Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and
   Goals" [RFC4919].This specification makes extensive use of the same
   terminology defined in [RFC4944].

3.  IEEE 802.15.4 based IoT topologies

   A general architectural overview of the IEEE 802.15.4 based IoT is
   provided in Figure 1.  All the devices communicate to backbone server
   through 6LBR.  FFDs communicate with each other directly or
   indirectly via hopping or 6LBR.  RFDs directly connect to FFDs, and
   the number of RFDs that attach to a FFD may vary.

                     /////-------------------\\\\\
                    |            Server           |
                     \\\\\-------------------/////
                                   |
   +-------------------------------------------------------------------+
   |                              6LBR                                 |
   +--------------------------------+----------------------------------+
             |             +--------+-----------+           |
             |       +-**->|        FFD_2       |<--**-+    |
             |       |     +--------------------+      |    |
   +-----------------+--+                          +---+--------------+
   |        FFD_1       | <---------*****--------> |        FFD_N     |
   +--------------------+                          +------------------+
           |           |                                 |
   +--------------+  +--------------+               +--------------+
   |     RFD_11   |  |     RFD_1M   |               |     FFD_N1   |
   +--------------+  +--------------+               +--------------+

  Figure 1

4.  Network level security bootstrapping

   At the very beginning of the networking once nodes are deployed,
   network level security bootstrapping assist automatically creates
   security domain and hierarchically adds devices to network.  The
   mechanism is realized by three phases:

He & Sarikaya           Expires November 6, 2015                [Page 4]



Internet-Draftsecurity Bootstrapping of 802.15.4 based IoT      May 2015

   Phase 1:   Security bootstrapping for the first hop FFDs via 6LBR

   Phase 2:   Security bootstrapping for further FFDs via configured
      FFDs

   Phase 3:   Security bootstrapping for RFDs via configured FFDs

4.1.  Security bootstrapping for the first hop FFDs via 6LBR

   When devices are power-on, 6LBR broadcasts beacon frames to
   neighboring nodes.  The FFDs that receive the beacon frames are the
   first-hop FFDs.  As shown in Figure 2, upon receiving the beacon
   frame, a first-hop FFD associates with 6LBR at link layer according
   to IEEE 802.15.4.  The FFD then presents credential to 6LBR, which
   are forwarded to trust center to be validated.  EAP can be used to
   realize the authentication procedure.  If the validation is
   successful, the IP address and network key are generated and
   delivered to the FFD.  Further configurations such as cluster head
   selection, routing protocol, etc., can be realized afterwards.
   Otherwise if the validation fails, the 6LBR refuses adding the FFD to
   its domain.

    First-hop FFD                     6LBR                     TC
     |                                 |                        |
     |           Beaconing             |                        |
     |<--------------------------------|                        |
     |                                 |                        |
     |           IEEE 802.15.4         |                        |
     |     MAC unsecure association    |                        |
     |<------------------------------->|                        |
     |                                 |                        |
     |                                 |                        |
     |        Authentication           |    Auth.material check |
     |<------------------------------->|<---------------------->|
     |   Network key and IP address    |      IP address        |
     |                                 |                        |
     |                                 |                        |
     |     Further Configuration       |                        |
     |<------------------------------->|                        |
     |                                 |                        |
     |                                 |                        |

   Figure 2
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4.2.  Security bootstrapping for further FFDs via configured FFDs

   The configured FFDs broadcast beacon frames to neighboring nodes.
   The unconfigured FFD that receives the beacon frame associates with
   the configured FFD at link layer.  A FFD may receive multiple beacon
   frames from more than one configured FFDs, it can select the first
   one to associate or the one with strongest received power strength.
   The selection policy is out of the scope of the current document.
   The unconfigured FFD then presents credential to the associated
   configured FFD, which are forwarded to 6LBR and TC to be validated.
   If EAP is used, PANA can be used to relay the authentication message
   from configured FFDs to 6LBR.  If the validation is successful, the
   IP address and network key are generated and delivered to the FFD.
   Further configurations such as routing protocol can be realized
   afterwards.  Otherwise if the validation fails, the 6LBR refuses
   adding the FFD to its domain.

  Unconfigured FFD             Configured FFD      6LBR               TC
  |                                 |              |                  |
  |           Beaconing             |              |                  |
  |<--------------------------------|              |                  |
  |                                 |              |                  |
  |           IEEE 802.15.4         |              |                  |
  |     MAC unsecure association    |              |                  |
  |<------------------------------->|              |                  |
  |                                 |              |                  |
  |                                 |              |                  |
  |         Authentication          |     Relay    |    Auth.check    |
  |<------------------------------->|<------------>|<---------------->|
  |   Network key and IP address    |              |   IP address     |
  |                                 |              |                  |
  |                                 |              |                  |
  |     Further Configuration       |              |                  |
  |<-------------------------------- ------------->|                  |
  |                                 |              |                  |
  |                                 |              |                  |

 Figure 3

4.3.  Security bootstrapping for RFDs via configured FFDs

   The configured FFDs broadcast beacon frames to neighboring nodes.
   The unconfigured RFD that receives the beacon frame associates with
   the configured FFD at link layer.  A RFD may receive multiple beacon
   frames from more than one configured FFDs.  It can select one device
   to associate, e.g. the first one that replies or the one with
   strongest received power strength.  The unconfigured RFD then
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   presents credential to the associated configured FFD, which are
   forwarded to 6LBR and TC to be validated.  If the validation is
   successful, the IP address and network key are generated and
   delivered to the RFD.  Otherwise if the validation fails, the FFD
   refuses adding the RFD to its domain.

  RFD                           Configured FFD     6LBR               TC
   |                                 |              |                  |
   |           Beaconing             |              |                  |
   |<--------------------------------|              |                  |
   |                                 |              |                  |
   |           IEEE 802.15.4         |              |                  |
   |     MAC unsecure association    |              |                  |
   |<------------------------------->|              |                  |
   |                                 |              |                  |
   |                                 |              |                  |
   |        Authentication           |     Relay    |     Auth.check   |
   |<------------------------------->|<------------>|<---------------->|
   |   Network key and IP address    |              |   IP address     |
   |                                 |              |                  |
   |                                 |              |                  |
   |     Further Configuration       |              |                  |
   |<-------------------------------- ------------->|                  |
   |                                 |              |                  |
   |                                 |              |                  |

 Figure 4

5.  Joining Device Security Bootstrapping

   New devices may be added to an existing IoT due to various reasons.
   As a result the security bootstrapping can be devided into the
   bootstrapping of joining RFD and bootstrapping of joining FFD.

5.1.  Bootstrapping of joining RFD via configured FFD

   A joining RFD broadcasts beacon frames to neighboring nodes.  The
   configured FFDs that receive the beacon frames, decide whether
   allowing the RFD associating at link layer.  A RFD may receive
   multiple replies from more than one configured FFDs.  It can select
   one device to associate, e.g. the first one that replies or the one
   with strongest received power strength.  The joining RFD then
   presents credential to the associated configured FFD, which is
   forwarded to 6LBR and TC to be validated.  If the validation is
   successful, the IP address and network key are generated and
   delivered to the RFD.  Otherwise if the validation fails, the
   FFDrefuses adding the RFD to its domain.
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   Joining RFD                    Configured FFD     6LBR             TC
    |                                 |              |                 |
    |           Beaconing             |              |                 |
    |-------------------------------->|              |                 |
    |                                 |              |                 |
    |           IEEE 802.15.4         |              |                 |
    |     MAC unsecure association    |              |                 |
    |<------------------------------->|              |                 |
    |                                 |              |                 |
    |                                 |              |                 |
    |        Authentication           |     Relay    |    Auth.check   |
    |<------------------------------->|<------------>|<--------------->|
    |   Network key and IP address    |              |   IP address    |
    |                                 |              |                 |
    |                                 |              |                 |
    |     Further Configuration       |              |                 |
    |<-------------------------------- ------------->|                 |
    |                                 |              |                 |
    |                                 |              |                 |

  Figure 5

5.2.  Bootstrapping of joining FFD via configured FFD/6LBR

   A joining FFD broadcasts beacon frames to neighboring nodes.  The
   configured FFDs that receive the beacon frames, decide whether
   allowing the FFD associating at link layer.  A FFD may receive
   multiple replies from more than one configured FFDs or directly from
   the 6LBR.  It can select one device to associate, e.g. the first one
   that replies or the one with strongest received power strength.  The
   joining FFD then presents credential to the associated configured
   FFD/6LBR, which is forwarded to TC to be validated.  If the
   validation is successful, the IP address and network key are
   generated and delivered to the FFD.  Further configurations such as
   routing protocol can be realized afterwards.  Otherwise if the
   validation fails, the 6LBR refuses adding the FFD to its domain.
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                              +---------------------------+
   Joining FFD                | Configured FFD      6LBR  |           TC
   |                          +------+--------------+-----+            |
   |           Beaconing             |              |                  |
   |-------------------------------->|              |                  |
   |                                 |              |                  |
   |           IEEE 802.15.4         |              |                  |
   |     MAC unsecure association    |              |                  |
   |<------------------------------->|              |                  |
   |                                 |              |                  |
   |                                 |              |                  |
   |         Authentication          |     Relay    |     Auth.check   |
   |<------------------------------->|<------------>|<---------------->|
   |   Network key and IP address    |              |   IP address     |
   |                                 |              |                  |
   |                                 |              |                  |
   |     Further Configuration       |              |                  |
   |<-------------------------------- ------------->|                  |
   |                                 |              |                  |
   |                                 |              |                  |

  Figure 6

6.  Security Considerations
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1.  Introduction

   The Representational State Transfer (REST) architectural style [REST]
   is a set of guidelines and best practices for building distributed
   hypermedia systems.

   When REST principles are applied to a design of a system, the result
   is often called RESTful and in particular an API following these
   principles is called a RESTful API.

   Different protocols can be used with RESTful systems, but at the time
   of writing the most common protocols are HTTP [RFC7231] and CoAP
   [RFC7252].

   RESTful design facilitates many desirable features for a system, such
   as good scaling properties.  RESTful APIs are also often simple and
   lightweight and hence easy to use also with various IoT applications.
   The goal of this document is to give basic guidance for designing
   RESTful systems and APIs for IoT applications and give pointers for
   more information.
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2.  Terminology

   This section explains some of the common terminology that is used in
   the context of RESTful design for IoT systems.

   Application State: The set of pending requests, history of requests,
   bookmarks (URIs stored for later retrieval), and application-specific
   state that the client keeps between requests.

   Cache: A local store of response messages and the subsystem that
   controls storage, retrieval, and deletion of messages in it.

   Client: A node that sends requests to servers and receives responses.

   Content Negotiation: The practice of determining the "best"
   representation for a client when examining the current state of a
   resource.

   Form: A hypermedia control that enables a client to change the state
   of a resource.

   Forward Proxy: An intermediary that is selected by a client, usually
   via local configuration rules, and that can be tasked to make
   requests on behalf of the client.  This may be useful, for example,
   when the client lacks the capability to make the request itself, or
   to service the response from a cache in order to reduce response time
   and network bandwidth or energy consumption.

   Gateway: See "Reverse Proxy".

   Hypermedia Control: A component embedded in a representation that
   describes a request.  By performing the request, the client can
   change resource state and/or move the application state forward.

   Idempotent Method: A method where multiple identical requests with
   that method lead to the same visible resource state as a single such
   request.  For example, the PUT method replaces the state of a
   resource with a new state; replacing the state multiple times with
   the same new state still results in the same result.

   Link: A hypermedia control that enables a client to navigate between
   resources and thereby change the application state.

   Media Type: A sequence of characters such as "text/html" or
   "application/json" that is used to label representations so that it
   is known how the representation should be interpreted, and how it is
   encoded.
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   Method: A procedure associated with a resource.  Common methods
   include GET, PUT, POST, and DELETE (see Section 3.5 for details).

   Origin Server: A server that is the definitive source for
   representations of its resources and the ultimate recipient of any
   request that intends to modify its resources.  In contrast,
   intermediaries (such as proxies caching a representation) can assume
   the role of a server, but are not the source for representations as
   these are acquired from the origin server.

   Proactive Content Negotiation: A content negotiation mechanism where
   the server selects a representation based on the client’s content
   negotiation preferences.  For example, in an IoT application, the
   preferences of a client could be media types "application/senml+json"
   and "text/plain".

   Reactive Content Negotiation: A content negotiation mechanism where
   the client selects a representation from a list of available
   representations.  The list may, for example, be included by a server
   in an initial response.  If the user agent is not satisfied by the
   initial response representation, it can request one or more of the
   alternative representations, selected based on metadata included in
   the list.

   Representation Format: A set of rules for encoding information in a
   sequence of bytes.  In the Web, the most prevalent representation
   format is HTML.  Other common formats include plain text (in UTF-8 or
   any other encoding), JSON or XML.  With IoT systems, often compact
   formats such as JSON, CBOR, and EXI are used.

   Representation: A sequence of bytes, plus representation metadata,
   that captures the current or intended state of a resource and that
   can be transferred between clients and servers (possibly via one or
   more intermediaries).

   Representational State Transfer (REST): An architectural style for
   Internet-scale distributed hypermedia systems.

   Resource State: A mapping of a resource to a set of values that may
   change over time.

   Resource: An item of interest identified by a URI.  Anything that can
   be named can be a resource.  A resource often encapsulates a piece of
   state in a system.  Typical resources in an IoT system can be, e.g.,
   a sensor, the current value of a sensor, the location of a device, or
   the current state of an actuator.
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   Reverse Proxy: An intermediary that appears as a server towards the
   client but satisfies the requests by forwarding them to the actual
   server (possibly via one or more other intermediaries).  A reverse
   proxy is often used to encapsulate legacy services, to improve server
   performance through caching, and to enable load balancing across
   multiple machines.

   Safe Method: A method that does not result in any state change on the
   origin server when applied to a resource.  For example, the GET
   method only returns a representation of the resource state but does
   not change the resource.

   Server: A node that listens for requests, applies the requested
   actions to resources, and sends responses back to the clients.

   Uniform Resource Identifier (URI): A global identifier for resources.
   See Section 3.4 for more details.

3.  Basics

3.1.  Architecture

   The components of a REST system are assigned one of two roles: client
   or server.  User agents are always in the client role and have the
   initiative to issue requests.  Intermediaries (such as forward
   proxies and reverse proxies) implement both roles, but only forward
   requests to other intermediaries or origin servers.  They can also
   translate requests to different protocols, for instance, CoAP-HTTP
   cross-proxies.

   Note that the terms "client" and "server" refer only to the roles
   that the nodes assume for a particular message exchange.  The same
   node might act as a client in some communications and a server in
   others.

    ________                       _________
   |        |                     |         |
   | User  (C)-------------------(S) Origin |
   | Agent  |                     |  Server |
   |________|                     |_________|
   (Browser)                      (Web Server)

                   Figure 1: Client-Server Communication
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    ________       __________                        _________
   |        |     |          |                      |         |
   | User  (C)---(S) Inter- (C)--------------------(S) Origin |
   | Agent  |     |  mediary |                      |  Server |
   |________|     |__________|                      |_________|
   (Browser)     (Forward Proxy)                    (Web Server)

                Figure 2: Communication with Forward Proxy

   Reverse proxies are usually imposed by the origin server.  In
   addition to the features of a forward proxy, they can also provide an
   interface for non-RESTful services such as legacy systems or
   alternative technologies such as Bluetooth ATT/GATT.  This property
   is enforced by the layered system constraint of REST, which says that
   a client cannot see beyond the server it is connected to.

    ________                        __________       _________
   |        |                      |          |     |         |
   | User  (C)--------------------(S) Inter- (x)---(x) Origin |
   | Agent  |                      |  mediary |     |  Server |
   |________|                      |__________|     |_________|
   (Browser)                     (Reverse Proxy)   (Legacy System)

                Figure 3: Communication with Reverse Proxy

   Nodes in IoT systems often implement both roles.  Unlike
   intermediaries, however, they can take the initiative as a client
   (e.g., to register with a directory, such as CoAP Resource Directory)
   and act as origin server at the same time (e.g., to serve sensor
   values).

    ________                                         _________
   |        |                                       |         |
   | Thing (C)-------------------------------------(S) Origin |
   |       (S)                                      |  Server |
   |________| \                                     |_________|
    (Sensor)   \   ________                     (Resource Directory)
                \ |        |
                 (C) Thing |
                  |________|
                 (Controller)

                Figure 4: Constrained RESTful environments
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3.2.  System design

   When designing a REST system, the state of the distributed
   application must be assigned to the different components.  Here, it
   is important to distinguish between "session state" and "resource
   state".

   Session state encompasses the control flow and the interactions
   between the components (see Section 2).  Following the statelessness
   constraint, the session state must be kept only on clients.  On the
   one hand, this makes requests a bit more verbose since every request
   must contain all the information necessary to process it.  On the
   other hand, this makes servers efficient, since they do not have to
   keep any state about their clients.  Requests can easily be
   distributed over multiple worker threads or server instances.  For
   the IoT systems, it lowers the memory requirements for server
   implementations, which is particularly important for constrained
   servers and servers serving large amount of clients.

   Resource state includes the more persistent data of an application
   (i.e., independent of the application control flow).  This can be
   static data such as device descriptions, persistent data such as
   system configuration, but also dynamic data such as the current value
   of a sensor on a thing.

3.3.  Resource modeling

   Important part of RESTful API design is to model the system as a set
   of resources whose state can be retrieved and/or modified and where
   resources can be potentially also created and/or deleted.

   Resource representations have a media type that tells how the
   representation should be interpreted.  Typical media types for IoT
   systems include "text/plain" for simple UTF-8 text, "application/
   octet-stream" for arbitrary binary data, "application/json" for JSON
   [RFC7159], "application/senml+json" [I-D.jennings-core-senml] for
   Sensor Markup Language (SenML) formatted data, "application/cbor" for
   CBOR [RFC7049], "application/exi" for EXI [W3C.REC-exi-20110310].
   Full list of registered internet media types is available at the IANA
   registry [IANA-media-types] and media types registered for use with
   CoAP are listed at CoAP Content-Formats IANA registry
   [IANA-CoAP-media].

3.4.  Uniform Resource Identifiers (URIs)

   Uniform Resource Identifiers (URIs) are used to interact with a
   resource, to reference a resource from another resource, to advertise
   or bookmark a resource, or to index a resource by search engines.
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     foo://example.com:8042/over/there?name=ferret#nose
     \_/   \______________/\_________/ \_________/ \__/
      |           |            |            |        |
   scheme     authority       path        query   fragment

   A URI is a sequence of characters that matches the syntax defined in
   [RFC3986].  It consists of a hierarchical sequence of five
   components: scheme, authority, path, query, and fragment (from most
   significant to least significant).  A scheme creates a namespace for
   resources and defines how the following components identify a
   resource within that namespace.  The authority identifies an entity
   that governs part of the namespace, such as the server
   "www.example.org" in the "http" scheme.  A host name (e.g., a fully
   qualified domain name) or an IP address, potentially followed by a
   transport layer port number, are usually used in the authority
   component for the "http" and "coap" schemes.  The path and query
   contain data to identify a resource within the scope of the URI’s
   scheme and naming authority.  The path is hierarchical; the query is
   non-hierarchical.  The fragment allows to refer to some portion of
   the resource, such as a section in an HTML document.

   For RESTful IoT applications, typical schemes include "https",
   "coaps", "http", and "coap".  These refer to HTTP and CoAP, with and
   without Transport Layer Security (TLS) [RFC5246].  (CoAP uses
   Datagram TLS (DTLS) [RFC6347], the variant of TLS for UDP.)  These
   four schemes also provide means for locating the resource; using the
   HTTP protocol for "http" and "https", and with the CoAP protocol for
   "coap" and "coaps".  If the scheme is different for two URIs (e.g.,
   "coap" vs. "coaps"), it is important to note that even if the rest of
   the URI is identical, these are two different resources, in two
   distinct namespaces.

   The query parameters can be used to parametrize the resource.  For
   example, a GET request may use query parameters to request the server
   to send only certain kind data of the resource (i.e., filtering the
   response).  Query parameters in PUT and POST requests do not have
   such established semantics and are not commonly used.

3.5.  HTTP/CoAP Methods

   Section 4.3 of [RFC7231] defines the set of methods in HTTP;
   Section 5.8 of [RFC7252] defines the set of methods in CoAP.  The
   following lists the most relevant methods and gives a short
   explanation of their semantics.
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3.5.1.  GET

   The GET method requests a current representation for the target
   resource.  Only the origin server needs to know how each of its
   resource identifiers corresponds to an implementation and how each
   implementation manages to select and send a current representation of
   the target resource in a response to GET.

   A payload within a GET request message has no defined semantics.

   A response to a successful GET request is cacheable; a cache may use
   it to satisfy future, equivalent GET requests.  The GET method is
   safe and idempotent.

3.5.2.  POST

   The POST method requests that the target resource process the
   representation enclosed in the request according to the resource’s
   own specific semantics.

   If one or more resources has been created on the origin server as a
   result of successfully processing a POST request, the origin server
   sends a 201 (Created) response containing a Location header field
   that provides an identifier for the resource created and a
   representation that describes the status of the request while
   referring to the new resource(s).

   The POST method is not safe nor idempotent.

3.5.3.  PUT

   The PUT method requests that the state of the target resource be
   created or replaced with the state defined by the representation
   enclosed in the request message payload.  A successful PUT of a given
   representation would suggest that a subsequent GET on that same
   target resource will result in an equivalent representation being
   sent.

   The fundamental difference between the POST and PUT methods is
   highlighted by the different intent for the enclosed representation.
   The target resource in a POST request is intended to handle the
   enclosed representation according to the resource’s own semantics,
   whereas the enclosed representation in a PUT request is defined as
   replacing the state of the target resource.  Hence, the intent of PUT
   is idempotent and visible to intermediaries, even though the exact
   effect is only known by the origin server.

   The PUT method is not safe, but is idempotent.
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3.5.4.  DELETE

   The DELETE method requests that the origin server remove the
   association between the target resource and its current
   functionality.

   If the target resource has one or more current representations, they
   might or might not be destroyed by the origin server, and the
   associated storage might or might not be reclaimed, depending
   entirely on the nature of the resource and its implementation by the
   origin server.

   The DELETE method is not safe, but is idempotent.

3.6.  HTTP/CoAP Status/Response Codes

   Section 6 of [RFC7231] defines a set of Status Codes in HTTP that are
   used by application to indicate whether a request was understood and
   satisfied, and how to interpret the answer.  Similarly, Section 5.9
   of [RFC7252] defines the set of Response Codes in CoAP.

   The status codes consist of three digits (e.g., "404" or "4.04")
   where the first digit expresses the class of the code.
   Implementations do not need to understand all status codes, but the
   class of the code must be understood.  Codes starting with 1 are
   informational; the request was received and being processed.  Codes
   starting with 2 indicate successful request.  Codes starting with 3
   indicate redirection; further action is needed to complete the
   request.  Codes stating with 4 and 5 indicate errors.  The codes
   starting with 4 mean client error (e.g., bad syntax in request)
   whereas codes starting with 5 mean server error; there was no
   apparent problem with the request but server was not able to fulfill
   the request.

   Responses may be stored in a cache to satisfy future, equivalent
   requests.  HTTP and CoAP use two different patterns to decide what
   responses are cacheable.  In HTTP, the cacheability of a response
   depends on the request method (e.g., responses returned in reply to a
   GET request are cacheable).  In CoAP, the cacheability of a response
   depends on the response code (e.g., responses with code 2.04 are
   cacheable).  This difference also leads to slightly different
   semantics for the codes starting with 2; for example, CoAP does not
   have a 2.00 response code.
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4.  Security Considerations

   This document does not define new functionality and therefore does
   not introduce new security concerns.  However, security consideration
   from related specifications apply to RESTful IoT design.  These
   include:

   o  HTTP security: Section 9 of [RFC7230], Section 9 of [RFC7231],
      etc.

   o  CoAP security: Section 11 of [RFC7252]

   o  URI security: Section 7 of [RFC3986]
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Appendix A.  Future Work

   o  More details on the definition of application state.  Is server
      involved and to what extent.

   o  Discuss design patterns, such as "Observing state (asynchronous
      updates) of a resource", "Executing a Function", "Events as
      State", "Conversion", "Collections", "robust communication in
      network with high packet loss", "unreliable (best effort)
      communication", "3-way commit", etc.

   o  Discuss directories, such as CoAP Resource Directory
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   o  More information on how to design resources; choosing what is
      modeled as a resource, etc.
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   Being able to trust information from sensors and to securely control
   actuators is essential in a world of connected and networking things
   interacting with the physical world.  In this memo we show that just
   using COAP with a security protocol like DTLS or OSCOAP is not
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1.  Introduction

   Being able to trust information from sensors and to securely control
   actuators is essential in a world of connected and networking things
   interacting with the physical world.  One protocol used to interact
   with sensors and actuators is the Constrained Application Protocol
   (CoAP).  Any Internet-of-Things (IoT) deployment valuing security and
   privacy would use a security protocol such as DTLS [RFC6347] or
   OSCOAP [I-D.selander-ace-object-security] to protect CoAP, but we
   show that this is not enough.  We describe several serious attacks
   any on-path attacker (i.e. not only "trusted" intermediaries) can do,
   and discusses tougher requirements and mechanisms to mitigate the
   attacks.  The request delay attack (valid for both DTLS and OSCOAP
   and described in Section 2.2) lets an attacker control an actuator at
   a much later time than the client anticipated.  The response delay
   and mismatch attack (valid for DTLS and described in Section 2.3)
   lets an attacker respond to a client with a response meant for an
   older request.  In Section 3, a new CoAP Option, the Repeat Option,
   mitigating the delay attack in specified.

2.  Attacks

   Internet-of-Things (IoT) deployments valuing security and privacy,
   MUST use a security protocol such as DTLS or OSCOAP to protect CoAP.
   This is especially true for deployments of actuators where attacks
   often (but not always) have serious consequences.  The attacks
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   described in this section are made under the assumption that CoAP is
   already protected with a security protocol such as DTLS or OSCOAP, as
   an attacker otherwise can easily forge false requests and responses.

2.1.  The Block Attack

   An on-path attacker can block the delivery of any number of requests
   or responses.  The attack can also be performed by an attacker
   jamming the lower layer radio protocol.  This is true even if a
   security protocol like DTLS or OSCOAP is used.  Encryption makes
   selective blocking of messages harder, but not impossible or even
   infeasible.  With DTLS, proxies have access to the complete CoAP
   message, and with OSCOAP, the CoAP header and several CoAP options
   are not encrypted.  In both security protocols, the IP-addresses,
   ports, and CoAP message lengths are available to all on-path
   attackers, which may be enough to determine the server, resource, and
   command.  The block attack is illustrated in Figure 1 and 2.

                 Client   Foe   Server
                    |      |      |
                    +----->X      |      Code: 0.03 (PUT)
                    | PUT  |      |     Token: 0x47
                    |      |      |  Uri-Path: lock
                    |      |      |   Payload: 1 (Lock)
                    |      |      |

                 Figure 1: Blocking a Request

   Where ’X’ means the attacker is blocking delivery of the message.

               Client   Foe   Server
                  |      |      |
                  +------------>|      Code: 0.03 (PUT)
                  |      | PUT  |     Token: 0x47
                  |      |      |  Uri-Path: lock
                  |      |      |   Payload: 1 (Lock)
                  |      |      |
                  |      X<-----+      Code: 2.04 (Changed)
                  |      | 2.04 |     Token: 0x47
                  |      |      |

               Figure 2: Blocking a Response

   While blocking requests to, or responses from, a sensor is just a
   denial of service attack, blocking a request to, or a response from,
   an actuator results in the client losing information about the
   server’s status.  If the actuator e.g. is a lock (door, car, etc.),
   the attack results in the client not knowing (except by using out-of-
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   band information) whether the lock is unlocked or locked, just like
   the observer in the famous Schroedinger’s cat thought experiment.
   Due to the nature of the attack, the client cannot distinguish the
   attack from connectivity problems, offline servers, or unexpected
   behavior from middle boxes such as NATs and firewalls.

   Remedy: In actuator deployments where confirmation is important, the
   application MUST notify the user upon reception of the response, or
   warn the user when a response is not received.  The application
   SHOULD also indicate to the user that the status of the actuator is
   now uncertain.

2.2.  The Request Delay Attack

   An on-path attacker may not only block packets, but can also delay
   the delivery of any packet (request or response) by a chosen amount
   of time.  This is true even if DTLS or OSCOAP is used, as long as the
   delayed packet is delivered inside the replay window.  The replay
   window has a default length of 64 in DTLS and is application
   dependent in OSCOAP.  The attacker can control the replay window by
   blocking some or all other packets.  By first delaying a request, and
   then later, after delivery, blocking the response to the request, the
   client is not made aware of the delayed delivery except by the
   missing response.  The server has in general, no way of knowing that
   the request was delayed and will therefore happily process the
   request.

   If some wireless low-level protocol is used, the attack can also be
   performed by the attacker simultaneously recording what the client
   transmits while at the same time jamming the server.  The request
   delay attack is illustrated in Figure 3.
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                Client   Foe   Server
                   |      |      |
                   +----->@      |      Code: 0.03 (PUT)
                   | PUT  |      |     Token: 0x9c
                   |      |      |  Uri-Path: lock
                   |      |      |   Payload: 0 (Unlock)
                   |      |      |
                     ....   ....
                   |      |      |
                   |      @----->|      Code: 0.03 (PUT)
                   |      | PUT  |     Token: 0x9c
                   |      |      |  Uri-Path: lock
                   |      |      |   Payload: 0 (Unlock)
                   |      |      |
                   |      X<-----+      Code: 2.04 (Changed)
                   |      | 2.04 |     Token: 0x9c
                   |      |      |

               Figure 3: Delaying a Request

   Where ’@’ means the attacker is storing and later forwarding the
   message (@ may alternatively be seen as a wormhole connecting two
   points in spacetime).

   While an attacker delaying a request to a sensor is often not a
   security problem, an attacker delaying a request to an actuator
   performing an action is often a serious problem.  A request to an
   actuator (for example a request to unlock a lock) is often only meant
   to be valid for a short time frame, and if the request does not reach
   the actuator during this short timeframe, the request should not be
   fulfilled.  In the unlock example, if the client does not get any
   response and does not physically see the lock opening, the user is
   likely to walk away, calling the locksmith (or the IT-support).

   If a non-zero replay window is used (the default in DTLS and
   unspecified in OSCOAP), the attacker can let the client interact with
   the actuator before delivering the delayed request to the server
   (illustrated in Figure 4).  In the lock example, the attacker may
   store the first "unlock" request for later use.  The client will
   likely resend the request with the same token.  If DTLS is used, the
   resent packet will have a different sequence number and the attacker
   can forward it.  If OSCOAP is used, resent packets will have the same
   sequence number and the attacker must block them all until the client
   sends a new message with a new sequence number (not shown in
   Figure 4).  After a while when the client has locked the door again,
   the attacker can deliver the delayed "unlock" message to the door, a
   very serious attack.
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                Client   Foe   Server
                   |      |      |
                   +----->@      |      Code: 0.03 (PUT)
                   | PUT  |      |     Token: 0x9c
                   |      |      |  Uri-Path: lock
                   |      |      |   Payload: 0 (Unlock)
                   |      |      |
                   +------------>|      Code: 0.03 (PUT)
                   | PUT  |      |     Token: 0x9c
                   |      |      |  Uri-Path: lock
                   |      |      |   Payload: 0 (Unlock)
                   |      |      |
                   <-------------+      Code: 2.04 (Changed)
                   |      | 2.04 |     Token: 0x9c
                   |      |      |
                     ....   ....
                   |      |      |
                   +------------>|      Code: 0.03 (PUT)
                   | PUT  |      |     Token: 0x7a
                   |      |      |  Uri-Path: lock
                   |      |      |   Payload: 1 (Lock)
                   |      |      |
                   <-------------+      Code: 2.04 (Changed)
                   |      | 2.04 |     Token: 0x7a
                   |      |      |
                   |      @----->|      Code: 0.03 (PUT)
                   |      | PUT  |     Token: 0x9c
                   |      |      |  Uri-Path: lock
                   |      |      |   Payload: 0 (Unlock)
                   |      |      |
                   |      X<-----+      Code: 2.04 (Changed)
                   |      | 2.04 |     Token: 0x9c
                   |      |      |

               Figure 4: Delaying Request with Reordering

   While the second attack (Figure 4) can be mitigated by using a replay
   window of length zero, the first attack (Figure 3) cannot.  A
   solution must enable the server to verify that the request was
   received within a certain time frame after it was sent.  This can be
   accomplished with either a challenge-response pattern or by
   exchanging timestamps.  Security solutions based on timestamps
   require exactly synchronized time, and this is hard to control with
   complications such as time zones and daylight saving.  Even if the
   clocks are synchronized at one point in time, they may easily get
   out-of-sync and an attacker may even be able to affect the client or
   the server time in various ways such as setting up a fake NTP server,
   broadcasting false time signals to radio controlled clocks, or expose
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   one of them to a strong gravity field.  As soon as client falsely
   believes it is time synchronized with the server, delay attacks are
   possible.  A challenge response mechanism is much more failure proof
   and easy to analyze.  One such mechanism, the CoAP Repeat Option, is
   specified in Section 3.

   Remedy: The CoAP Repeat Option specified in Section 3 SHALL be used
   for controlling actuators unless another application specific
   challenge-response or timestamp mechanism is used.

2.3.  The Response Delay and Mismatch Attack

   The following attack can be performed if CoAP is protected by a
   security protocol where the response is not bound to the request in
   any way except by the CoAP token.  This would include most general
   security protocols, such as DTLS and IPsec, but not OSCOAP.  The
   attacker performs the attack by delaying delivery of a response until
   the client sends a request with the same token.  As long as the
   response is inside the replay window (which the attacker can make
   sure by blocking later responses), the response will be accepted by
   the client as a valid response to the later request.  CoAP [RFC7252]
   does not give any guidelines for the use of token with DTLS, except
   that the tokens currently "in use" SHOULD (not SHALL) be unique.

   The attack can be performed by an attacker on the wire, or an
   attacker simultaneously recording what the server transmits while at
   the same time jamming the client.  The response delay and mismatch
   attack is illustrated in Figure 5.
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             Client   Foe   Server
                |      |      |
                +------------>|      Code: 0.03 (PUT)
                | PUT  |      |     Token: 0x77
                |      |      |  Uri-Path: lock
                |      |      |   Payload: 0 (Unlock)
                |      |      |
                |      @<-----+      Code: 2.04 (Changed)
                |      | 2.04 |     Token: 0x77
                |      |      |
                  ....   ....
                |      |      |
                +----->X      |      Code: 0.03 (PUT)
                | PUT  |      |     Token: 0x77
                |      |      |  Uri-Path: lock
                |      |      |   Payload: 0 (Lock)
                |      |      |
                <------@      |      Code: 2.04 (Changed)
                | 2.04 |      |     Token: 0x77
                |      |      |

            Figure 5: Delaying and Mismatching Response to PUT

   If we once again take a lock as an example, the security consequences
   may be severe as the client receives a response message likely to be
   interpreted as confirmation of a locked door, while the received
   response message is in fact confirming an earlier unlock of the door.
   As the client is likely to leave the (believed to be locked) door
   unattended, the attacker may enter the home, enterprise, or car
   protected by the lock.

   The same attack may be performed on sensors, also this with serious
   consequences.  As illustrated in Figure 6, an attacker may convince
   the client that the lock is locked, when it in fact is not.  The
   "Unlock" request may be also be sent by another client authorized to
   control the lock.
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             Client   Foe   Server
                |      |      |
                +------------>|      Code: 0.01 (GET)
                | GET  |      |     Token: 0x77
                |      |      |  Uri-Path: lock
                |      |      |
                |      @<-----+      Code: 2.05 (Content)
                |      | 2.05 |     Token: 0x77
                |      |      |   Payload: 1 (Locked)
                |      |      |
                +------------>|      Code: 0.03 (PUT)
                | PUT  |      |     Token: 0x34
                |      |      |  Uri-Path: lock
                |      |      |   Payload: 1 (Unlock)
                |      |      |
                |      X<-----+      Code: 2.04 (Changed)
                |      | 2.04 |     Token: 0x34
                |      |      |
                +----->X      |      Code: 0.01 (GET)
                | GET  |      |     Token: 0x77
                |      |      |  Uri-Path: lock
                |      |      |
                <------@      |      Code: 2.05 (Content)
                | 2.05 |      |     Token: 0x77
                |      |      |   Payload: 1 (Locked)
                |      |      |

            Figure 6: Delaying and Mismatching Response to GET

   As illustrated in Figure 7, an attacker may even mix responses from
   different resources as long as the two resources share the same DTLS
   connection on some part of the path towards the client.  This can
   happen if the resources are located behind a common gateway, or are
   served by the same CoAP proxy.  An on-path attacker (not necessarily
   a DTLS endpoint such as a proxy) may e.g. deceive a client that the
   living room is on fire by responding with an earlier delayed response
   from the oven (temperatures in degree Celsius).
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       Client   Foe   Server
          |      |      |
          +------------>|      Code: 0.01 (GET)
          | GET  |      |     Token: 0x77
          |      |      |  Uri-Path: oven/temperature
          |      |      |
          |      @<-----+      Code: 2.05 (Content)
          |      | 2.05 |     Token: 0x77
          |      |      |   Payload: 225
          |      |      |
            ....   ....
          |      |      |
          +----->X      |      Code: 0.01 (GET)
          | GET  |      |     Token: 0x77
          |      |      |  Uri-Path: livingroom/temperature
          |      |      |
          <------@      |      Code: 2.05 (Content)
          | 2.05 |      |     Token: 0x77
          |      |      |   Payload: 225
          |      |      |

      Figure 7: Delaying and Mismatching Response from other resource

   OSCOAP is not susceptible to these attacks since it provides a secure
   binding between request and response messages.

   Remedy: If CoAP is protected with a security protocol not providing
   bindings between requests and responses (e.g.  DTLS) the client MUST
   NOT reuse any tokens for a given source/destination which the client
   has not received responses to.  The easiest way to accomplish this is
   to implement the token as a counter and never reuse any tokens at
   all, this approach SHOULD be followed.

2.4.  The Relay Attack

   Yet another type of attack can be performed in deployments where
   actuator actions are triggered automatically based on proximity and
   without any user interaction, e.g. a car (the client) constantly
   polling for the car key (the server) and unlocking both doors and
   engine as soon as the car key responds.  An attacker (or pair of
   attackers) may simply relay the CoAP messages out-of-band, using for
   examples some other radio technology.  By doing this, the actuator
   (i.e. the car) believes that the client is close by and performs
   actions based on that false assumption.  The attack is illustrated in
   Figure 8.  In this example the car is using an application specific
   challenge-response mechanism transferred as CoAP payloads.
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   Client   Foe         Foe   Server
      |      |           |      |
      +----->| ......... +----->|      Code: 0.02 (POST)
      | POST |           | POST |     Token: 0x3a
      |      |           |      |  Uri-Path: lock
      |      |           |      |   Payload: JwePR2iCe8b0ux (Challenge)
      |      |           |      |
      |<-----+ ......... |<-----+      Code: 2.04 (Changed)
      | 2.04 |           | 2.04 |     Token: 0x3a
      |      |           |      |   Payload: RM8i13G8D5vfXK (Response)
      |      |           |      |

         Figure 8: Relay Attack (the client is the actuator)

   The consequences may be severe, and in the case of a car, lead to the
   attacker unlocking and driving away with the car, an attack that
   unfortunately is happening in practice.

   Remedy: Getting a response over a short-range radio MUST NOT be taken
   as proof of proximity and therefore MUST NOT be used to take actions
   based on such proximity.  Any automatically triggered mechanisms
   relying on proximity MUST use other stronger mechanisms to guarantee
   proximity.  Mechanisms that MAY be used are: measuring the round-trip
   time and calculate the maximum possible distance based on the speed
   of light, or using radio with an extremely short range like NFC
   (centimeters instead of meters).  Another option is to including
   geographical coordinates (from e.g.  GPS) in the messages and
   calculate proximity based on these, but in this case the location
   measurements MUST be very precise and the system MUST make sure that
   an attacker cannot influence the location estimation, something that
   is very hard in practice.

3.  The Repeat Option

   The Repeat Option is a challenge-response mechanism for CoAP, binding
   a resent request to an earlier 4.03 forbidden response.  The
   challenge (for the client) is simply to echo the Repeat Option value
   in a new request.  The Repeat Option enables the server to verify the
   freshness of a request, thus mitigating the Delay Attack described in
   Section 2.2.  An example message flow is illustrated in Figure 9.
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                Client  Server
                   |      |
                   +----->|        Code: 0.03 (PUT)
                   | PUT  |       Token: 0x41
                   |      |    Uri-Path: lock
                   |      |     Payload: 0 (Unlock)
                   |      |
                   |<-----+ t0     Code: 4.03 (Forbidden)
                   | 4.03 |       Token: 0x41
                   |      |      Repeat: 0x6c880d41167ba807
                   |      |
                   +----->| t1     Code: 0.03 (PUT)
                   | PUT  |       Token: 0x42
                   |      |    Uri-Path: lock
                   |      |      Repeat: 0x6c880d41167ba807
                   |      |     Payload: 0 (Unlock)
                   |      |
                   |<-----+        Code: 2.04 (Changed)
                   | 2.04 |       Token: 0x42
                   |      |

                Figure 9: The Repeat Option

   The Repeat Option may be used for all Methods and Response Codes.  In
   responses, the value MUST be a (pseudo-)random bit string with a
   length of at least 64 bits.  A new (pseudo-)random bit string MUST be
   generated for each response.  In requests, the Repeat Option MUST
   echo the value from a previously received response.

   The Repeat Option is critical, Safe-to-Forward, not part of the
   Cache-Key, and not repeatable.

   Upon receiving a request without the Repeat Option to a resource with
   freshness requirements, the server sends a 4.03 Forbidden response
   with a Repeat Option and stores the option value and the response
   transmit time t0.

   Upon receiving a 4.03 Forbidden response with the Repeat Option, the
   client SHOULD resend the request, echoing the Repeat Option value.

   Upon receiving a request with the Repeat Option, the server verifies
   that the option value equals the previously sent value; otherwise the
   request is not processed further.  The server calculates the round-
   trip time RTT = (t1 - t0), where t1 is the request receive time.  The
   server MUST only accept requests with a round-trip time below a
   certain threshold T, i.e. RTT < T, otherwise the request is not
   processed further, and an error message MAY be sent.  The threshold T
   is application specific.
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   An attacker able to control the server’s clock with high precision,
   could still be able to perform a delay attack by moving the server’s
   clock back in time, thus making the measured round-trip time smaller
   than the actual round-trip time.  The times t0 and t1 MUST therefore
   be measured with a steady clock (one that cannot be adjusted).

   EDITORS NOTE: The mechanism described above gives the server
   freshness guarantee independently of what the client does.  The
   disadvantages are that the mechanism always takes two round-trips and
   that the server has to save the option value and the time t0.  Other
   solutions involving time may be discussed:

   o  The server may simply send the client the current time in its
      timescale, i.e. a timestamp (option value = t0).  The client may
      then use this timestamp to estimate the current time in the
      servers timescale when sending future requests (i.e. not echoing).
      This approach has the benefit of reducing round-trips and server
      state, but has the security problems discussed in Section 2.2.

   o  The server may instead of a pseudorandom value send an encrypted
      timestamp (option value = E(k, t0)).  CTR-mode would from a
      security point be like sending (value = t0).  ECB-mode or CCM-mode
      would work, but would expand the value length.  With CCM, the
      server might also bind the option value to request (value =
      AEAD(k, t0, parts of request)).  This approach does not reduce the
      number of round-trips but eliminates server state.

4.  IANA Considerations

   This document defines the following Option Number, whose value have
   been assigned to the CoAP Option Numbers Registry defined by
   [RFC7252].

                       +--------+------------------+
                       | Number | Name             |
                       +--------+------------------+
                       |     29 | Repeat           |
                       +--------+------------------+

5.  Security Considerations

   The whole document can be seen as security considerations for CoAP.
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Abstract

   As more constrained devices are integrating with current Internet,
   the ubiquitous computing in scenarios like smart home is very
   important. In smart home, the constrained devices (ex. thermostat)
   need to be provisioned in such a way that it can inter-operate with
   any kind of devices like other constrained devices (ex. Air
   conditioner) or client devices (ex. smart phone). This document
   provides a method to support service provisioning based on pre-
   configured admission and resource control policies, where this method
   explains device’s service access in two different use cases: first
   provisioning the service when a constrained device accessing the
   service provided by other constrained device, second, accessing the
   service provided by constrained device from the client device (non
   constrained device).
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1 Introduction

   The work on Constrained Restful Environment (CoRE) aimed to realize
   the restful architecture for constrained devices [RFC7228] in
   constrained networks [RFC4944]. The CORE work group has recently
   standardized constrained application protocol (CoAP) [RFC7252] for
   interacting with constrained resources where general HTTP is not
   memory/energy efficient. The use of web linking for resources
   description and discovery hosted by constrained web servers is
   specified by CORE [RFC6690]. Even though, CoAP allows the direct
   resource access for constrained devices, it is not advisable for
   direct access of resources in networks where multicast procedures are
   infeasible due to heavy network load, and the networks where sleepy
   nodes exist. So, the CoRE working group comes up with a solution
   called resource directory (RD) [draft-ietf-core-resource-directory]
   to host the devices service information, and allow other devices to
   perform lookup procedures through .well-known/core path to resources.

   The services advertised by these constrained devices needs to be
   commissioned and provisioned properly to allow other devices to
   access it. CoRE RD solution is a directory based solution that
   depends on CoAP protocol. CORE RD solution uses
   registration/update/delete/lookup procedures for service
   registration, service update, deleting service, lookup of services
   respectively. Service commissioning is a method which verifies a pre
   registered services with special commissioning tools/agents. These
   tools can be tablets or special embedded devices which initially
   stores the devices identifications in secure manner. Once the
   services are advertised by any device, those services need to be
   verified using commissioner. CORE RD provides a standard procedure to
   interact with commissioner, where commissioner acts like a client
   device to look up and verify the advertised services. Once the
   commissioner verifies the pre-registered services, commissioner can
   put some policy rules on services hosted by devices for resource
   control. These rules defined on (1) how to access the services either
   with other constrained devices or client devices, and (2) on
   operational instructions.

   Architecture is defined to authenticate and authorize client requests
   for a resource on a server using logical entities such as client(C),
   client authorization manager(CAM), server(S), and server
   authorization manager(SAM)[draft-gerdes-ace-actors]. The main goal of
   delegated CoAP authentication and authorization framework (DCAF) is
   the setup of a datagram transport layer security channel between two
   nodes to securely transmit authorization tickets   [draft-gerdes-
   core-dcaf-authorize]. The CAM sends an access request message on
   behalf of client by embedding requested permissions in client
   authorization information (CAI) field of access request message to
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   SAM. A ticket grant message is sent from SAM by embedding the
   permissions given from the server on a specific resource in server
   authorization information (SAI) field of ticket grant message to the
   client. These SAI, CAI use authorization information format (AIF)
   that describes the permissions requested from access request in a
   ticket request, where the underlying access control model will be
   that of an access matrix, which gives a set of permissions for each
   possible combination of a subject and an object [draft-bormann-core-
   ace-aif]. This simple information model also doesn’t allow
   conditional access (e.g.,"resource /s/tempC is accessible only if
   client belongs to group1 and does not belong to group2"). Finally,
   the model does not provide any dynamic functions such as enabling
   special access for a set of resources that are specific to a subject.
   But, the services provided by resources in constrained environment,
   need to be authorized and controlled conditionally based on some
   service level agreements or preconfigured policies on resource
   control.

   Considering an example use case scenario such as thermostat device
   measures the current room temperature, and can service for air
   conditioner device to set automatic temperatures. In a smart home,
   user wants to regulate his room temperature automatically using his
   airconditioner device. Here, this airconditioner device can adjust
   its temperature to either cool the room or heat the room by accessing
   the service provided by the thermostat. Suppose this user leaves the
   home in the morning in hot summer and leaves the office in the
   evening to reach to home. But, before he reaches his room he wants to
   make his room cool enough. So he has to switch on the airconditioner
   from his mobile one hour before he leaves the office. So, before
   adjusting his aircconditioner to make the room cool enough, he might
   have to know the current room temperature. Thus he access the service
   provided by the thermostat to read the room temperature and adjust
   the airconditioner. However, there is a problem here on how to access
   these services which are provided by user’s home devices itself, what
   is the authenticity level to access from outside the home, even
   within home what is the access control/resource control of these
   devices because the neighboring device which are not authenticated
   can also access these service if those devices are within the
   constrained network range. Finally it is important to admit access of
   the service by client based on the configuration policies so that the
   devices can be protected from hazardous conditions, and allows only
   pre-agreed operations on devices.

   The service provisioning presented in this document provides a method
   to support admission, and resource control policies using
   commissioning procedure. The method explains the device’s service
   access in two different use cases: first provisioning the service
   when a constrained device accessing the service provided by other
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   constrained device, second, accessing the service provided by
   constrained device from the client device. Even though it is out of
   scope of the present document, it also considers a secure way of
   service commissioning as part of security.

2 Motivation

   CORE RD solution provides various automated operations such as
   service registrations, service update, service removal, and service
   lookups initiated by endpoints and clients. However, managing this
   centralized directory server by allowing authorized users to perform
   these tasks, setting some service level agreements on clients to
   access these services, and providing limited or scope oriented
   lookups by other endpoints or clients require efficient service
   provisioning mechanism. The service provisioning method presented in
   this document deals on how a registered service from devices can be
   accessed by various clients or other devices. Moreover, it also
   provides a method for handling this resource/service access control
   mechanism using web service model for efficient service provisioning
   from outside the constrained home environment.

3 Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

      o "CORE", CORE is a Constrained RESTful Environment providing a
      framework for resource-oriented application intended to run on
      constrained networks [RFC7228].

      o "COAP" The Constrained Application Protocol (CoAP) is a
      specialized web transfer protocol for use with constrained nodes
      and networks [RFC7252].

      o "RD" The Resource Directory (RD) is a directory based server to
      host the descriptions of resources and allowing the lookups to be
      performed for those resources by various client devices.

      o "Commissioner" Commissioning agent is tool/device that verifies
      the devices operation, integrity check with the network.

      o "Constrained Device" These are embedded computing devices that
      are expected to be as resource constrained in terms of RAM/ROM
      size, and to be deployed with the constrained environment such as
      6LoWPAN Networks.
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      o "Client" A client device is like resource constrained client
      such as other constrained device (ex. Air conditioner) or rich
      client devices such as Mobile/Laptop/Tablet etc, which access the
      services hosted by constrained devices (ex. thermostat).

      o "Provisioning Server" this server is a process of verifying
      service requester, providing access controls or admission controls
      on resources to be accessed and inter-operating with various
      devices without bothering about kind of network protocols used. It
      also provides web access model outside the constrained
      environment.

      o "Device Profile" A device profile comprises a set of attributes
      that are associated with a particular device. These include
      services, features, names, descriptions etc.

4  System Architecture

      The system architecture is better explained with two different
      scenarios: (1) Constrained device access the service advertised by
      other constrained device is as shown in Fig 1. Here, one
      constrained device such as air-conditioner can access the service
      such as current room temperature advertised by other constrained
      device (ex. thermostat). This advertised service is to be
      commissioned by commissioner, and then it should be set with some
      admission and resource control policies by provisioning server.
      And, finally the service is allowed to advertise its service
      access from other constrained devices. Any device that is
      interested in that advertised service, need to do service lookup
      from RD Server. Once obtaining the path to the advertised service,
      the constrained      client device can request a service to the
      device which hosts the service. Before sending the request, it
      MUST establish a secure channel between these two nodes [draft-
      schmitt-ace-twowayauth-for-iot]. Once the incoming request comes
      from the constrained client device, the device which hosts the
      service MUST authorize and provision for conditional access of its
      service from the provisioning server. The notification regarding
      the registered services to the commissioning agent can be sent
      from the RD server, which can be implementation specific and left
      for the user to choose any standard procedures and is out of scope
      of present document. Detailed operational procedure will be
      explained in the later sections of this document.
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       +------+  +-------+   +-----+   +--------+  +----------+
       |Device1  |Device2|   | RD  |   |Provis  |  |Commision
       |(Air     |(Thermo|   |     |   |ioning  |  |ing       |
       |Condi |  |  stat)|   |Serv     |Sever   |  |Agent     |
       |tioner)  |       |   |er   |   |        |  |          |
       +--|---+  +----|--+   +--|--+   +----|---+  +-----|----+
          |           |         |           |            |
          |           |         |           |            |
          |           |Register |           |            |
          |           ----------//          |            |
          |           | Service/|  Verify Preregistered\ |/
          |           |         ------------------------//
          |           |         |    Service|         // |
          |           |         |           |        /   |
          |           |         |           |            |
          |           |         |           |            |
          |           |         |           |            |
          |           |         |           |//Define    |
          |           |         |          /-------------
          |           |         |         / \ Policies   |
          |Search a Service  \  |           |            |
          ---------------------//           |            |
          |           |       //|           |            |
          |           |      /  |           |            |
          |           |         |           |            |
          |           |         |           |            |
          |Request    |         |           |            |
          -----------/          |           |            |
          |Service   /|         |           |            |
          |         / |         |           |            |
          |           |Check for authorization           |
          |           |admission, Resource  |            |
          |           ---------------------//            |
          |           | Control Policies  //|            |
          |           |         |        /  |            |
          |           |         |           |            |
          |           |         |           |            |
          |           | // Service Grant/Deny            |
          |           /---------------------             |
          |          /|\        |           |            |
          |  /        |         |           |            |
         \//Service  |          |           |            |
          /\----------          |           |            |
          |    Grant/Deny       |           |            |
          |           |         |           |            |

      Fig 1.Constrained device accessing service from constrained device
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       +--------+  +-------+  +-------+  +---------+ +---------+
       |Client  |  |Device2|  |RD     |  |Provision| |Commissi |
       |(Smart  |  |(Thermo|  |Server |  |ing Server |oning    |
       | Phone) |  | stat) |  |       |  |         | |Agent    |
       |        |  |       |  |       |  |         | |         |
       |        |  |       |  |       |  |         | |         |
       +---|----+  +---|---+  +---|---+  +----|----+ +-----|---+
           |           |          |           |            |
           |           |          |           |            |
           |           |Register  |           |            |
           |           -----------/           |            |
           |           |Service   /           |            |
           |           |         /|           |            |
           |           |          |  /        |            |
           |           |          |//Verify Preregistered  |
           |           |          --------------------------
           |           |          |\    Service            |
           |           |          |           |            |
           |           |          |           |            |
           |           |          |           |  /         |
           |           |          |           |//Define    |
           |           |          |           -------------
           |           |          |           |\ Policies  |
           |           |          |           |            |
           | Request for Service  |        \               |
           ----------------------------------//            |
           |           |          |         //|            |
           |           |          |        /  |            |
           |           |          |           |            |
           |           |  /       |           |            |
           |           |// Request| for Service            |
           |           -----------------------             |
           |           |          |           |            |
           |           |          |           |            |
           |           |          |           |            |
           |           | Service Grant/Deny\  |            |
           |           ----------------------/             |
           |           |          |         //|            |
           |           |          |        /  |            |
           |           |          |           |            |
           |           |          |           |            |
           |  //       |          |           |            |
           |//   Service Grant/Deny           |            |
           \----------------------------------            |
           | \         |          |           |            |
           |           |          |           |            |

           Fig 2. Client accessing service from Constrained device
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      2) Client device access the service advertised by constrained
      device is as shown in Fig 2. For example, the client device such
      as smart phone can access the service (ex. room temperature)
      advertised by other constrained device (ex. thermostat). The
      client can access the service within a home environment or outside
      the home environment. So, in this scenario, the provisioning
      server maintains the service as a web service.

      This advertised service is to be commissioned by commissioner,
      then to be set with some admission and resource control policies
      by provisioning server. And, finally the service is allowed to
      advertise its access from the client devices. Any client that
      wishes to access this web service looks for corresponding
      operations provided from the provisioning server.

5 Network Topology

      The constrained devices such as Thermostat, Airconditioner may use
      small memory constrained sensors/actuators for simple services
      such as cooling/heating the room or just to measure the current
      room temperature. These memory constrained embedded devices may
      implement the 6LoWPAN stack such as uIP (provided by Contiki), and
      provide access for communication to other external queries from
      client devices such as smart phone which typically implements rich
      stack TCP/IP. Even though RD server or Provisioning server are
      shown as separate servers in the LAN as given in Fig 3, these can
      be hosted on a single server running two different processes.
      Moreover, the commissioner implements a standard procedure to
      interact with devices as a separate agent process which is out of
      scope of the present document and has been left to user’s choice
      while satisfying the mentioned operations in the current draft. On
      the other hand, these specific operations can be implemented
      separately as a third party and to be used at the commissioning
      agent. The lower level communication technology can be implemented
      either through Bluetooth (BT) or near field communication (NFC) to
      verify the devices unique ID (for ex. using MAC). Even though, the
      implementation procedure for commissioner is out of scope for the
      present document, it is shown as sample interaction with RD
      server/provisioning server as part of commissioning procedure in
      subsequent sections. Even though the present document discusses
      about 6LoWPAN based sensor network, it can be easily moved to any
      other technology such as Zigbee/BLE/Wireless HART without any
      changes in the architecture or design, because the present
      document abstracted the communication networks with their edge
      routers. The communication and routing mechanisms or procedure
      between edge router and sensor devices/client devices are out of
      scope of the present document.
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             -------                      --------
           //       \                  //        \
          /                          //            \
         /                          /
        /                          /
        | +--------+    |           |        +--------+|
       |  |RD Server---| |         | +-----+ |Thermostat|
       |  +--------+   | | LAN     | |Edge | +--------+ |
       |               |------|-------     |            |
       |  +----------+ | |    |    | |Router 6LoWPAN    |
        | |Provision --||     |     |+-----+           |
         |Server    |  /     |          +--------+   /
         +----------+ /      |          |Aircondioner
                     /       |       \  +--------+//
           \       //        |         \        //
             -------          |           --------
                              |
                              |
                              |
                              |
                              |
                             -|-----
                          //- |     -\
                        //  +-|----+   \
                       /    |Edge  |
                      /     |Router|
                      |     +------+      |
                     |                     |
                     |    WiFi             |
                     |   +-------+ +-----+ |
                     |   |Smart  | |Commisioning
                      |  |Phone  | | Agent|
                        +-------+ +-----+/
                                        /
                        \             //
                          \-       -//
                             -------

                    Fig 3. Network Topology

6 Operations

6.1 Register Service

      The constrained device which hosts the service MUST register its
      service with the RD server using its unique identifier (for ex.
      MAC id, UDDI registry etc.) and IP address as shown in Fig 4. The
      device MUST send a POST request for registering its service.
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      Before sending a request, it MUST establish a secure channel
      between these two nodes [draft-schmitt-ace-twowayauth-for-iot].
      Once the service has been registered with the RD server, the RD
      server may notify the registered information of a device (for
      ex.its unique identifier and device name) to a commissioning
      agent.

         +---------+                                         +---------+
         |         |                                         |         |
         | Device  |                                         |RD Server|
         |         |                                         |         |
         +----+----+                                         +-----+---+
              |                                                    |
              |                                                    |
              |                                               ‘.   |
              | POST /rd?ep=node1&d=example.com&et=temperature-no‘.|
              +--------------------------------------------------,’.
              | gp=thermostat&con=DeviceID(100)                ,’  |
              |                                              ,’    |
              |   ,’                                               |
              | ,’  2.01 Created Location: /rd/7521                |
              ‘.----------------------------------------------------
              | ‘-.                                                |
              |    ‘.                                              |
              |                                                    |

                   Fig. 4 Registering a Service

      6.2 Verify pre-registered service

      The commissioning agent MUST verify any pre registered service
      with the RD server as shown in Fig 5. The commissioning agent
      sends a GET request for domain lookup. Before sending the request,
      it MUST establish a secure channel between these two nodes
      [DTLS][TLS]. Once obtaining the specific domain, it MUST look for
      the group to which the service belongs. Once obtaining the
      specific domain and group, it MUST send a service look up with the
      RD server for the registered service. Once obtaining the service
      information about a specific device, the commissioning agent MUST
      verify the registered service. This service information is later
      used to create service registry in the provisioning server as
      explained in the following section. The example service
      information (denoted as SRV) looks like as shown in Fig 6.
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       +---------------+                                  +----------+
       |Commissioning  |                                  | RD Server|
       |Agent          |                                  |          |
       +------+--------+                                  +--------+-+
              |                                                    |
              |                                                    |
              |     GET /rd-lookup/d                           ‘.  |
              +--------------------------------------------------:’.
              |                                                .’  |
              |                                                    |
              | .’2.05 Content </rd>;d=example.com,</rd>;d=example.com
              ::---------------------------------------------------+
              | ‘-.                                                |
              |   GET /rd-lookup/gp?ep=node1&d=example.com      ‘. |
              +---------------------------------------------------/.
              |                                                 .’ |
              |                                                    |
              | .’2.05 Content <coap://ip:port>;gp=thermostat;ep=node1
              ::---------------------------------------------------+
              | ‘-.                                                |
              |                                               ‘.   |
              | GET /rd-lookup/res?rt=temp&gp=thermostat&d=example.com
              +--------------------------------------------------:’.
              |                                                .’  |
              |                                                    |
              | .’2.05 Content <coap://host:port>;rt=temp;gp=thermostat
              ::---------------------------------------------------+
              | ‘-.                              d=example.com     |
      +---------------------------+                                |
      |Authentication of Service  |                                |
      |Info and DeviceID          |                                |
      +---------------------------+ POST Verified User; DeviceID‘. |
              +---------------------------------------------------::
              | .’                                             .-’ |
              .‘.__________________________________________________|
              |  ‘.    2.00 OK                                     |

            Fig. 5 Verify pre registered service

               SRV {
                     Name: Node1
                     Group: Thermostat
                     Domain: myhome.com
                     Type: Temperature node
                     Device ID: 1001
                     Device IP: <host:port>
                   }
                     Fig 6. Example Service Informaion
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      6.3 Define policies on resource control

       +----------------+                        +---------------+
       |Commissioning   |                        |Provisioning   |
       | Agent          |                        | Server        |
       +------+---------+                        +--------+------+
              |  POST /thermostat /HTTP/1.1            ‘. |
              +------------------------------------------/.
              |  HOST thermostat.ps.example.com        .’ |
              |  Content-Type: application/text           |
              |  SRV { Name: Node1                        |
              |        Group: Thermostat                  |
              |        Domain: myhome.com                 |
              |        Type: Temperature-node             |
              |        DeviceID: 1001                     |
              |        DeviceIP: <host:port> }            |
              |                                           |
              | .’     HTTP/1.1 200 OK                    |
              ::------------------------------------------’
              | ‘.     Content-Type: application/text     |
              |        { sID (service ID) }               |
              |                                           |
              |  POST /thermostat /HTTP/1.1            ‘. |
              +------------------------------------------::
              |  HOST thermostat.ps.example.com        .’ |
              |  Content-Type: application/text           |
              |  AC { ServiceID: 1234                     |
              |       Auth: Basic Auth Support            |
              |       Count: 10                           |
              |       Admission Control: R,W,R/W,D }      |
              |                                           |
              | .’    HTTP/1.1 200 OK                     |
              ::------------------------------------------+
              | ‘.    Content-Type: application/text      |
              |                                           |
              |  POST /thermostat /HTTP/1.1            ‘. |
              +------------------------------------------::
              |  HOST thermostat.ps.example.com        .’ |
              |  Content-Type: application/text           |
              |  RC { If C is from G1 allow {R,W};        |
              |       If C is from G2&!G3 allow {R};      |
              |       If C is from d1&g1 allow {R,W,D};   |
              |        : }                                |
              | .’    HTTP/1.1 200 OK                     |
              ::------------------------------------------+
              | ‘.    Content-Type: application/text      |
              |                                           |
            Fig. 7 Defining Policies on Resource and Access Control
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      Once the hosted service has been verified by commissioning agent
      (CA), the CA MUST create a service registry with the provisioning
      server as explained in Fig 7. The provisioning server SHOULD send
      a service ID as a response back to the commissioning agent after
      creating the service entry.

      This service ID can be later used by the commissioning agent to
      permanently DELETE the service entry ( if required). The
      commissioning agent MUST create some admission control policies
      such as read (R), write (W), read/write (R/W), delete (D), number
      of simultaneous connection on resource etc.  on the registered
      service. Once the admission control policies has been set on a
      specific device, the resource control policies such as conditional
      access of a service, quality of service agreements (based on the
      priority levels set for clients) can be set on that registered
      service. These conditional access on service can be implemented
      with simple conditional statements as explained in section 6.3.1
      (for ex. "client (c) can access service with only read (R), write
      (W) permissions if it only belongs to group (g)"). The
      implementation or information format details of these conditional
      statements is out of scope of the present document (TBD). The
      example admission control and resource control policies are as
      shown in Fig 8, and Fig 9 respectively.

               AC {
                     Service ID: 12345
                     Auth: Basic Auth Support
                     Count: 10
                     Admission Control: R, W, R/W, D
                       :
                       :
                  }

                     Fig 8. Example Admission Control Policies

               RC {
                     If c is from g1 allow {R,W}
                     If C is from g2 & !g3 {R}
                     If C is from d1 & g1 allow {R, W, D}
                       :
                       :
                  }

                     Fig 9. Example Resource Control Policies

6.3.1 Resource Control

      Resource control policies for constrained devices are expressed in
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      terms of conditional expressions as explained in Fig. 9. Consider
      a scenario where we define the client (C) (who accesses the
      resource) in terms of groups/levels. For example in a typical home
      building, we assign each floor as a group. Suppose for a three
      floor building, the clients such as mobile phone/air conditioner
      can belong to any of the floor within a building. And we allow
      various permissions for the clients according to the group it
      belongs to, as specified in Fig 10.

                            ---------------------------
                            |       |     |   |   |   |
                            |Client |  R  | W | U | D |
                            |-------------|---|---|---|
                            |G1     |  *  | - | * | - |
                            |       |     |   |   |   |
                            |G2     |  *  | * | - | - |
                            |       |     |   |   |   |
                            |G3     |  -  | - | - | * |
                            |--------------------------
                           Fig 10. Example Permissions on Methods

      Supposed we assigned the priorities for different groups as C
      belongs to {G1, G2, G3} => {P1, P3, P2}. Moreover, if we would
      like to assign different QoS classes for clients, depending on the
      applications they use then it is required to control QoS policies
      in resource control. QoS is defined in terms of various parameters
      such as {availability, reliability, serviceability, data accuracy,
      aggregation delay, coverage, fault tolerance, network lifetime} in
      wireless sensor networks. It is assumed that based on these
      parameters, QoS is defined in terms of various classes such as
      {Q1, Q2, Q3}, then it is required that some of the clients can
      make some pre-level agreements on QoS requirement for their
      applications either based on the groups it belongs to or based on
      the priority of the clients request (Suppose, C belongs to {Q1,
      Q2, Q3}). Method for defining QoS classes is out of scope of the
      present document. Once defining the groups, its priorities, QoS
      classes, and permissions, then the conditional statements which
      define the resource control policies can be defined as follows:

      ST1: If the client belongs to G1 then it is allowed with
      permissions {R, R/W, U}, priority {P1}, QoS {Q1}, and operations
      {turn it up, read}; else if the client belongs to G2 then it is
      allowed with permissions {R, W, R/W}, priority {P3}, QoS {Q2}, and
      operations {turn it up, read}; else if the client belongs to G3
      then it is allowed with permissions {D}, priority {P2}, QoS {Q3},
      and operations {turn it down}.

      ST2: Allow the client with priority {P1}, QoS {Q1}, operations
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      {turn it up, turn it down, read}, and allow only with permissions
      {R} in G1; permissions {R, R/W, D} in G2; and permissions {D} in
      G3.

      ST3: Allow the client with priority {P1}, QoS {Q1}, and allow with
      permissions {R}, operations {read} in G1; allow with permissions
      {R, R/W, D}, operations {turn it up, turn it down, read} in G2;
      and allow with permissions {D}, operations {turn it down} in G3.

      Above conditional statements are few examples on how to define the
      conditional statements, the statements can be defined on any
      manner based on the resource control policies we would like to
      achieve. The above statements can be better explained in plain
      semantic notation as shown in Fig 11(a)-13(a), and the
      corresponding JSON representations for message exchange is
      explained in Fig 11(b)-13(b). These statements can be even
      implemented using data modeling language such as YANG or ASN 1.1
      which is out of scope of the present document.

       C
       {
          G1                               |"[
          {                                |"C":{"G1":{"Allow":"R,U",
              Allow {R,U}                  |"Priority":"P1","QoS":"Q1",
              Priority {P1}                |"Operations":"turnup,read"},
              QoS {Q1}                     |"G2":{"Allow":"R,W",
              Operations {tunr it up, read}|"Priority":"P3","QoS":"Q2",
          }                                |"Operations":"turn it
          G2                               |up,read"},"G3":{"Allow":"D",
          {                                |"Priority":"P2","QoS":"Q3",
              Allow {R,W}                  |"Operations":"turn it down"
              Priority {P3}                |}}]"
              QoS {Q2}                     |
              Operations {turn it up, read}|
          }                                |
          G3                               |
          {                                |
              Allow {D}                    |
              Priority {P2}                |
              QoS {Q2}                     |
              Operations {turn it down}    |
          }                                |
       }                                   |

                      (a)                                 (b)

             Fig 11. ST1: (a) Semantic Notation  (b) JSON Representation
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       C                                 | "[
       {                                 | "Priority":"P1","QoS":"Q1",
          Priority {P1}                  | "Operations":"turn it up,
          QoS {Q1}                       | turn it down, read",
          Operations {turn it up,turn it | "C":{"G1":{"Allow":"R"},
                      down, read}        |      "G2":{"Allow":"R,W,D"},
          G1                             |      "G3":{"Allow":"D"}}
          {                              | ]"
              Allow {R}                  |
          };                             |
          G2                             |
          {                              |
              Allow {R,W,D}              |
          };                             |
          G3                             |
          {                              |
              Allow {D}                  |
          };                             |
       }                                 |

                    (a)                                  (b)
             Fig 12. ST2: (a) Semantic Notation  (b) JSON Representation

       C                                    | "[
       {                                    | "Priority":"P1","QoS":
           Priority {P1}                    | "Q1","C":{"G1": {"Allow":
           QoS {Q1}                         | "R","Operations":"read"},
           G1                               | "G2":{"Allow":"R,W,D",
           {                                | "Operations":"turn it up,
               Allow {R}                    | turn it down, read"},
               Operations {read}            | "G3":{"Allow":"D",
           };                               | "Operations":"turn it
           G2                               | down"}}]"
           {                                |
               Allow {R,W,D}                |
               Operations {turn it up, turn |
                           down, read}      |
           };                               |
           G3                               |
           {                                |
               Allow {D}                    |
               Operations {turn it down}    |
           };                               |
       }                                    |

                    (a)                                   (b)
             Fig 13. ST3: (a) Semantic Notation (b) JSON Representation
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6.4 Search for services by device

      Any client device (as explained for scenario 2) MUST interacts
      with the provisioning server and looks for deployed services by
      devices. Moreover, the provisioning server can verify the complete
      authorization, admission, and resource control of any device’s
      services. Whereas, if any other constrained devices (ex. air
      conditioner) searches for services hosted by other constrained
      device (as explained for scenario 1) MUST interact with the RD
      server as shown in Fig 10. Here, initially the device queries for
      all services that are hosted by other devices, then it searches
      within the domain for specific service, its SRV info, and path to
      the hosted service. Before sending a request, it MUST establish a
      secure channel between these two nodes [draft-schmitt-ace-
      twowayauth-for-iot].

       +---------------+                                   +----------+
       | Device        |                                   | RD Server|
       | (aircondit    |                                   |          |
       |   ioner)      |                                   |          |
       +-----+---------+                                   +-------+--+
             |                                                     |
             |  GET /rd-lookup/gp?d=example.com                ‘.  |
             +---------------------------------------------------‘.:
             |                                                 .-’ |
             | .’2.05 Content <gp="thermostat">                    |
             ::----------------------------------------------------+
             | ‘-.                                                 |
             |   GET /rd-lookup/ep?gp=thermostat                ‘. |
             +----------------------------------------------------::
             |                                                  .’ |
             | .’2.05 Content <Node1> <Node2>                      |
             ::----------------------------------------------------+
             | ‘.                                                  |
             |                                                     |
             | GET /rd-lookup/ep?et=temperature&gp=thermostat   ‘. |
             +----------------------------------------------------‘.
             |                                                  .’ |
             |                                                     |
             | .’2.05 Content <coap://ip:port>;ep="Node1"          |
             ::----------------------------------------------------+
             | ‘-.                                                 |
             |                                                     |
            Fig. 10 Search for services by device

6.5 Service request and response
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      In scenario 1 (as shown in Fig 1), service request and response
      MUST use coap based communication to access the service as shown
      in Fig 11. Before sending a request, it MUST establish a secure
      channel between these two nodes [draft-schmitt-ace-twowayauth-for-
      iot]. Suppose, the constrained client device (for ex.
      airconditioner) want to access the service hosted by another
      constrained device (for ex. thermostat), then the client device
      MUST send a coap based GET request to thermostat. Then, this
      device (thermostat) SHOULD send a POST request to provision this
      service request with the provisioning server by sending clients
      <IP:port>. Based on the clients <IP:port>, the provisioning server
      MUST find the client (ex. airconditioner) details such as service
      information, group, domain, and type details.

      +------------+              +-------------+          +-----------+
      |Airconditi  |              |Thermostat   |          |Provision  |
      |oner        |              | (IP1)       |          |ining Server
      | (IP2)      |              |             |          | (IP3)     |
      +-----+------+              +------+------+          +--------+--+
            |                            |                          |
            |coap://thermostat.        ‘.|                          |
            +----------------------------::                         |
            |    example.com/temp     .’ |POST /thermostat       ‘. |
            |                            +-------------------------::
            |                            |HOST thermostat.ps.    .’ |
            |                            |             example.com  |
            |                            |Content-Type: application/txt
            |                            |{ SRC: <IP1,port>         |
            |                            |  DST: <IP3,port>         |
            |                            |  Client: <IP2,port> }    |
            |                            |                          |
            |                            |  +--------------------------+
            |                            |  |Check for Admission,      |
            |                            |  |ResourceControl of thermost
            |                            |  |for airconditioner        |
            |                            |  +--------------------------+
            |                            |                          |
            |                            | .’2.00 OK { Permit/Deny }|
            | .’URI-Path: temp CON 200    ::------------------------+
            ::---------------------------+ ‘-.                      |
            | ‘.("thermostat","aaaa::212.|                          |
            |  7402.2.202","temp",27)    |                          |
            |                            |                          |
         Fig. 11 Request/Response within Constrained Environment

      Once the client is identified, the provisioning server MUST check
      for authorization, admission and resource control policies of
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      hosted service (ex. thermostat). Once the service request is
      authorized to access then the URI-Path for hosted service along
      with the value is sent as a coap response to client device (air
      conditioner). Here, the request is conditional i.e. based on the
      resource control policies of a resource (such as thermostat) for a
      client (airconditioner), the permissions are given to access the
      resource.

      +-------------+               +------------+           +---------+
      |             |               |Provision   |           |         |
      | Client      |               |ining Server|           |Thermostat
      |             |               |            |           |         |
      +-----+-------+               +-----+------+           +------+--+
            |                             |                         |
            |http://thermostat.        ‘. |                         |
            +----------------------------::                         |
            |  example.com/temp        .’ |                         |
            |            +-----------------------------+            |
            |            |Check for Admission,         |            |
            |            |Resource Control of thermostat            |
            |            |for airconditioner           |            |
            |            +-----------------------------+            |
            |                             |                         |
            |                             | coap://thermostat.   ‘. |
            |                             +------------------------::
            |                             |example.com/temp      .’ |
            |                             |                         |
            |                             |                         |
            |                             | .’URI-Path: temp CON 200|
            |                             ::------------------------+
            |                             | ‘.                      |
            | .’ HTTP/1.1 200 OK          |                         |
            ::----------------------------+                         |
            | ‘. Temperature: 27          |                         |
            |                             |                         |
          Fig. 12 Request/Response from outside Constrained Environment

      Service request and response in scenario 2 (as shown in Fig 2),
      uses simple http based communication to access the service from
      the PS. Provisioning Server then sends a coap based GET request to
      the ultimate device that hosts service. Before sending this
      request to the actual device for service, PS authorizes the
      service request. Once, the service request is authorized to
      access, then the URI-path for hosted service along with the value
      is sent as HTTP response to client device. PS can implement a
      reverse proxy case for HTTP-CoAP protocol translation defined in
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      [draft-ietf-core-http-mapping].

      ------------------HTTP begin -------------------------------------
      HTTP POST
      Request:
      POST /thermostat   /HTTP/1.1
      HOST thermostat.example.com
      Content-Type:  application/x-www-form-urlencoded
      Content-Length:  length
      licenseID=string & content=string & paramsXML=string

      Response:
      HTTP/1.1   200 OK
      Content-Type:  text/xml; charset=utf-8
      Content-Length:  length
      <?xml version="1.0" encoding="utf-8"?>
      <string xmlns="http://xyz.com/">
      string
      </string>

      ------------------HTTP end  -------------------------------------

      ------------------ REST via HTTP begin --------------------------
      REST via HTTP POST
      Request:
      POST /thermostat   /HTTP/1.1
      HOST thermostat.example.com
      Content-Type:  application/x-www-form-urlencoded
      Content-Length:  length

      licenseID=string & content=string & paramsXML=string

      Response:
      HTTP/1.1   200 OK
      Content-Type:  text/xml; charset=utf-8
      Content-Length:  length

      string

      ------------------REST via HTTP end -----------------------------

      ------------------SOAP begin ------------------------------------

      SOAP 1.2
      Request:
      POST /Thermostat   /HTTP/1.1
      HOST: www.example.org
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      Content-Type:  application/soap+xml; charset=utf-8
      Content-Length:  length

      <?xml version="1.0"?>
      <soap:envelop>
      Xmlns:soap=http://www.w3.org/2001/12/soap-envelop
      Soap:encodingStyle=http://www.w3.org/2001/12/soapencoding>
      <soap:body xmlns: m="http://www.myhome.org/thermostat">
      <m:GetTemperature>
      <m:thermostat>1</m:thermostat>
      </m:GetTemperature>
      </soap:body>
      </soap:envelop>

      Response:
      HTTP/1.1 200 OK
      Content-Type:  application/soap+xml; charset=utf-8
      Content-Length:  length

      <?xml version="1.0"?>
      <soap:envelop>
      Xmlns:soap=http://www.w3.org/2001/12/soap-envelop
      Soap:encodingStyle=http://www.w3.org/2001/12/soapencoding>
      <soap:body xmlns: m="http://www.example.org/thermostat">
      <m:GetTemperatureResponse>
      <m:temperature>27.8</m:temperature>
      </m:GetTemperatureResponse>
      </soap:body>
      </soap:envelop>

      ------------------SOAP end ----------------------------------

7  Security Considerations

      Security level for message authentication is out of scope of the
      present document. However, the following security consideration
      needs to be considered for the present proposed method. Services
      that run over UDP are unprotected and vulnerable to unknowingly
      become part of a DDoS attack as UDP does not require return
      routability check. Therefore, an attacker can easily spoof the
      source IP of the target entity and send requests to such a service
      which would then respond to the target entity. The TLS/DTLS based
      security solution can be considered for secure message
      communication.

8  IANA Considerations
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      TBD
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