
Network Working Group A. Bittau
Internet-Draft D. Boneh
Intended status: Informational D. Giffin
Expires: February 11, 2016 Stanford University
 M. Handley
 University College London
 D. Mazieres
 Stanford University
 E. Smith
 Kestrel Institute
 August 10, 2015

 Interface Extensions for TCPINC
 draft-bittau-tcpinc-api-00

Abstract

 TCP-ENO negotiates encryption at the transport layer. It also
 defines a few parameters that are intended to be used or configured
 by applications. This document specifies operating system interfaces
 for access for these TCP-ENO parameters. We describe the interfaces
 in terms of socket options, the de facto standard API for adjusting
 per-connection behavior in TCP/IP, and sysctl, a popular mechanism
 for setting global defaults. Operating systems that lack socket or
 sysctl functionality can implement similar interfaces in their native
 frameworks, but should ideally adapt their interfaces from those
 presented in this document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 11, 2016.

Bittau, et al. Expires February 11, 2016 [Page 1]

Internet-Draft tcpinc-api August 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. API extensions . 3
 3. Automatic configuration protocol 6
 4. Examples . 8
 4.1. Cookie-based authentication 8
 4.2. Signature-based authentication 8
 5. Security considerations 9
 6. Acknowledgments . 9
 7. References . 9
 7.1. Normative References 9
 7.2. Informative References 10
 Authors’ Addresses . 10

1. Introduction

 The TCP Encryption Negotiation Option (TCP-ENO)
 [I-D.bittau-tcpinc-tcpeno] permits hosts to negotiate encryption of a
 TCP connection. One of TCP-ENO’s use cases is to encrypt traffic
 transparently, unbeknownst to legacy applications. Transparent
 encryption requires no changes to existing APIs. However, other use
 cases require applications to interact with TCP-ENO. In particular:

 o Transparent encryption protects only against passive
 eavesdroppers. Stronger security requires applications to
 authenticate a _Session ID_ value associated with each encrypted
 connection.

 o Applications that have been updated to authenticate Session IDs
 must somehow advertise this fact to peers in a backward-compatible
 way. TCP-ENO carries a two-bit "application-aware" status for

Bittau, et al. Expires February 11, 2016 [Page 2]

Internet-Draft tcpinc-api August 2015

 this purpose, but this status is not accessible through existing
 interfaces.

 o Applications employing TCP’s simultaneous open feature need a way
 to supply a symmetry-breaking "tie-breaker" bit to TCP-ENO.

 o System administrators and applications may wish to set and examine
 negotiation preferences, such as which encryption schemes (and
 perhaps versions) to enable and disable.

 o Applications that perform their own encryption may wish to disable
 TCP-ENO entirely.

 The remainder of this document describes an API through which systems
 can meet the above needs. The API extensions relate back to
 quantities defined by TCP-ENO.

2. API extensions

 Application should access TCP-ENO options through the same mechanism
 they use to access other TCP configuration options, such as
 "TCP_NODELAY" [RFC0896]. With the popular sockets API, this
 mechanism consists of two socket options, "getsockopt" and
 "setsockopt", shown in Figure 1. Socket-based TCP-ENO
 implementations should define a set of new "option_name" values
 accessible at "level" "IPPROTO_TCP" (generally defined as 6, to match
 the IP protocol field).

 int getsockopt(int socket, int level, int option_name,
 void *option_value, socklen_t *option_len);

 int setsockopt(int socket, int level, int option_name,
 const void *option_value, socklen_t option_len);

 Figure 1: Socket option API

 Table 1 summarizes the new "option_name" arguments that TCP-ENO
 introduces to the socket option (or equivalent) system calls. For
 each option, the table lists whether it is read-only (R) or read-
 write (RW), as well as the type of the option’s value. Read-write
 options, when read, always return the previously successfully written
 value or the default if they have not been written. Options of type
 "bytes" consist of a variable-length array of bytes, while options of
 type "int" consist of a small integer with the exact range indicated
 in parentheses. We discuss each option in more detail below.

Bittau, et al. Expires February 11, 2016 [Page 3]

Internet-Draft tcpinc-api August 2015

 +-------------------+----+----------------+
 | Option name | RW | Type |
 +-------------------+----+----------------+
 | TCPENO_ENABLED | RW | int (-1 - 1) |
 | TCPENO_SESSID | R | bytes |
 | TCPENO_NEGSPEC | R | int (32 - 255) |
 | TCPENO_SPECS | RW | bytes |
 | TCPENO_SELF_AWARE | RW | int (0 - 3) |
 | TCPENO_PEER_AWARE | R | int (0 - 3) |
 | TCPENO_TIEBREAKER | RW | int (0 - 1) |
 | TCPENO_ROLE | R | int (0 - 1) |
 | TCPENO_RAW | RW | bytes |
 | TCPENO_TRANSCRIPT | R | bytes |
 +-------------------+----+----------------+

 Table 1: Suggested new IPPROTO_TCP socket options

 TCPENO_ENABLED When set to 0, completely disables TCP-ENO regardless
 of any other socket option settings except "TCPENO_RAW". When set
 to 1, enables TCP-ENO. When set to -1 (which should be the
 default), uses a system default value to determine whether or not
 to enable TCP-ENO. This option must return an error after a SYN
 segment has already been sent.

 TCPENO_SESSID Returns the session ID of the connection, as defined
 by the encryption spec in use. This option must return an error
 if encryption is disabled, the connection is not yet established,
 or the transport layer does not implement the negotiated spec.

 TCPENO_NEGSPEC Returns the negotiated encryption spec for the
 current connection. As defined by TCP-ENO, the negotiated spec is
 the first valid suboption in the "B" host’s SYN segment (without
 any suboption data for variable-length suboptions). This option
 must return an error if encryption is disabled or the connection
 is not yet established.

 TCPENO_SPECS Allows the application to specify an ordered list of
 encryption specs different from the system default list. If the
 list is empty, TCP-ENO is disabled for the connection. Each byte
 in the list specifies one suboption type from 0x20-0xff. The list
 contains no suboption data for variable-length suboptions, only
 the one-byte spec identifier. The order of the list matters only
 for the host playing the "B" role. Implementations must return an
 error if an application attempts to set this option after the SYN
 segment has been sent. Implementations should return an error if
 any of the bytes are below 0x20 or are not implemented by the TCP
 stack.

Bittau, et al. Expires February 11, 2016 [Page 4]

Internet-Draft tcpinc-api August 2015

 TCPENO_SELF_AWARE The value is an integer from 0-3, allowing
 applications to specify the "aa" bits in the general suboption
 sent by the host. When listening on a socket, the value of this
 option applies to each accepted connection. Implementations must
 return an error if an application attempts to set this option
 after a SYN segment has been sent.

 TCPENO_PEER_AWARE The value is an integer from 0-3 reporting the
 "aa" bits in the general suboption of the peer’s segment.
 Implementations must return an error if an application attempts to
 read this value before the connection is established.

 TCPENO_TIEBREAKER The value is a bit (0 or 1), indicating the value
 of the "b" bit to set in the host’s general suboption. The "b"
 bit breaks the symmetry of simultaneous open to assign a unique
 role "A" or "B" to each end of the connection. The host that sets
 the "b" bit assumes the "B" role (which in non-simultaneous open
 is assigned to the passive opener). Implementations must return
 an error for this options after the SYN segment has already been
 sent.

 TCPENO_ROLE The value is a bit (0 or 1). TCP-ENO defines two roles,
 "A" and "B", for the two ends of a connection. After a normal
 three-way handshake, the active opener is "A" and the passive
 opener is "B". Simultaneous open uses the tie-breaker bit to
 assign unique roles. This option returns 0 when the local host
 has the "A" role, and 1 when the local host has the "B" role.
 This call must return an error before the connection is
 established or if TCP-ENO has failed.

 TCPENO_RAW This option is for use by library-level implementations
 of encryption specs. It allows applications to make use of the
 TCP-ENO option, potentially including encryption specs not
 supported by the transport layer, and then entirely bypass any
 TCP-level encryption so as to encrypt above the transport layer.
 The default value of this option is a 0-byte vector, which
 disables RAW mode. If the option is set to any other value, it
 disables all other socket options described in this section except
 for TCPENO_TRANSCRIPT.

 The value of the option is a raw ENO option contents (without the
 kind and length) to be included in the host’s SYN segment. In raw
 mode, the TCP layer considers negotiation successful when the two
 SYN segments both contain a suboption with the same encryption
 spec value "cs" >= 0x20. For an active opener in raw mode, the
 TCP layer automatically sends a two-byte minimal ENO option when
 negotiation is successful. Note that raw mode performs no sanity

Bittau, et al. Expires February 11, 2016 [Page 5]

Internet-Draft tcpinc-api August 2015

 checking on the "v" bits or any suboption data, and hence provides
 slightly less flexibility than a true TCP-level implementation.

 TCPENO_TRANSCRIPT Returns the negotiation transcript as specified by
 TCP-ENO. Implementations must return an error if negotiation
 failed or has not yet completed.

 In addition to these per-socket options, implementations should use
 "sysctl" or an equivalent mechanism to allow administrators to
 configure system-wide defaults for "TCPENO_ENABLED" and
 "TCPENO_SPECS". These parameters should be named "eno_enabled" and
 "eno_specs" and placed alongside most TCP parameters. For example,
 on BSD derived systems a suitable name would be
 "net.inet.tcp.eno_enabled" and "net.inet.tcp.eno_specs", while on
 Linux more appropriate names would be "net.ipv4.tcp_eno_enabled" and
 "net.ipv4.tcp_eno_specs".

 Because initial deployment may run into issues with middleboxes or
 incur slowdown for unnecessary double-encryption, implementations
 should also allow ENO to be blacklisted for particular local and
 remote ports, via sysctl on "net.inet.tcp.eno_bad_localport" and
 "net.inet.tcp.eno_bad_remoteport" (or the equivalent under "net.ipv4"
 for linux), both of which consist of a list of TCP port numbers on
 which to disable TCP-ENO by default. For example the following
 command:

 sysctl net.inet.tcp.eno_bad_remoteport=443,993

 would disable ENO encryption on outgoing connections to ports 443 and
 993 (which use application-layer encryption for TLS and IMAP,
 respectively).

 The per-socket "TCPENO_ENABLED" option, if not -1, should override
 both the "eno_enabled" and port-range sysctls.

3. Automatic configuration protocol

 TCP-ENO is designed to fail by reverting to unencrypted TCP. Such
 behavior is necessary for incremental deployment, and is no worse
 than the status quo in which there is no TCP-layer encryption.
 However, one outcome worse than the status quo would be to for TCP-
 ENO connections to fail completely where unenecrypted connections
 would work. Fortunately, if TCP-ENO is not supported by both
 endpoints, or if middleboxes strip the ENO option from packets, then
 implementations simply revert to unencrypted TCP upon receiving a SYN
 or initial ACK segment without an ENO option. This fallback approach
 also applies to interception proxies [RFC3040], which typically

Bittau, et al. Expires February 11, 2016 [Page 6]

Internet-Draft tcpinc-api August 2015

 terminate TCP connections and hence will not include ENO in their SYN
 segments if they do not know about it.

 However, given that the goal of TCP-ENO is to encrypt previously
 plaintext traffic, there is always the possibility that a middlebox
 performing deep packet inspection could shut down a connection
 because the ciphertext does not resemble an expected higher-level
 application protocol such as HTTP. Such middleboxes would cause TCP-
 ENO connections to fail. Systems may wish to probe the network so as
 to enable TCP-ENO only in places where middleboxes do not induce such
 failures.

 A precedent for probing middlebox behavior is the STUN protocol
 [RFC5389], which applications use to characterize NAT. STUN relies
 on having a known, publicly-accessible server beyond any locally
 administered middleboxes. STUN is typically invoked by applications
 that require peer-to-peer communication to decide whether they can
 accept incoming connections. For TCP-ENO, which affects all TCP
 connections, it makes more sense to probe for network compatibility
 at the time network interfaces are configured by DHCP [RFC2131],
 stateless address autoconfiguration [RFC4862], or other mechanisms.
 Many DHCP implementation already provide hooks through which such
 probes can be configured.

 Like STUN, TCP-ENO probing requires a known external server running
 an agreed upon protocol. We suggests using HTTP as the protocol, and
 responding to the path "/tcp-eno/session-id" with a response of type
 "text/plain". Upon successful TCP-ENO negotiation, servers should
 reply with the string "encrypted " followed by a lower-case
 hexadecimal encoding of the tcpcrypt session ID followed by a
 newline. For connection on which TCP-ENO fails, the same path should
 return the string "unencrypted\n" (with no session ID). If such a
 request works with TCP-ENO disabled but hangs or resets with TCP-ENO
 enabled, then TCP-ENO should be disabled for the host. Otherwise, if
 probes succeed, even if they return "unencrypted", TCP-ENO should be
 enabled (for the possible benefit of local connections), as
 middleboxes may simply be stripping off the option.

 Hosts should perform the above probe twice, using both port 80 and a
 different port, we suggest 8080, on the same server. Given the
 prevalence of interception proxies on port 80, port 80 may experience
 entirely different failure modes from other ports. If the port 80
 probe fails, TCP-ENO should be disabled for port 80. If the other
 probe fails, TCP-ENO should be disabled entirely.

Bittau, et al. Expires February 11, 2016 [Page 7]

Internet-Draft tcpinc-api August 2015

4. Examples

 This section provides examples of how applications might authenticate
 session IDs. Authentication requires exchanging messages over the
 TCP connection, and hence is not backwards compatible with existing
 application protocols. To fall back to opportunistic encryption in
 the event that both applications have not been updated to
 authenticate the session ID, TCP-ENO provides the application-aware
 bits. To signal it has been upgraded to support application-level
 authentication, applications should set "TCPENO_SELF_AWARE" to 1
 before opening a connection. An application should then check that
 "TCPENO_PEER_AWARE" is non-zero before attempting to send
 authenticators that would otherwise be misinterpreted as application
 data.

4.1. Cookie-based authentication

 In cookie-based authentication, a client and server both share a
 cryptographically strong random or pseudo-random secret known as a
 "cookie". Such a cookie is preferably at least 128 bits long. To
 authenticate a session ID using a cookie, each computes and sends the
 following value to the other side:

 authenticator = PRF(cookie, role || session-ID)

 Here "PRF" is a psueo-random function such as HMAC-SHA-256 [RFC6234].
 "role" is the byte 0 or 1, as returned by the "TCPENO_ROLE" socket
 options. "session-ID" is the session ID returned by the
 "TCPENO_SESSID" session ID. The symbol "||" denotes concatenation.
 Each side must verify that the other side’s authenticator is correct.
 Assuming the authenticators are correct, applications can rely on the
 TCP-layer encryption for resistance against active network attackers.

 Note that if the same cookie is used in other contexts besides
 session ID authentication, appropriate domain separation should be
 employed, such as prefixing "role || session-ID" with a unique prefix
 to ensure "authenticator" cannot be used out of context.

4.2. Signature-based authentication

 In signature-based authentication, one or both endpoints of a
 connection possess a private signature key the public half of which
 is known to or verifiable by the other endpoint. To authenticate
 itself, the host with a private key computes the following signature:

 authenticator = Sign(PrivKey, role || session-ID)

Bittau, et al. Expires February 11, 2016 [Page 8]

Internet-Draft tcpinc-api August 2015

 The other end verifies this value using the corresponding public key.
 Whichever side validates an authenticator in this way knows that the
 other side belongs to a host that possesses the appropriate signature
 key.

 Once again, if the same signature key is used in other contexts
 besides session ID authentication, appropriate domain separation
 should be employed, such as prefixing "role || session-ID" with a
 unique prefix to ensure "authenticator" cannot be used out of
 context.

5. Security considerations

 The TCP-ENO specification discusses several important security
 considerations that this document incorporates by reference. The
 most important one, which bears reiterating, is that until and unless
 a session ID has been authenticated, TCP-ENO is vulnerable to an
 active network attacker, through either a downgrade or active man-in-
 the-middle attack.

 Because of this vulnerability to active network attackers, it is
 critical that implementations return appropriate errors for socket
 options when TCP-ENO is not enabled. Equally critical is that
 applications must never use these socket options without checking for
 errors.

 Applications with high security requirements that rely on TCP-ENO for
 security must either fail or fallback to application-layer encryption
 if TCP-ENO fails or session IDs authentication fails.

6. Acknowledgments

 This work was funded by DARPA CRASH under contract #N66001-10-2-4088.

7. References

7.1. Normative References

 [I-D.bittau-tcpinc-tcpeno]
 Bittau, A., Boneh, D., Giffin, D., Handley, M., Mazieres,
 D., and E. Smith, "TCP-ENO: Encryption Negotiation
 Option", draft-bittau-tcpinc-tcpeno-01 (work in progress),
 August 2015.

Bittau, et al. Expires February 11, 2016 [Page 9]

Internet-Draft tcpinc-api August 2015

7.2. Informative References

 [RFC0896] Nagle, J., "Congestion Control in IP/TCP Internetworks",
 RFC 896, DOI 10.17487/RFC0896, January 1984,
 <http://www.rfc-editor.org/info/rfc896>.

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol", RFC
 2131, DOI 10.17487/RFC2131, March 1997,
 <http://www.rfc-editor.org/info/rfc2131>.

 [RFC3040] Cooper, I., Melve, I., and G. Tomlinson, "Internet Web
 Replication and Caching Taxonomy", RFC 3040, DOI 10.17487/
 RFC3040, January 2001,
 <http://www.rfc-editor.org/info/rfc3040>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862, DOI 10.17487/
 RFC4862, September 2007,
 <http://www.rfc-editor.org/info/rfc4862>.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 DOI 10.17487/RFC5389, October 2008,
 <http://www.rfc-editor.org/info/rfc5389>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234, DOI
 10.17487/RFC6234, May 2011,
 <http://www.rfc-editor.org/info/rfc6234>.

Authors’ Addresses

 Andrea Bittau
 Stanford University
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Email: bittau@cs.stanford.edu

 Dan Boneh
 Stanford University
 353 Serra Mall, Room 475
 Stanford, CA 94305
 US

 Email: dabo@cs.stanford.edu

Bittau, et al. Expires February 11, 2016 [Page 10]

Internet-Draft tcpinc-api August 2015

 Daniel B. Giffin
 Stanford University
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Email: dbg@scs.stanford.edu

 Mark Handley
 University College London
 Gower St.
 London WC1E 6BT
 UK

 Email: M.Handley@cs.ucl.ac.uk

 David Mazieres
 Stanford University
 353 Serra Mall, Room 290
 Stanford, CA 94305
 US

 Email: dm@uun.org

 Eric W. Smith
 Kestrel Institute
 3260 Hillview Avenue
 Palo Alto, CA 94304
 US

 Email: eric.smith@kestrel.edu

Bittau, et al. Expires February 11, 2016 [Page 11]

