
Network Working Group A. Bittau
Internet-Draft D. Boneh
Intended status: Standards Track D. Giffin
Expires: May 6, 2016 M. Hamburg
 Stanford University
 M. Handley
 University College London
 D. Mazieres
 Q. Slack
 Stanford University
 E. Smith
 Kestrel Institute
 November 3, 2015

 Cryptographic protection of TCP Streams (tcpcrypt)
 draft-ietf-tcpinc-tcpcrypt-00

Abstract

 This document specifies tcpcrypt, a cryptographic protocol that
 protects TCP payload data and is negotiated by means of the TCP
 Encryption Negotiation Option (TCP-ENO) [I-D.ietf-tcpinc-tcpeno].
 Tcpcrypt coexists with middleboxes by tolerating resegmentation,
 NATs, and other manipulations of the TCP header. The protocol is
 self-contained and specifically tailored to TCP implementations,
 which often reside in kernels or other environments in which large
 external software dependencies can be undesirable. Because of option
 size restrictions, the protocol requires one additional one-way
 message latency to perform key exchange. However, this cost is
 avoided between two hosts that have recently established a previous
 tcpcrypt connection.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Bittau, et al. Expires May 6, 2016 [Page 1]

Internet-Draft tcpcrypt November 2015

 This Internet-Draft will expire on May 6, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Requirements language . 3
 2. Introduction . 3
 3. Encryption protocol . 3
 3.1. Cryptographic algorithms 4
 3.2. Roles . 5
 3.3. Protocol negotiation 5
 3.4. Key exchange . 6
 3.5. Session caching . 8
 3.6. Data encryption and authentication 10
 3.7. TCP header protection 11
 3.8. Re-keying . 11
 3.9. Keep-alive . 12
 4. Encodings . 13
 4.1. Key exchange messages 13
 4.2. Application frames 15
 4.2.1. Plaintext . 16
 4.2.2. Associated data 17

Bittau, et al. Expires May 6, 2016 [Page 2]

Internet-Draft tcpcrypt November 2015

 4.2.3. Frame nonce . 17
 5. API extensions . 17
 6. Key agreement schemes . 18
 7. AEAD algorithms . 20
 8. Acknowledgments . 20
 9. IANA Considerations . 20
 10. Security considerations 21
 11. References . 22
 11.1. Normative References 22
 11.2. Informative References 23
 Appendix A. Protocol constant values 23
 Authors’ Addresses . 23

1. Requirements language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Introduction

 This document describes tcpcrypt, an extension to TCP for
 cryptographic protection of session data. Tcpcrypt was designed to
 meet the following goals:

 o Meet the requirements of the TCP Encryption Negotiation Option
 (TCP-ENO) [I-D.ietf-tcpinc-tcpeno] for protecting connection data.

 o Be amenable to small, self-contained implementations inside TCP
 stacks.

 o Avoid unnecessary round trips.

 o As much as possible, prevent connection failure in the presence of
 NATs and other middleboxes that might normalize traffic or
 otherwise manipulate TCP segments.

 o Operate independently of IP addresses, making it possible to
 authenticate resumed TCP connections even when either end changes
 IP address.

3. Encryption protocol

 This section describes the tcpcrypt protocol at an abstract level, so
 as to provide an overview and facilitate analysis. The next section
 specifies the byte formats of all messages.

Bittau, et al. Expires May 6, 2016 [Page 3]

Internet-Draft tcpcrypt November 2015

3.1. Cryptographic algorithms

 Setting up a tcpcrypt connection employs three types of cryptographic
 algorithms:

 o A _key agreement scheme_ is used with a short-lived public key to
 agree upon a shared secret.

 o An _extract function_ is used to generate a pseudo-random key from
 some initial keying material, typically the output of the key
 agreement scheme. The notation Extract(S, IKM) denotes the output
 of the extract function with salt S and initial keying material
 IKM.

 o A _collision-resistant pseudo-random function (CPRF)_ is used to
 generate multiple cryptographic keys from a pseudo-random key,
 typically the output of the extract function. We use the notation
 CPRF(K, CONST, L) to designate the output of L bytes of the
 pseudo-random function identified by key K on CONST. A collision-
 resistant function is one on which, for sufficiently large L, an
 attacker cannot find two distinct inputs K_1, CONST_1 and K_2,
 CONST_2 such that CPRF(K_1, CONST_1, L) = CPRF(K_2, CONST_2, L).
 Collision resistance is important to assure the uniqueness of
 Session IDs, which are generated using the CPRF.

 The Extract and CPRF functions used by default are the Extract and
 Expand functions of HKDF [RFC5869]. These are defined as follows in
 terms of the PRF "HMAC-Hash(key, value)" for a negotiated "Hash"
 function:

 HKDF-Extract(salt, IKM) -> PRK
 PRK = HMAC-Hash(salt, IKM)

 HKDF-Expand(PRK, CONST, L) -> OKM
 T(0) = empty string (zero length)
 T(1) = HMAC-Hash(PRK, T(0) | CONST | 0x01)
 T(2) = HMAC-Hash(PRK, T(1) | CONST | 0x02)
 T(3) = HMAC-Hash(PRK, T(2) | CONST | 0x03)
 ...

 OKM = first L octets of T(1) | T(2) | T(3) | ...

 Figure 1: The symbol | denotes concatenation, and the counter
 concatenated with CONST is a single octet.

 Once tcpcrypt has been successfully set up, we say the connection
 moves to an ENCRYPTING phase, where it employs an _authenticated

Bittau, et al. Expires May 6, 2016 [Page 4]

Internet-Draft tcpcrypt November 2015

 encryption mode_ to encrypt and integrity-protect all application
 data.

 Note that public-key generation, public-key encryption, and shared-
 secret generation all require randomness. Other tcpcrypt functions
 may also require randomness, depending on the algorithms and modes of
 operation selected. A weak pseudo-random generator at either host
 will compromise tcpcrypt’s security. Thus, any host implementing
 tcpcrypt MUST have a cryptographically-secure source of randomness or
 pseudo-randomness.

3.2. Roles

 Tcpcrypt transforms a single pseudo-random key (PRK) into
 cryptographic session keys for each direction. Doing so requires an
 asymmetry in the protocol, as the key derivation function must be
 perturbed differently to generate different keys in each direction.
 Tcpcrypt includes other asymmetries in the roles of the two hosts,
 such as the process of negotiating algorithms (e.g., proposing vs.
 selecting cipher suites).

 To establish roles for the hosts, tcpcrypt depends on TCP-ENO
 [I-D.ietf-tcpinc-tcpeno]. As part of the negotiation process, TCP-
 ENO assigns hosts unique roles abstractly called "A" at one end of
 the connection and "B" at the other. Generally, an active opener
 plays the "A" role and a passive opener plays the "B" role, though an
 additional mechanism breaks the symmetry of simultaneous open. This
 document adopts the terms "A" and "B" to identify each end of a
 connection uniquely, following TCP-ENO’s designation.

3.3. Protocol negotiation

 Tcpcrypt also depends on TCP-ENO [I-D.ietf-tcpinc-tcpeno] to
 negotiate the use of tcpcrypt and a particular key agreement scheme.
 TCP-ENO negotiates an _encryption spec_ by means of suboptions
 embedded in SYN segments. Each suboption is identified by a byte
 consisting of a seven-bit _encryption spec identifier_ value, "cs",
 and a one-bit additional data indicator, "v". This document reserves
 and associates four "cs" values with tcpcrypt, as listed in Table 1;
 future standards can associate additional values with tcpcrypt.

 A TCP connection MUST employ tcpcrypt and transition to the
 ENCRYPTING phase when and only when:

 1. The TCP-ENO negotiated spec contains a "cs" value associated with
 tcpcrypt, and

 2. The presence of variable-length data matches the suboption usage.

Bittau, et al. Expires May 6, 2016 [Page 5]

Internet-Draft tcpcrypt November 2015

 Specifically, when the "cs" value is "TCPCRYPT_RESUME", whose use is
 described in Section 3.5, there MUST be associated data (i.e., "v"
 MUST be 1). For all other "cs" values specified in this document,
 there MUST NOT be additional suboption data (i.e., "v" MUST be 0).
 Future "cs" values associated with tcpcrypt might or might not
 specify the use of associated data. Tcpcrypt implementations MUST
 ignore suboptions whose "cs" and "v" values do not agree as specified
 in this paragraph.

 In normal usage, an active opener that wishes to negotiate the use of
 tcpcrypt will include an ENO option in its SYN segment; that option
 will include the tcpcrypt suboptions corresponding to the key-
 agreement schemes it is willing to enable, and possibly also a
 resumption suboption. The active opener MAY additionally include
 suboptions indicating support for encryption protocols other than
 tcpcrypt, as well as other general options as specified by TCP-ENO.

 If a passive opener receives an ENO option including tcpcrypt
 suboptions it supports, it MAY then attach an ENO option to its SYN-
 ACK segment, including _solely_ the suboption it wishes to enable.

 Once two hosts have exchanged SYN segments, the _negotiated spec_ is
 the last spec identifier in the SYN segment of host B (that is, the
 passive opener in the absence of simultaneous open) that also occurs
 in that of host A. If there is no such spec, hosts MUST disable TCP-
 ENO and tcpcrypt.

3.4. Key exchange

 Following successful negotiation of a tcpcrypt spec, all further
 signaling is performed in the Data portion of TCP segments. If the
 negotiated spec is not TCPCRYPT_RESUME, the two hosts perform key
 exchange through two messages, INIT1 and INIT2, at the start of host
 A’s and host B’s data streams, respectively. INIT1 or INIT2 can span
 multiple TCP segments and need not end at a segment boundary.
 However, the segment containing the last byte of an INIT1 or INIT2
 message SHOULD have TCP’s PSH bit set.

 The key exchange protocol, in abstract, proceeds as follows:

 A -> B: init1 = { INIT1_MAGIC, sym-cipher-list, N_A, PK_A }
 B -> A: init2 = { INIT2_MAGIC, sym-cipher, N_B, PK_B }

 The format of these messages is specified in detail in Section 4.1.

 The parameters are defined as follows:

Bittau, et al. Expires May 6, 2016 [Page 6]

Internet-Draft tcpcrypt November 2015

 o sym-cipher-list: a list of symmetric ciphers (AEAD algorithms)
 acceptable to host A. These are specified in Table 2.

 o sym-cipher: the symmetric cipher selected by B from the sym-
 cipher-list sent by A.

 o N_A, N_B: nonces chosen at random by A and B, respectively.

 o PK_A, PK_B: ephemeral public keys for A and B, respectively.
 These, as well as their corresponding private keys, are short-
 lived values that SHOULD be refreshed periodically and SHOULD NOT
 ever be written to persistent storage.

 The pre-master secret (PMS) is defined to be the result of the key-
 agreement algorithm whose inputs are the local host’s ephemeral
 private key and the remote host’s ephemeral public key. For example,
 host A would compute PMS using its own private key (not transmitted)
 and host B’s public key, PK_B.

 The two sides then compute a pseudo-random key (PRK), from which all
 session keys are derived, as follows:

 param := { eno-transcript, init1, init2 }
 PRK := Extract (N_A, { param, PMS })

 Above, "eno-transcript" is the protocol-negotiation transcript
 defined in TCP-ENO; "init1" and "init2" are the transmitted encodings
 of the INIT1 and INIT2 messages described in Section 4.1.

 A series of "session secrets" and corresponding Session IDs are then
 computed as follows:

 ss[0] := PRK
 ss[i] := CPRF (ss[i-1], CONST_NEXTK, K_LEN)

 SID[i] := CPRF (ss[i], CONST_SESSID, K_LEN)

 The value ss[0] is used to generate all key material for the current
 connection. SID[0] is the Session ID for the current connection, and
 will with overwhelming probability be unique for each individual TCP
 connection. The most computationally expensive part of the key
 exchange protocol is the public key cipher. The values of ss[i] for
 i > 0 can be used to avoid public key cryptography when establishing
 subsequent connections between the same two hosts, as described in
 Section 3.5. The CONST values are constants defined in Table 3. The
 K_LEN values depend on the tcpcrypt spec in use, and are specified in
 Figure 3.

Bittau, et al. Expires May 6, 2016 [Page 7]

Internet-Draft tcpcrypt November 2015

 Given a session secret, ss, the two sides compute a series of master
 keys as follows:

 mk[0] := CPRF (ss, CONST_REKEY, K_LEN)
 mk[i] := CPRF (mk[i-1], CONST_REKEY, K_LEN)

 Finally, each master key mk is used to generate keys for
 authenticated encryption for the "A" and "B" roles. Key k_ab is used
 by host A to encrypt and host B to decrypt, while k_ba is used by
 host B to encrypt and host A to decrypt.

 k_ab := CPRF(mk, CONST_KEY_A, ae_keylen)
 k_ba := CPRF(mk, CONST_KEY_B, ae_keylen)

 The ae_keylen value depends on the authenticated-encryption algorithm
 selected, and is given under "Key Length" in Table 2.

 HKDF is not used directly for key derivation because tcpcrypt
 requires multiple expand steps with different keys. This is needed
 for forward secrecy, so that ss[n] can be forgotten once a session is
 established, and mk[n] can be forgotten once a session is rekeyed.

 There is no "key confirmation" step in tcpcrypt. This is not
 required because tcpcrypt’s threat model includes the possibility of
 a connection to an adversary. If key negotiation is compromised and
 yields two different keys, all subsequent frames will be ignored due
 failed integrity checks, causing the application’s connection to
 hang. This is not a new threat because in plain TCP, an active
 attacker could have modified sequence and acknowledgement numbers to
 hang the connection anyway.

3.5. Session caching

 When two hosts have already negotiated session secret ss[i-1], they
 can establish a new connection without public-key operations using
 ss[i]. A host wishing to request this facility will include in its
 SYN segment an ENO option whose last suboption contains the spec
 identifier TCPCRYPT_RESUME:

 byte 0 1 9
 +--------+--------+---...---+--------+
 | Opt = | SID[i]{0..8} |
 | resume | |
 +--------+--------+---...---+--------+

 Figure 2: ENO suboption used to initiate session resumption

Bittau, et al. Expires May 6, 2016 [Page 8]

Internet-Draft tcpcrypt November 2015

 Above, the "resume" value is the byte whose lower 7 bits are
 TCPCRYPT_RESUME and whose top bit "v" is 1 (indicating variable-
 length data follows). The remainder of the suboption is filled with
 the first nine bytes of the Session ID SID[i].

 A host SHOULD also include ENO suboptions describing the key-
 agreement schemes it supports in addition to a resume suboption, so
 as to fall back to full key exchange in the event that session
 resumption fails.

 Which symmetric keys a host uses for transmitted segments is
 determined by its role in the original session ss[0]. It does not
 depend on the role it plays in the current session. For example, if
 a host had the "A" role in the first session, then it uses k_ab for
 sending segments and k_ba for receiving.

 After using ss[i] to compute mk[0], implementations SHOULD compute
 and cache ss[i+1] for possible use by a later session, then erase
 ss[i] from memory. Hosts SHOULD keep ss[i+1] around for a period of
 time until it is used or the memory needs to be reclaimed. Hosts
 SHOULD NOT write a cached ss[i+1] value to non-volatile storage.

 It is an implementation-specific issue as to how long ss[i+1] should
 be retained if it is unused. If the passive opener evicts it from
 cache before the active opener does, the only cost is the additional
 ten bytes to send the resumption suboption in the next connection.
 The behavior then falls back to a normal public-key handshake.

 The active opener MUST use the lowest value of "i" that has not
 already appeared in a resumption suboption exchanged with the same
 host and for the same pre-session seed.

 If the passive opener recognizes SID[i] and knows ss[i], it SHOULD
 respond with an ENO option containing a dataless resumption
 suboption; that is, the suboption whose "cs" value is TCPCRYPT_RESUME
 and whose "v" bit is zero.

 If the passive opener does not recognize SID[i], or SID[i] is not
 valid or has already been used, the passive opener SHOULD inspect any
 other ENO suboptions in hopes of negotiating a fresh key exchange as
 described in Section 3.4.

 When two hosts have previously negotiated a tcpcrypt session, either
 host may initiate session resumption regardless of which host was the
 active opener or played the "A" role in the previous session.
 However, a given host must either encrypt with k_ab for all sessions
 derived from the same pre-session seed, or k_ba. Thus, which keys a
 host uses to send segments depends only whether the host played the

Bittau, et al. Expires May 6, 2016 [Page 9]

Internet-Draft tcpcrypt November 2015

 "A" or "B" role in the initial session that used ss[0]; it is not
 affected by which host was the active opener transmitting the SYN
 segment containing a resumption suboption.

 A host MUST ignore a resumption suboption if it has previously sent
 or received one with the same SID[i]. In the event that two hosts
 simultaneously send SYN segments to each other with the same SID[i],
 but the two segments are not part of a simultaneous open, both
 connections will have to revert to public key cryptography. To avoid
 this limitation, implementations MAY choose to implement session
 caching such that a given pre-session key is only good for either
 passive or active opens at the same host, not both.

 In the case of simultaneous open where TCP-ENO is able to establish
 asymmetric roles, two hosts that simultaneously send SYN segments
 with resumption suboptions containing the same SID[i] may resume the
 associated session.

 Implementations that perform session caching MUST provide a means for
 applications to control session caching, including flushing cached
 session secrets associated with an ESTABLISHED connection or
 disabling the use of caching for a particular connection.

3.6. Data encryption and authentication

 Following key exchange, all further communication in a tcpcrypt-
 enabled connection is carried out within delimited _application
 frames_ that are encrypted and authenticated using the agreed keys.

 This protection is provided via algorithms for Authenticated
 Encryption with Associated Data (AEAD). The particular algorithms
 that may be used are listed in Table 2. One algorithm is selected
 during the negotiation described in Section 3.4.

 The format of an application frame is specified in Section 4.2. A
 sending host breaks its stream of application data into a series of
 chunks. Each chunk is placed in the "data" portion of a frame’s
 "plaintext" value, which is then encrypted to yield the frame’s
 "ciphertext" field. Chunks must be small enough that the ciphertext
 (slightly longer than the plaintext) has length less than 2^16 bytes.

 An "associated data" value (see Section 4.2.2) is constructed for the
 frame. It contains the frame’s "control" field and the length of the
 ciphertext.

 A "frame nonce" value (see Section 4.2.3) is also constructed for the
 frame (but not explicitly transmitted), containing an "offset" field
 whose integer value is the byte-offset of the beginning of the

Bittau, et al. Expires May 6, 2016 [Page 10]

Internet-Draft tcpcrypt November 2015

 current application frame in the underlying TCP datastream. (That
 is, the offset in the framing stream, not the plaintext application
 stream.) As the security of the AEAD algorithm depends on this nonce
 being used to encrypt at most one distinct plaintext value, an
 implementation MUST NOT ever transmit distinct frames at the same
 location in the underlying TCP datastream.

 With reference to the "AEAD Interface" described in Section 2 of
 [RFC5116], tcpcrypt invokes the AEAD algorithm with the secret key
 "K" set to k_ab or k_ba, according to the host’s role as described in
 Section 3.4. The plaintext value serves as "P", the associated data
 as "A", and the frame nonce as "N". The output of the encryption
 operation, "C", is transmitted in the frame’s "ciphertext" field.

 When a frame is received, tcpcrypt reconstructs the associated data
 and frame nonce values (the former contains only data sent in the
 clear, and the latter is implicit in the TCP stream), and provides
 these and the ciphertext value to the the AEAD decryption operation.
 The output of this operation is either "P", a plaintext value, or the
 special symbol FAIL. In the latter case, the implementation MAY
 either ignore the frame or terminate the connection.

3.7. TCP header protection

 The "ciphertext" field of the application frame contains protected
 versions of certain TCP header values.

 When "URGp" is set, the "urgent" value indicates an offset from the
 current frame’s beginning offset; the sum of these offsets gives the
 index of the last byte of urgent data in the application datastream.

 When "FINp" is set, it indicates that the sender will send no more
 application data after this frame. A receiver MUST ignore the TCP
 FIN flag and instead wait for "FINp" to signal to the local
 application that the stream is complete.

3.8. Re-keying

 Re-keying allows hosts to wipe from memory keys that could decrypt
 previously transmitted segments. It also allows the use of AEAD
 ciphers that can securely encrypt only a bounded number of messages
 under a given key.

 We refer to the two encryption keys (k_ab, k_ba) as a _key-set_. We
 refer to the key-set generated by mk[i] as the key-set with
 generation number "i" within a session. Each host maintains a
 current generation number that it uses to encrypt outgoing frames.
 Initially, the two hosts have current generation number 0.

Bittau, et al. Expires May 6, 2016 [Page 11]

Internet-Draft tcpcrypt November 2015

 When a host has just incremented its current generation number and
 has used the new key-set for the first time to encrypt an outgoing
 frame, it MUST set the frame’s "rekey" field (see Section 4.2) to 1.
 It MUST set this field to zero in all other cases.

 A host MAY increment its generation number beyond the highest
 generation it knows the other side to be using. We call this action
 initiating re-keying.

 A host SHOULD NOT initiate more than one concurrent re-key operation
 if it has no data to send.

 On receipt, a host increments its record of the remote host’s current
 generation number if and only if the "rekey" field is set to 1.

 If a received frame’s generation number is greater than the
 receiver’s current generation number, the receiver MUST immediately
 increment its current generation number to match. After incrementing
 its generation number, if the receiver does not have any application
 data to send, it MUST send an empty application frame with the
 "rekey" field set to 1.

 When retransmitting, implementations must always transmit the same
 bytes for the same TCP sequence numbers. Thus, a frame in a
 retransmitted segment MUST always be encrypted with the same key as
 when it was originally transmitted.

 Implementations SHOULD delete older-generation keys from memory once
 they have received all frames they will need to decrypt with the old
 keys and have encrypted all outgoing frames under the old keys.

3.9. Keep-alive

 Many hosts implement TCP Keep-Alives [RFC1122] as an option for
 applications to ensure that the other end of a TCP connection still
 exists even when there is no data to be sent. A TCP Keep-Alive
 segment carries a sequence number one prior to the beginning of the
 send window, and may carry one byte of "garbage" data. Such a
 segment causes the remote side to send an acknowledgment.

 Unfortunately, tcpcrypt cannot cryptographically verify Keep-Alive
 acknowledgments. Hence, an attacker could prolong the existence of a
 session at one host after the other end of the connection no longer
 exists. (Such an attack might prevent a process with sensitive data
 from exiting, giving an attacker more time to compromise a host and
 extract the sensitive data.)

Bittau, et al. Expires May 6, 2016 [Page 12]

Internet-Draft tcpcrypt November 2015

 Instead of TCP Keep-Alives, tcpcrypt implementations SHOULD employ
 the re-keying mechanism to stimulate the remote host to send
 verifiably fresh and authentic data. When required, a host SHOULD
 probe the liveness of its peer by initiating re-keying as described
 in Section 3.8, and then transmitting a new frame (with zero-length
 application data if necessary). A host receiving a frame whose key
 generation number is greater than its current generation number MUST
 increment its current generation number and MUST immediately transmit
 a new frame (with zero-length application data, if necessary).

4. Encodings

 This section provides byte-level encodings for values transmitted or
 computed by the protocol.

4.1. Key exchange messages

 The INIT1 message has the following encoding:

Bittau, et al. Expires May 6, 2016 [Page 13]

Internet-Draft tcpcrypt November 2015

 byte 0 1 2 3
 +-------+-------+-------+-------+
 | INIT1_MAGIC |
 | |
 +-------+-------+-------+-------+

 4 5 6 7
 +-------+-------+-------+-------+
 | message_len |
 | = M |
 +-------+-------+-------+-------+

 8
 +--------+-------+-------+---...---+-------+
 |nciphers|sym- |sym- | |sym- |
 | =K+1 |cipher0|cipher1| |cipherK|
 +--------+-------+-------+---...---+-------+

 K + 10 K + 10 + N_A_LEN
 | |
 v v
 +-------+---...---+-------+-------+---...---+-------+
 | N_A | PK_A |
 | | |
 +-------+---...---+-------+-------+---...---+-------+

 M - 1
 +-------+---...---+-------+
 | ignored |
 | |
 +-------+---...---+-------+

 The constant INIT1_MAGIC is defined in Table 3. The four-byte field
 "message_len" gives the length of the entire INIT1 message, encoded
 as a big-endian integer. The "nciphers" field contains an integer
 value that specifies the number of one-byte symmetric-cipher
 identifiers that follow. The "sym-cipher" bytes identify
 cryptographic algorithms in Table 2. The length N_A_LEN and the
 length of PK_A are both determined by the negotiated key-agreement
 scheme, as shown in Figure 3.

 When sending INIT1, implementations of this protocol MUST omit the
 field "ignored"; that is, they must construct the message such that
 its end, as determined by "message_len", coincides with the end of
 the PK_A field. When receiving INIT1, however, implementations MUST
 permit and ignore any bytes following PK_A.

 The INIT2 message has the following encoding:

Bittau, et al. Expires May 6, 2016 [Page 14]

Internet-Draft tcpcrypt November 2015

 byte 0 1 2 3
 +-------+-------+-------+-------+
 | INIT2_MAGIC |
 | |
 +-------+-------+-------+-------+

 4 5 6 7 8
 +-------+-------+-------+-------+-------+
 | message_len |sym- |
 | = M |cipher |
 +-------+-------+-------+-------+-------+

 9 9 + N_B_LEN
 | |
 v v
 +-------+---...---+-------+-------+---...---+-------+
 | N_B | PK_B |
 | | |
 +-------+---...---+-------+-------+---...---+-------+

 M - 1
 +-------+---...---+-------+
 | ignored |
 | |
 +-------+---...---+-------+

 The constant INIT2_MAGIC is defined in Table 3. The four-byte field
 "message_len" gives the length of the entire INIT2 message, encoded
 as a big-endian integer. The "sym-cipher" value is a selection from
 the symmetric-cipher identifiers in the previously-received INIT1
 message. The length N_B_LEN and the length of PK_B are both
 determined by the negotiated key-agreement scheme, as shown in
 Figure 3.

 When sending INIT2, implementations of this protocol MUST omit the
 field "ignored"; that is, they must construct the message such that
 its end, as determined by "message_len", coincides with the end of
 the PK_B field. When receiving INIT2, however, implementations MUST
 permit and ignore any bytes following PK_B.

4.2. Application frames

 An _application frame_ comprises a control byte and a length-prefixed
 ciphertext value:

Bittau, et al. Expires May 6, 2016 [Page 15]

Internet-Draft tcpcrypt November 2015

 byte 0 1 2 3 clen+2
 +-------+-------+-------+-------+---...---+-------+
 |control| clen | ciphertext |
 +-------+-------+-------+-------+---...---+-------+

 The field "clen" is an integer in big-endian format and gives the
 length of the "ciphertext" field.

 The byte "control" has this structure:

 bit 7 1 0
 +-------+---...---+-------+-------+
 | cres | rekey |
 +-------+---...---+-------+-------+

 The seven-bit field "cres" is reserved; implementations MUST set
 these bits to zero when sending, and MUST ignore them when receiving.

 The use of the "rekey" field is described in Section 3.8.

4.2.1. Plaintext

 The "ciphertext" field is the result of applying the negotiated
 authenticated-encryption algorithm to a "plaintext" value, which has
 one of these two formats:

 byte 0 1 plen-1
 +-------+-------+---...---+-------+
 | flags | data |
 +-------+-------+---...---+-------+

 byte 0 1 2 3 plen-1
 +-------+-------+-------+-------+---...---+-------+
 | flags | urgent | data |
 +-------+-------+-------+-------+---...---+-------+

 (Note that "clen" will generally be greater than "plen", as the
 authenticated-encryption scheme attaches an integrity "tag" to the
 encrypted input.)

 The "flags" byte has this structure:

 bit 7 6 5 4 3 2 1 0
 +----+----+----+----+----+----+----+----+
 | fres |URGp|FINp|
 +----+----+----+----+----+----+----+----+

Bittau, et al. Expires May 6, 2016 [Page 16]

Internet-Draft tcpcrypt November 2015

 The six-bit value "fres" is reserved; implementations MUST set these
 six bits to zero when sending, and MUST ignore them when receiving.

 When the "URGp" bit is set, it indicates that the "urgent" field is
 present, and thus that the plaintext value has the second structure
 variant above; otherwise the first variant is used.

 The meaning of "urgent" and of the flag bits is described in
 Section 3.7.

4.2.2. Associated data

 An application frame’s "associated data" (which is supplied to the
 AEAD algorithm when decrypting the ciphertext and verifying the
 frame’s integrity) has this format:

 byte 0 1 2
 +-------+-------+-------+
 |control| clen |
 +-------+-------+-------+

 It contains the same values as the frame’s "control" and "clen"
 fields.

4.2.3. Frame nonce

 Lastly, a "frame nonce" (provided as input to the AEAD algorithm) has
 this format:

 byte
 +------+------+------+------+
 0 | 0x44 | 0x41 | 0x54 | 0x41 |
 +------+------+------+------+
 4 | |
 + offset +
 8 | |
 +------+------+------+------+

 The 8-byte "offset" field contains an integer in big-endian format.
 Its value is specified in Section 3.6.

5. API extensions

 Applications aware of tcpcrypt will need an API for interacting with
 the protocol. They can do so if implementations provide the
 recommended API for TCP-ENO. This section recommends several
 additions to that API, described in the style of socket options.
 However, these recommendations are non-normative:

Bittau, et al. Expires May 6, 2016 [Page 17]

Internet-Draft tcpcrypt November 2015

 The following options is read-only:

 TCP_CRYPT_CONF: Returns the one-byte authenticated encryption
 algorithm in use by the connection (as specified in Table 2).

 The following option is write-only:

 TCP_CRYPT_CACHE_FLUSH: Setting this option to non-zero wipes cached
 session keys as specified in Section 3.5. Useful if application-
 level authentication discovers a man in the middle attack, to
 prevent the next connection from using session caching.

 The following options should be readable and writable:

 TCP_CRYPT_ACONF: Set of allowed symmetric ciphers and message
 authentication codes this host advertises in INIT1 messages.

 TCP_CRYPT_BCONF: Order of preference of symmetric ciphers.

 Finally, system administrators must be able to set the following
 system-wide parameters:

 o Default TCP_CRYPT_ACONF value

 o Default TCP_CRYPT_BCONF value

 o Types, key lengths, and regeneration intervals of local host’s
 short-lived public keys for implementations that do not use fresh
 ECDH parameters for each connection.

6. Key agreement schemes

 The encryption spec negotiated via TCP-ENO may indicate the use of
 one of these key-agreement schemes:

Bittau, et al. Expires May 6, 2016 [Page 18]

Internet-Draft tcpcrypt November 2015

 +---------------------------+----------------------------------+
 | Encryption spec (cs) | Key-agreement scheme |
 +---------------------------+----------------------------------+
 | TCPCRYPT_ECDHE_P256 | Cipher: ECDHE-P256 |
 | | Extract: HKDF-Extract-SHA256 |
 | | CPRF: HKDF-Expand-SHA256 |
 | | N_A_LEN: 32 bytes |
 | | N_B_LEN: 32 bytes |
 | | K_LEN: 32 bytes |
 +---------------------------+----------------------------------+
 | TCPCRYPT_ECDHE_P521 | Cipher: ECDHE-P521 |
 | | Extract: HKDF-Extract-SHA256 |
 | | CPRF: HKDF-Expand-SHA256 |
 | | N_A_LEN: 32 bytes |
 | | N_B_LEN: 32 bytes |
 | | K_LEN: 32 bytes |
 +---------------------------+----------------------------------+
 | TCPCRYPT_ECDHE_Curve25519 | Cipher: ECDHE-Curve25519 |
 | | Extract: HKDF-Extract-SHA256 |
 | | CPRF: HKDF-Expand-SHA256 |
 | | N_A_LEN: 32 bytes |
 | | N_B_LEN: 32 bytes |
 | | K_LEN: 32 bytes |
 +---------------------------+----------------------------------+

 Figure 3: Key agreement schemes

 Ciphers ECDHE-P256 and ECDHE-P521 employ the ECSVDP-DH secret value
 derivation primitive defined in [ieee1363]. The named curves are
 defined in [nist-dss]. When the public-key values PK_A and PK_B are
 transmitted as described in Section 4.1, they are encoded with the
 "Elliptic Curve Point to Octet String Conversion Primitive" described
 in Section E.2.3 of [ieee1363], and are prefixed by a two-byte length
 in big-endian format:

 byte 0 1 2 L - 1
 +-------+-------+-------+---...---+-------+
 | pubkey_len | pubkey |
 | = L | |
 +-------+-------+-------+---...---+-------+

 Implementations SHOULD encode these "pubkey" values in "compressed
 format", and MUST accept values encoded in "compressed",
 "uncompressed" or "hybrid" formats.

 The ECDHE-Curve25519 cipher uses the X25519 function described in
 [I-D.irtf-cfrg-curves]. When using this cipher, public-key values

Bittau, et al. Expires May 6, 2016 [Page 19]

Internet-Draft tcpcrypt November 2015

 PK_A and PK_B are transmitted directly as 32-byte values (with no
 length prefix).

 A tcpcrypt implementation MUST support at least the schemes
 TCPCRYPT_ECDHE_P256 and TCPCRYPT_ECDHE_P521, although system
 administrators need not enable them.

7. AEAD algorithms

 Specifiers and key-lengths for AEAD algorithms are given in Table 2.
 The algorithms AEAD_AES_128_GCM and AEAD_AES_256_GCM are specified in
 [RFC5116]. The algorithm AEAD_CHACHA20_POLY1305 is specified in
 [RFC7539].

8. Acknowledgments

 This work was funded by gifts from Intel (to Brad Karp) and from
 Google, by NSF award CNS-0716806 (A Clean-Slate Infrastructure for
 Information Flow Control), and by DARPA CRASH under contract
 #N66001-10-2-4088.

9. IANA Considerations

 Tcpcrypt’s spec identifiers ("cs" values) will need to be added to
 IANA’s ENO suboption registry, as follows:

 +------+---------------------------+--------------------------------+
 | cs | Spec name | Meaning |
 +------+---------------------------+--------------------------------+
0x20	TCPCRYPT_RESUME	tcpcrypt session resumption
0x21	TCPCRYPT_ECDHE_P256	tcpcrypt with ECDHE-P256
0x22	TCPCRYPT_ECDHE_P521	tcpcrypt with ECDHE-P521
0x23	TCPCRYPT_ECDHE_Curve25519	tcpcrypt with ECDHE-Curve25519
 +------+---------------------------+--------------------------------+

 Table 1: cs values for use with tcpcrypt

 A "tcpcrypt AEAD parameter" registry needs to be maintained by IANA
 as per the following table. The use of encryption is described in
 Section 3.6.

Bittau, et al. Expires May 6, 2016 [Page 20]

Internet-Draft tcpcrypt November 2015

 +------------------------+------------+------------+
 | AEAD Algorithm | Key Length | sym-cipher |
 +------------------------+------------+------------+
 | AEAD_AES_128_GCM | 16 bytes | 0x01 |
 | AEAD_AES_256_GCM | 32 bytes | 0x02 |
 | AEAD_CHACHA20_POLY1305 | 32 bytes | 0x10 |
 +------------------------+------------+------------+

 Table 2: Authenticated-encryption algorithms corresponding to sym-
 cipher specifiers in INIT1 and INIT2 messages.

10. Security considerations

 It is worth reiterating just how crucial both the quality and
 quantity of randomness are to tcpcrypt’s security. Most
 implementations will rely on system-wide pseudo-random generators
 seeded from hardware events and a seed carried over from the previous
 boot. Once a pseudo-random generator has been properly seeded, it
 can generate effectively arbitrary amounts of pseudo-random data.
 However, until a pseudo-random generator has been seeded with
 sufficient entropy, not only will tcpcrypt be insecure, it will
 reveal information that further weakens the security of the pseudo-
 random generator, potentially harming other applications. In the
 absence of secure hardware random generators, implementations MUST
 disable tcpcrypt after rebooting until the pseudo-random generator
 has been reseeded (usually by a bootup script) or sufficient entropy
 has been gathered.

 Tcpcrypt guarantees that no man-in-the-middle attacks occurred if
 Session IDs match on both ends of a connection, unless the attacker
 has broken the underlying cryptographic primitives (e.g., ECDH). A
 proof has been published [tcpcrypt].

 All of the security considerations of TCP-ENO apply to tcpcrypt. In
 particular, tcpcrypt does not protect against active eavesdroppers
 unless applications authenticate the Session ID.

 To gain middlebox compatibility, tcpcrypt does not protect TCP
 headers. Hence, the protocol is vulnerable to denial-of-service from
 off-path attackers. Possible attacks include desynchronizing the
 underlying TCP stream, injecting RST packets, and forging or
 suppressing rekey bits. These attacks will cause a tcpcrypt
 connection to hang or fail with an error. Implementations MUST give
 higher-level software a way to distinguish such errors from a clean
 end-of-stream (indicated by an authenticated "FINp" bit) so that
 applications can avoid semantic truncation attacks.

Bittau, et al. Expires May 6, 2016 [Page 21]

Internet-Draft tcpcrypt November 2015

 Similarly, tcpcrypt does not have a key confirmation step. Hence, an
 active attacker can cause a connection to hang, though this is
 possible even without tcpcrypt by altering sequence and ack numbers.

 Tcpcrypt uses short-lived public key parameters to provide forward
 secrecy. All currently specified key agreement schemes involve
 ECDHE-based key agreement, meaning a new key can be chosen for each
 connection. If implementations reuse these parameters, they SHOULD
 limit the lifetime of the private parameters, ideally to no more than
 two minutes.

 Attackers cannot force passive openers to move forward in their
 session caching chain without guessing the content of the resumption
 suboption, which will be hard without key knowledge.

11. References

11.1. Normative References

 [I-D.ietf-tcpinc-tcpeno]
 Bittau, A., Boneh, D., Giffin, D., Handley, M., Mazieres,
 D., and E. Smith, "TCP-ENO: Encryption Negotiation
 Option", draft-ietf-tcpinc-tcpeno-00 (work in progress),
 September 2015.

 [I-D.irtf-cfrg-curves]
 Langley, A. and M. Hamburg, "Elliptic Curves for
 Security", draft-irtf-cfrg-curves-10 (work in progress),
 October 2015.

 [ieee1363]
 "IEEE Standard Specifications for Public-Key Cryptography
 (IEEE Std 1363-2000)", 2000.

 [nist-dss]
 "Digital Signature Standard, FIPS 186-2", 2000.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <http://www.rfc-editor.org/info/rfc5116>.

Bittau, et al. Expires May 6, 2016 [Page 22]

Internet-Draft tcpcrypt November 2015

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869, DOI 10.17487/
 RFC5869, May 2010,
 <http://www.rfc-editor.org/info/rfc5869>.

 [RFC7539] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 7539, DOI 10.17487/RFC7539, May 2015,
 <http://www.rfc-editor.org/info/rfc7539>.

11.2. Informative References

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, DOI 10.17487/
 RFC1122, October 1989,
 <http://www.rfc-editor.org/info/rfc1122>.

 [tcpcrypt]
 Bittau, A., Hamburg, M., Handley, M., Mazieres, D., and D.
 Boneh, "The case for ubiquitous transport-level
 encryption", USENIX Security , 2010.

Appendix A. Protocol constant values

 +------------+--------------+
 | Value | Name |
 +------------+--------------+
 | 0x01 | CONST_NEXTK |
 | 0x02 | CONST_SESSID |
 | 0x03 | CONST_REKEY |
 | 0x04 | CONST_KEY_A |
 | 0x05 | CONST_KEY_B |
 | 0x15101a0e | INIT1_MAGIC |
 | 0x097105e0 | INIT2_MAGIC |
 +------------+--------------+

 Table 3: Protocol constants

Authors’ Addresses

 Andrea Bittau
 Stanford University
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Email: bittau@cs.stanford.edu

Bittau, et al. Expires May 6, 2016 [Page 23]

Internet-Draft tcpcrypt November 2015

 Dan Boneh
 Stanford University
 353 Serra Mall, Room 475
 Stanford, CA 94305
 US

 Email: dabo@cs.stanford.edu

 Daniel B. Giffin
 Stanford University
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Email: dbg@scs.stanford.edu

 Mike Hamburg
 Stanford University
 353 Serra Mall, Room 475
 Stanford, CA 94305
 US

 Email: mike@shiftleft.org

 Mark Handley
 University College London
 Gower St.
 London WC1E 6BT
 UK

 Email: M.Handley@cs.ucl.ac.uk

 David Mazieres
 Stanford University
 353 Serra Mall, Room 290
 Stanford, CA 94305
 US

 Email: dm@uun.org

Bittau, et al. Expires May 6, 2016 [Page 24]

Internet-Draft tcpcrypt November 2015

 Quinn Slack
 Stanford University
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Email: sqs@cs.stanford.edu

 Eric W. Smith
 Kestrel Institute
 3260 Hillview Avenue
 Palo Alto, CA 94304
 US

 Email: eric.smith@kestrel.edu

Bittau, et al. Expires May 6, 2016 [Page 25]

