
TCPING E. Rescorla
Internet-Draft Mozilla
Intended status: Standards Track November 3, 2015
Expires: May 6, 2016

 Using TLS to Protect TCP Streams
 draft-ietf-tcpinc-use-tls-00

Abstract

 This document defines the use of TLS [RFC5246] with the TCP-ENO
 option [I-D.bittau-tcpinc-tcpeno].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 6, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Rescorla Expires May 6, 2016 [Page 1]

Internet-Draft TCP-use-TLS November 2015

Table of Contents

 1. Introduction . 2
 2. Overview . 3
 3. TCP-ENO Binding . 3
 3.1. Suboption Definition 3
 3.2. Session ID . 4
 3.3. Channel Close . 4
 4. TLS Profile . 4
 4.1. TLS 1.3 Profile . 5
 4.1.1. Handshake Modes 5
 4.1.2. Basic 1-RTT Handshake 6
 4.1.3. Hello Retry Request [6.3.1.3] 10
 4.1.4. Zero-RTT Exchange 10
 4.1.5. Key Schedule . 12
 4.1.6. Record Protection 13
 4.2. TLS 1.2 Profile . 13
 4.3. Deprecated Features 14
 4.4. Cryptographic Algorithms 14
 5. Transport Integrity . 14
 6. API Considerations . 15
 7. Implementation Considerations 15
 8. NAT/Firewall considerations 15
 9. IANA Considerations . 15
 10. Security Considerations 16
 11. References . 16
 11.1. Normative References 16
 11.2. Informative References 18

1. Introduction

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH The source for this
 draft is maintained in GitHub. Suggested changes should be submitted
 as pull requests at https://github.com/ekr/tcpinc-tls. Instructions
 are on that page as well.

 The TCPINC WG is chartered to define protocols to provide ubiquitous,
 transparent security for TCP connections. The WG is specifying The
 TCP Encryption Negotiation Option (TCP-ENO)
 [I-D.bittau-tcpinc-tcpeno] which allows for negotiation of encryption
 at the TCP layer. This document describes a binding of TLS [RFC5246]
 to TCP-ENO as what ENO calls an "encryption spec", thus allowing TCP-
 ENO to negotiate TLS.

Rescorla Expires May 6, 2016 [Page 2]

Internet-Draft TCP-use-TLS November 2015

2. Overview

 The basic idea behind this draft is simple. The SYN and SYN/ACK
 messages carry the TCP-ENO options indicating the willingness to do
 TLS. If both sides want to do TLS, then a TLS handshake is started
 and once that completes, the data is TLS protected prior to being
 sent over TCP. Otherwise, the application data is sent as usual.

 Client Server

 SYN + TCP-ENO [TLS]->
 <- SYN/ACK + TCP-ENO [TLS]
 ACK + TCP-ENO ->
 <---------------- TLS Handshake --------------->
 <--------- Application Data over TLS ---------->

 Figure 1

 Client Server

 SYN + TCP-ENO [TLS] ->
 <- SYN/ACK
 ACK ->
 <--------- Application Data over TCP ---------->

 Figure 2: Fall back to TCP

 If use of TLS is negotiated, the data sent over TCP simply is TLS
 data in compliance with TLS 1.2 [RFC5246] or TLS 1.3
 [I-D.ietf-tls-tls13].

 Once the TLS handshake has completed, all application data SHALL be
 sent over that negotiated TLS channel. Application data MUST NOT be
 sent prior to the TLS handshake.

 If the TLS handshake fails, the endpoint MUST tear down the TCP
 connection and MUST NOT send plaintext data over the connection.

3. TCP-ENO Binding

3.1. Suboption Definition

 TCP-ENO suboption with cs value set to [TBD]. Specifically, this
 means that the SYN contains a 1-byte suboption indicating support for
 this specification.

Rescorla Expires May 6, 2016 [Page 3]

Internet-Draft TCP-use-TLS November 2015

 bit 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 | 0 | TBD |
 +---+---+---+---+---+---+---+---+

 [[OPEN ISSUE: It would be nice to indicate the desire to have 0-RTT,
 but that would require a variable length suboption, which seems
 perhaps excessive. Maybe that’s the right answer anyway.]]

 The SYN/ACK can be in one of two forms:

 o A 1-byte suboption as in the SYN.

 o A variable-length suboption. In this case, the remainder of the
 option contains a nonce to be used for 0-RTT (see Section 4.1.4.
 This nonce MUST be globally unique. Servers MUST NOT use this
 form of the suboption unless explicitly configured (see
 Section 6). [[OPEN ISSUE: I just thought this up recently, so
 it’s possible it’s totally half-baked and won’t work. In
 particular, am I chewing up too much option space?]]

 The ACK simply contains the bare TCP-ENO suboption.

3.2. Session ID

 TCP-ENO Section 4.1 defines a session ID feature (not to be confused
 with TLS Session IDs). When the protocol in use is TLS, the session
 ID is computed via a TLS Exporter [RFC5705] using the Exporter Label
 [[TBD]] and without a context value (the TCP-ENO transcript is
 incorporated via the TCPENOTranscript extension).

3.3. Channel Close

 Because TLS security is provided in the TCP transport stream rather
 than at the segment level, the FIN is not an authenticated indicator
 of end of data. Instead implementations following this specification
 MUST send a TLS close_notify alert prior to sending a FIN and MUST
 raise an error if a FIN or RST is receive prior to receiving a
 close_notify.

4. TLS Profile

 The TLS Profile defined in this document is intended to be a
 compromise between two separate use cases. For the straight TCPINC
 use case of ubiquitous transport encryption, we desire that
 implementations solely implement TLS 1.3 [I-D.ietf-tls-tls13] or
 greater. However, we also want to allow the use of TCP-ENO as a
 signal for applications to do out-of-band negotiation of TLS, and

Rescorla Expires May 6, 2016 [Page 4]

Internet-Draft TCP-use-TLS November 2015

 those applications are likely to already have support for TLS 1.2
 [RFC5246]. In order to accomodate both cases, we specify a wire
 encoding that allows for negotiation of multiple TLS versions
 (Section 3.1) but encourage implementations to implement only TLS
 1.3. Implementations which also implement TLS 1.2 MUST implement the
 profile described in Section 4.2

4.1. TLS 1.3 Profile

 TLS 1.3 is the preferred version of TLS for this specification. In
 order to facilitate implementation, this section provides a non-
 normative description of the parts of TLS 1.3 which are relevant to
 TCPINC and defines a normative baseline of algorithms and modes which
 MUST be supported. Other modes, cipher suites, key exchange
 algorithms, certificate formats as defined in [I-D.ietf-tls-tls13]
 MAY also be used and that document remains the normative reference
 for TLS 1.3. Bracketed references (e.g., [S. 1.2.3.4] refer to the
 corresponding section in that document.) In order to match TLS
 terminology, we use the term "client" to indicate the TCP-ENO "A"
 role (See [I-D.bittau-tcpinc-tcpeno]; Section 3.1) and "server" to
 indicate the "B" role.

4.1.1. Handshake Modes

 TLS 1.3 as used in TCPINC supports two handshake modes, both based on
 Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) key exchange.

 o A 1-RTT mode which is used when the client has no information
 about the server’s keying material (see Figure 3)

 o A 0-RTT mode which is used when the client and server have
 connected previous and which allows the client to send data on the
 first flight (see Figure 4)

 In both case, the server is expected to have an Elliptic-Curve
 Digital Signature Algorithm (ECDSA) signing key which may either be a
 freshly-generated key or a long-term key (allowing Trust-On-First-Use
 (TOFU) style applications). The key need not be associated with any
 certificate and can simply be a bare key.

 Full TLS 1.3 includes support for additional modes based on pre-
 shared keys, but TCPINC implementations MAY opt to omit them.
 Implementations MUST implement the 1-RTT mode and SHOULD implement
 the 0-RTT mode.

Rescorla Expires May 6, 2016 [Page 5]

Internet-Draft TCP-use-TLS November 2015

 Client Server

 ClientHello
 + ClientKeyShare
 + TCPENOTranscript ------->
 ServerHello
 ServerKeyShare
 {EncryptedExtensions}
 {ServerConfiguration*}
 {Certificate}
 {CertificateVerify}
 <-------- {Finished}
 <-------- [Application Data]
 {Finished} -------->
 [Application Data] <-------> [Application Data]

 * Indicates optional or situation-dependent
 messages that are not always sent.

 {} Indicates messages protected using keys
 derived from the ephemeral secret.

 [] Indicates messages protected using keys
 derived from the master secret.

 Figure 3: Message flow for full TLS Handshake

 Note: Although these diagrams indicate a message called
 "Certificate", this message MAY either contain a bare public key or
 an X.509 certificate (this is intended to support the out-of-band use
 case indicated above). Implementations MUST support bare public keys
 and MAY support X.509 certificates.

4.1.2. Basic 1-RTT Handshake

4.1.2.1. Client’s First Flight

4.1.2.1.1. Sending

 In order to initiate the TLS handshake, the client sends a
 "ClientHello" message [S. 6.3.1.1].

Rescorla Expires May 6, 2016 [Page 6]

Internet-Draft TCP-use-TLS November 2015

 struct {
 ProtocolVersion client_version = { 3, 4 }; /* TLS v1.3 */
 Random random;
 uint8 session_id_len_RESERVED; /* Must be zero */
 CipherSuite cipher_suites<2..2^16-2>;
 uint8 compression_methods_len_RESERVED; /* Must be zero */
 Extension extensions<0..2^16-1>;
 } ClientHello;

 The fields listed here have the following meanings:

 client_version
 The version of the TLS protocol by which the client wishes to
 communicate during this session.

 random
 A 32-byte random nonce.

 cipher_suites
 This is a list of the cryptographic options supported by the
 client, with the client’s first preference first.

 extensions contains a set of extension fields. The client MUST
 include the following extensions:

 SignatureAlgorithms [S. 6.3.2.1]
 A list of signature/hash algorithm pairs the client supports.

 NamedGroup [S. 6.3.2.2]
 A list of ECDHE groups that the client supports

 ClientKeyShare [S. 6.3.2.3]
 Zero or more ECDHE shares drawn from the groups in NamedGroup.
 This SHOULD contain either a P-256 key or an X25519 key.

 The client MUST also include a ServerCertTypeExtension containing
 type "Raw Public Key" [RFC7250], indicating its willingness to accept
 a raw public key rather than an X.509 certificate in the server’s
 Certificate message.

 The client MUST include a TCPENOTranscript extension containing the
 TCP-ENO options that were used to negotiate ENO.

4.1.2.2. The TCPENOTranscript

 TCPENOTranscript TLS Extension is used to carry the TCP ENO
 negotiation transcript. The body of the extension simply includes
 the TCP-ENO negotiation transcript as defined in TCP-ENO Section 3.4.

Rescorla Expires May 6, 2016 [Page 7]

Internet-Draft TCP-use-TLS November 2015

 This serves two purposes:

 o It binds the TCP-ENO negotiation into the TLS handshake.

 o In 0-RTT mode (see Section 4.1.4) it allows the server to provide
 an anti-replay nonce which is then mixed into the TLS handshake.

 The server MUST validate that the TCPENOTranscript extension matches
 the transcript. If not, it MUST fail the handshake with a fatal
 "handshake_failure" exception.

4.1.2.2.1. Receiving

 Upon receiving the client’s ClientHello, the server selects a
 ciphersuite and ECDHE group out of the lists provided by the client
 in the cipher_suites list and the NamedGroup extension. If the
 client supplied an appropriate ClientKeyShare for that group, then
 the server responds with a ServerHello (see Section 4.1.2.3).
 Otherwise, it replies with a HelloRetryRequest (Section 4.1.3),
 indicating that the client needs to re-send the ClientHello with an
 appropriate key share; because all TCPINC implementations are
 required to support P-256, this should not happen unless P-256 is
 deprecated by a subsequent specification.

4.1.2.3. Server’s First Flight

4.1.2.3.1. Sending

 The server responds to the client’s first flight with a sequence of
 messages:

 ServerHello [6.3.1.2]
 Contains a nonce and the cipher suite that the server has selected
 out of the client’s list. The server MUST support the extensions
 listed in Section 4.1.2.1.1 and MUST also ignore any extensions it
 does not recognize; this implies that the server can implement
 solely the extensions listed in Section 4.1.2.1.1.

 ServerKeyShare [6.3.3]
 Contains the server’s ECDHE share for one of the groups offered in
 the client’s ClientKeyShare message. All messages after
 ServerKeyShare are encrypted using keys derived from the
 ClientKeyShare and ServerKeyShare.

 EncryptedExtensions [6.3.4]
 Responses to the extensions offered by the client. In this case,
 the only relevant extension is the ServerCertTypeExtension.

Rescorla Expires May 6, 2016 [Page 8]

Internet-Draft TCP-use-TLS November 2015

 Certificate [6.3.5]
 The server’s certificate. If the client offered a "Raw Public
 Key" type in ServerCertTypeExtension this message SHALL contain a
 SubjectPublicKeyInfo value for the server’s key as specified in
 [RFC7250]. Otherwise, it SHALL contain one or more X.509
 Certificates, as specified in [I-D.ietf-tls-tls13], Section 6.3.5.
 In either case, this message MUST contain a key which is
 consistent with the client’s SignatureAlgorithms and NamedGroup
 extensions.

 ServerConfiguration [6.3.7]
 A server configuration value for use in 0-RTT (see Section 4.1.4).

 CertificateVerify [6.3.8]
 A signature over the handshake transcript using the key provided
 in the certificate message.

 Finished [6.3.9]
 A MAC over the entire handshake transcript up to this point.

 Once the server has sent the Finished message, it can immediately
 generate the application traffic keys and start sending application
 traffic to the client.

4.1.2.4. Receiving

 Upon receiving the server’s first flight, the client proceeds as
 follows:

 o Read the ServerHello message to determine the cryptographic
 parameters.

 o Read the ServerKeyShare message and use that in combination with
 the ClientKeyShare to compute the keys which are used to encrypt
 the rest of the handshake.

 o Read the EncryptedExtensions message. As noted above, the main
 extension which needs to be processed is ServerCertTypeExtension,
 which indicates the format of the server’s certificate message.

 o Read the server’s certificate message and store the server’s
 public key. Unless the implementation is specifically configured
 otherwise, it SHOULD NOT attempt to validate the certificate, even
 if it is of type X.509 but merely extract the key.

 o Read the server’s CertificateVerify message and verify the
 server’s signature over the handshake transcript. If the

Rescorla Expires May 6, 2016 [Page 9]

Internet-Draft TCP-use-TLS November 2015

 signature does not verify, the client terminates the handshake
 with an alert (Section 6.1.2).

 o Read the server’s Finished message and verify the finished MAC
 based on the DH shared secret. If the MAC does not verify, the
 client terminates the handshake with an alert.

4.1.2.5. Client’s Second Flight

 Finally, the client sends a Finished message which contains a MAC
 over the handshake transcript (except for the server’s Finished).
 [[TODO: In the upcoming draft of TLS 1.3, the client’s Finished will
 likely include the server’s Finished.]] Once the client has
 transmitted the Finished, it can begin sending encrypted traffic to
 the server.

 The server reads the client’s Finished message and verifies the MAC.
 If the MAC does not verify, the client terminates the handshake with
 an alert.

4.1.3. Hello Retry Request [6.3.1.3]

 Because there are a small number of recommended groups, the
 ClientKeyShare will generally contain a key share for a group that
 the server supports. However, it is possible that the client will
 not send such a key share, but there may be another group that the
 client and server jointly support. In that case, the server MUST
 send a HelloRetryRequest indicating the desired group:

 struct {
 ProtocolVersion server_version;
 CipherSuite cipher_suite;
 NamedGroup selected_group;
 Extension extensions<0..2^16-1>;
 } HelloRetryRequest;

 In response to the HelloRetryRequest the client re-sends its
 ClientHello but with the addition of the group indicated in
 "selected_group".

4.1.4. Zero-RTT Exchange

 TLS 1.3 allows the server to send its first application data message
 to the client immediately upon receiving the client’s first handshake
 message (which the client can send upon receiving the server’s SYN/
 ACK). However, in the basic handshake, the client is required to
 wait for the server’s first flight before it can send to the server.

Rescorla Expires May 6, 2016 [Page 10]

Internet-Draft TCP-use-TLS November 2015

 TLS 1.3 also includes a "Zero-RTT" feature which allows the client to
 send data on its first flight to the server.

 In order to enable this feature, in an initial handshake the server
 sends a ServerConfiguration message which contains the server’s semi-
 static (EC)DH key which can be used for a future handshake:

 struct {
 opaque configuration_id<1..2^16-1>;
 uint32 expiration_date;
 NamedGroup group;
 opaque server_key<1..2^16-1>;
 EarlyDataType early_data_type;
 ConfigurationExtension extensions<0..2^16-1>;
 } ServerConfiguration;

 The group and server_key fields contain the server’s (EC)DH key and
 the early_data_type field is used to indicate what data can be sent
 in zero-RTT. Because client authentication is forbidden in TCPINC-
 uses of TLS 1.3 (see Section 4.3), the only valid value here is
 "early_data", indicating that the client can send data in 0-RTT.

 In a future connection, a client MAY send 0-RTT data only if the
 following three conditions obtain:

 o It has been specifically configured to do so (see Section 6).

 o A ServerConfiguration is available.

 o The server supplied a nonce in its SYN/ACK suboption [[TODO: Work
 out how to make this work with TFO if at all.]]

 In this case, the client sends an EarlyDataIndication extension in
 its ClientHello and can start sending data immediately, as shown
 below.

Rescorla Expires May 6, 2016 [Page 11]

Internet-Draft TCP-use-TLS November 2015

 Client Server

 ClientHello
 + ClientKeyShare
 + EarlyDataIndication
 + TCPENOTranscript
 (EncryptedExtensions)
 (Application Data) -------->
 ServerHello
 + EarlyDataIndication
 ServerKeyShare
 {EncryptedExtensions}
 {ServerConfiguration*}
 {Certificate}
 {CertificateVerify}
 <-------- {Finished}
 <-------- [Application Data]
 {Finished} -------->

 [Application Data] <-------> [Application Data]

 () Indicates messages protected using keys
 derived from the static secret.

 Figure 4: Message flow for a zero round trip handshake

 IMPORTANT NOTE: TLS 1.3 Zero-RTT does not provide PFS and therefore
 MUST only be used when explicitly configured.

 Note: TLS 1.3 Zero-RTT data is inherently replayable (see the note in
 [I-D.ietf-tls-tls13] Section 6.2.2). However, because the client and
 server have already exchanged data in the _TCP_ handshake, this data
 can be used to provide anti-replay for a 0-RTT mode TLS handshake via
 the TCPENOTranscript extension.

4.1.5. Key Schedule

 TLS 1.3 derives its traffic keys from two input keying material
 values:

 Ephemeral Secret (ES): A secret which is derived from ClientKeyShare
 and ServerKeyShare.

 Static Secret (SS): A secret which which is derived from
 ClientKeyShare and either ServerKeyShare (in the 1-RTT case) or the
 public key in the ServerConfiguration (in the 0-RTT case).

Rescorla Expires May 6, 2016 [Page 12]

Internet-Draft TCP-use-TLS November 2015

 The handshake is encrypted under keys derived from ES. The ordinary
 traffic keys are derived from the combination of ES and SS. The
 0-RTT traffic keys are derived solely from ES and therefore have
 limited forward security. All key derivation is done using the HKDF
 key-derivation algorithm [RFC5869].

4.1.6. Record Protection

 Once the TLS handshake has completed, all data is protected as a
 series of TLS Records.

 struct {
 ContentType opaque_type = application_data(23); /* see fragment.type
*/
 ProtocolVersion record_version = { 3, 1 }; /* TLS v1.x */
 uint16 length;
 aead-ciphered struct {
 opaque content[TLSPlaintext.length];
 ContentType type;
 uint8 zeros[length_of_padding];
 } fragment;
 } TLSCiphertext;

 Each record is encrypted with an Authenticated Encryption with
 Additional Data (AEAD) cipher with the following parameters:

 o The AEAD nonce is constructed by generating a per-connection nonce
 mask of length max(8 bytes, N_MIN) for the AEAD algorithm (N_MIN
 is the minimum nonce size defined in [RFC5116] Section 4) and
 XORing it with the sequence number of the TLS record (left-padded
 with zeroes).

 o The additional data is the sequence number + the TLS version
 number.

 The record data MAY BE padded with zeros to the right. Because the
 content type byte value is always non-zero, the padding is removed by
 removing bytes from the right until a non-zero byte is encountered.

4.2. TLS 1.2 Profile

 Implementations MUST implement and require the TLS Extended Master
 Secret Extension [I-D.ietf-tls-session-hash] and MUST NOT negotiate
 versions of TLS prior to TLS 1.2. Implementations MUST NOT negotiate
 non-AEAD cipher suites and MUST use only PFS cipher suites with a key
 of at least 2048 bits (finite field) or 256 bites (elliptic curve).
 TLS 1.2 implementations MUST NOT initiate renegotiation and MUST
 respond to renegotiation with a fatal "no_renegotiation" alert.

Rescorla Expires May 6, 2016 [Page 13]

Internet-Draft TCP-use-TLS November 2015

4.3. Deprecated Features

 When TLS is used with TCPINC, a number of TLS features MUST NOT be
 used, including:

 o TLS certificate-based client authentication

 o Session resumption

 These features have only minimal advantage in this context and
 interfere with offering a reduced profile.

4.4. Cryptographic Algorithms

 Implementations of this specification MUST implement the following
 cipher suite:

 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

 These cipher suites MUST support both digital signatures and key
 exchange with secp256r1 (NIST P-256) and SHOULD support key agrement
 with X25519 [I-D.irtf-cfrg-curves].

 Implementations of this specification SHOULD implement the following
 cipher suites:

 TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305
 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

5. Transport Integrity

 The basic operational mode defined by TCP-TLS protects only the
 application layer content, but not the TCP segment metadata. Upon
 receiving a packet, implementations MUST first check the TCP checksum
 and discard corrupt packets without presenting them to TLS. If the
 TCP checksum passes but TLS integrity fails, the connection MUST be
 torn down.

 Thus, TCP-TLS provides automatic security for the content, but not
 protection against DoS-style attacks. For instance, attackers will
 be able to inject RST packets, bogus application segments, etc.,
 regardless of whether TLS authentication is used. Because the
 application data is TLS protected, this will not result in the
 application receiving bogus data, but it will constitute a DoS on the
 connection.

 This attack could be countered by using TCP-TLS in combination with
 TCP-AO [RFC5925], using Application-Layer Protocol Negotiation (ALPN)

Rescorla Expires May 6, 2016 [Page 14]

Internet-Draft TCP-use-TLS November 2015

 [RFC7301] to negotiate the use of AO. [[OPEN ISSUE: Is this
 something we want? Maybe in a separate specification.]]

6. API Considerations

 Needed here:

 o How to configure 0-RTT and send 0-RTT data (some sort of sockopt).

 o When is the session-id available (post-connect() completion).

 o How to indicate that the certificate should be validated.

7. Implementation Considerations

 There are two primary implementation options for TCP-TLS:

 o Implement all of TCP-TLS in the operating system kernel.

 o Implement just the TCP-TLS negotiation option in the operating
 system kernel with an interface to tell the application that TCP-
 TLS has been negotiated and therefore that the application must
 negotiate TLS.

 The former option obviously achieves easier deployment for
 applications, which don’t have to do anything, but is more effort for
 kernel developers and requires a wider interface to the kernel to
 configure the TLS stack. The latter option is inherently more
 flexible but does not provide as immediate transparent deployment.
 It is also possible for systems to offer both options.

8. NAT/Firewall considerations

 If use of TLS is negotiated, the data sent over TCP simply is TLS
 data in compliance with [RFC5246]. Thus it is extremely likely to
 pass through NATs, firewalls, etc. The only kind of middlebox that
 is likely to cause a problem is one which does protocol enforcement
 that blocks TLS on arbitrary (non-443) ports but _also_ passes
 unknown TCP options. Although no doubt such devices do exist,
 because this is a common scenario, a client machine should be able to
 probe to determine if it is behind such a device relatively readily.

9. IANA Considerations

 IANA [shall register/has registered] the TCP-ENO suboption XX for
 TCP-TLS.

Rescorla Expires May 6, 2016 [Page 15]

Internet-Draft TCP-use-TLS November 2015

 IANA [shall register/has registered] the ALPN code point "tcpao" to
 indicate the use of TCP-TLS with TCP-AO.

10. Security Considerations

 The mechanisms in this document are inherently vulnerable to active
 attack because an attacker can remove the TCP-TLS option, thus
 downgrading you to ordinary TCP. Even when TCP-AO is used, all that
 is being provided is continuity of authentication from the initial
 handshake. If some sort of external authentication mechanism was
 provided or certificates are used, then you might get some protection
 against active attack.

 Once the TCP-TLS option has been negotiated, then the connection is
 resistant to active data injection attacks. If TCP-AO is not used,
 then injected packets appear as bogus data at the TLS layer and will
 result in MAC errors followed by a fatal alert. The result is that
 while data integrity is provided, the connection is not resistant to
 DoS attacks intended to terminate it.

 If TCP-AO is used, then any bogus packets injected by an attacker
 will be rejected by the TCP-AO integrity check and therefore will
 never reach the TLS layer. Thus, in this case, the connection is
 also resistant to DoS attacks, provided that endpoints require
 integrity protection for RST packets. If endpoints accept
 unauthenticated RST, then no DoS protection is provided.

11. References

11.1. Normative References

 [I-D.bittau-tcpinc-tcpeno]
 Bittau, A., Boneh, D., Giffin, D., Handley, M., Mazieres,
 D., and E. Smith, "TCP-ENO: Encryption Negotiation
 Option", draft-bittau-tcpinc-tcpeno-02 (work in progress),
 September 2015.

 [I-D.ietf-tls-applayerprotoneg]
 Friedl, S., Popov, A., Langley, A., and S. Emile,
 "Transport Layer Security (TLS) Application Layer Protocol
 Negotiation Extension", draft-ietf-tls-applayerprotoneg-05
 (work in progress), March 2014.

Rescorla Expires May 6, 2016 [Page 16]

Internet-Draft TCP-use-TLS November 2015

 [I-D.ietf-tls-chacha20-poly1305]
 Langley, A., Chang, W., Mavrogiannopoulos, N.,
 Strombergson, J., and S. Josefsson, "ChaCha20-Poly1305
 Cipher Suites for Transport Layer Security (TLS)", draft-
 ietf-tls-chacha20-poly1305-01 (work in progress), November
 2015.

 [I-D.ietf-tls-session-hash]
 Bhargavan, K., Delignat-Lavaud, A., Pironti, A., Langley,
 A., and M. Ray, "Transport Layer Security (TLS) Session
 Hash and Extended Master Secret Extension", draft-ietf-
 tls-session-hash-06 (work in progress), July 2015.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-10 (work in progress),
 October 2015.

 [I-D.irtf-cfrg-curves]
 Langley, A. and M. Hamburg, "Elliptic Curves for
 Security", draft-irtf-cfrg-curves-11 (work in progress),
 October 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <http://www.rfc-editor.org/info/rfc5116>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/
 RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <http://www.rfc-editor.org/info/rfc5705>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869, DOI 10.17487/
 RFC5869, May 2010,
 <http://www.rfc-editor.org/info/rfc5869>.

Rescorla Expires May 6, 2016 [Page 17]

Internet-Draft TCP-use-TLS November 2015

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <http://www.rfc-editor.org/info/rfc5925>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <http://www.rfc-editor.org/info/rfc7250>.

11.2. Informative References

 [I-D.bittau-tcp-crypt]
 Bittau, A., Boneh, D., Hamburg, M., Handley, M., Mazieres,
 D., and Q. Slack, "Cryptographic protection of TCP Streams
 (tcpcrypt)", draft-bittau-tcp-crypt-04 (work in progress),
 February 2014.

 [I-D.ietf-tls-falsestart]
 Langley, A., Modadugu, N., and B. Moeller, "Transport
 Layer Security (TLS) False Start", draft-ietf-tls-
 falsestart-01 (work in progress), November 2015.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,
 <http://www.rfc-editor.org/info/rfc5929>.

 [RFC6919] Barnes, R., Kent, S., and E. Rescorla, "Further Key Words
 for Use in RFCs to Indicate Requirement Levels", RFC 6919,
 DOI 10.17487/RFC6919, April 2013,
 <http://www.rfc-editor.org/info/rfc6919>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <http://www.rfc-editor.org/info/rfc7301>.

Author’s Address

 Eric Rescorla
 Mozilla

 EMail: ekr@rtfm.com

Rescorla Expires May 6, 2016 [Page 18]

