
Network Working Group A. Bittau
Internet-Draft Google
Intended status: Experimental D. Giffin
Expires: June 14, 2019 Stanford University
 M. Handley
 University College London
 D. Mazieres
 Stanford University
 Q. Slack
 Sourcegraph
 E. Smith
 Kestrel Institute
 December 11, 2018

 Cryptographic protection of TCP Streams (tcpcrypt)
 draft-ietf-tcpinc-tcpcrypt-15

Abstract

 This document specifies tcpcrypt, a TCP encryption protocol designed
 for use in conjunction with the TCP Encryption Negotiation Option
 (TCP-ENO). Tcpcrypt coexists with middleboxes by tolerating
 resegmentation, NATs, and other manipulations of the TCP header. The
 protocol is self-contained and specifically tailored to TCP
 implementations, which often reside in kernels or other environments
 in which large external software dependencies can be undesirable.
 Because the size of TCP options is limited, the protocol requires one
 additional one-way message latency to perform key exchange before
 application data can be transmitted. However, the extra latency can
 be avoided between two hosts that have recently established a
 previous tcpcrypt connection.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Bittau, et al. Expires June 14, 2019 [Page 1]

Internet-Draft tcpcrypt December 2018

 This Internet-Draft will expire on June 14, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Requirements Language . 3
 2. Introduction . 3
 3. Encryption Protocol . 3
 3.1. Cryptographic Algorithms 3
 3.2. Protocol Negotiation 5
 3.3. Key Exchange . 6
 3.4. Session ID . 9
 3.5. Session Resumption 9
 3.6. Data Encryption and Authentication 13
 3.7. TCP Header Protection 14
 3.8. Re-Keying . 15
 3.9. Keep-Alive . 16
 4. Encodings . 16
 4.1. Key-Exchange Messages 16
 4.2. Encryption Frames . 18
 4.2.1. Plaintext . 19
 4.2.2. Associated Data 20
 4.2.3. Frame ID . 20
 4.3. Constant Values . 20
 5. Key-Agreement Schemes . 21
 6. AEAD Algorithms . 22
 7. IANA Considerations . 23
 8. Security Considerations 24
 8.1. Asymmetric Roles . 25
 8.2. Verified Liveness . 26
 8.3. Mandatory Key-Agreement Schemes 26
 9. Experiments . 27
 10. Acknowledgments . 28
 11. Contributors . 28

Bittau, et al. Expires June 14, 2019 [Page 2]

Internet-Draft tcpcrypt December 2018

 12. References . 28
 12.1. Normative References 28
 12.2. Informative References 29
 Authors’ Addresses . 30

1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Introduction

 This document describes tcpcrypt, an extension to TCP for
 cryptographic protection of session data. Tcpcrypt was designed to
 meet the following goals:

 o Meet the requirements of the TCP Encryption Negotiation Option
 (TCP-ENO) [I-D.ietf-tcpinc-tcpeno] for protecting connection data.

 o Be amenable to small, self-contained implementations inside TCP
 stacks.

 o Minimize additional latency at connection startup.

 o As much as possible, prevent connection failure in the presence of
 NATs and other middleboxes that might normalize traffic or
 otherwise manipulate TCP segments.

 o Operate independently of IP addresses, making it possible to
 authenticate resumed sessions efficiently even when either end
 changes IP address.

 A companion document [I-D.ietf-tcpinc-api] describes recommended
 interfaces for configuring certain parameters of this protocol.

3. Encryption Protocol

 This section describes the operation of the tcpcrypt protocol. The
 wire format of all messages is specified in Section 4.

3.1. Cryptographic Algorithms

 Setting up a tcpcrypt connection employs three types of cryptographic
 algorithms:

Bittau, et al. Expires June 14, 2019 [Page 3]

Internet-Draft tcpcrypt December 2018

 o A _key agreement scheme_ is used with a short-lived public key to
 agree upon a shared secret.

 o An _extract function_ is used to generate a pseudo-random key
 (PRK) from some initial keying material produced by the key
 agreement scheme. The notation Extract(S, IKM) denotes the output
 of the extract function with salt S and initial keying material
 IKM.

 o A _collision-resistant pseudo-random function (CPRF)_ is used to
 generate multiple cryptographic keys from a pseudo-random key,
 typically the output of the extract function. The CPRF produces
 an arbitrary amount of Output Keying Material (OKM), and we use
 the notation CPRF(K, CONST, L) to designate the first L bytes of
 the OKM produced by the CPRF when parameterized by key K and the
 constant CONST.

 The Extract and CPRF functions used by the tcpcrypt variants defined
 in this document are the Extract and Expand functions of HKDF
 [RFC5869], which is built on HMAC [RFC2104]. These are defined as
 follows in terms of the function "HMAC-Hash(key, value)" for a
 negotiated "Hash" function such as SHA-256; the symbol "|" denotes
 concatenation, and the counter concatenated to the right of CONST
 occupies a single octet.

 HKDF-Extract(salt, IKM) -> PRK
 PRK = HMAC-Hash(salt, IKM)

 HKDF-Expand(PRK, CONST, L) -> OKM
 T(0) = empty string (zero length)
 T(1) = HMAC-Hash(PRK, T(0) | CONST | 0x01)
 T(2) = HMAC-Hash(PRK, T(1) | CONST | 0x02)
 T(3) = HMAC-Hash(PRK, T(2) | CONST | 0x03)
 ...

 OKM = first L octets of T(1) | T(2) | T(3) | ...
 where L <= 255*OutputLength(Hash)

 Figure 1: HKDF functions used for key derivation

 Lastly, once tcpcrypt has been successfully set up and encryption
 keys have been derived, an algorithm for Authenticated Encryption
 with Associated Data (AEAD) is used to protect the confidentiality
 and integrity of all transmitted application data. AEAD algorithms
 use a single key to encrypt their input data and also to generate a
 cryptographic tag to accompany the resulting ciphertext; when
 decryption is performed, the tag allows authentication of the
 encrypted data and of optional, associated plaintext data.

Bittau, et al. Expires June 14, 2019 [Page 4]

Internet-Draft tcpcrypt December 2018

3.2. Protocol Negotiation

 Tcpcrypt depends on TCP-ENO [I-D.ietf-tcpinc-tcpeno] to negotiate
 whether encryption will be enabled for a connection, and also which
 key-agreement scheme to use. TCP-ENO negotiates the use of a
 particular TCP encryption protocol or _TEP_ by including protocol
 identifiers in ENO suboptions. This document associates four TEP
 identifiers with the tcpcrypt protocol, as listed in Table 4 in
 Section 7. Each identifier indicates the use of a particular key-
 agreement scheme, with an associated CPRF and length parameter.
 Future standards can associate additional TEP identifiers with
 tcpcrypt, following the assignment policy specified by TCP-ENO.

 An active opener that wishes to negotiate the use of tcpcrypt
 includes an ENO option in its SYN segment. That option includes
 suboptions with tcpcrypt TEP identifiers indicating the key-agreement
 schemes it is willing to enable. The active opener MAY additionally
 include suboptions indicating support for encryption protocols other
 than tcpcrypt, as well as global suboptions as specified by TCP-ENO.

 If a passive opener receives an ENO option including tcpcrypt TEPs it
 supports, it MAY then attach an ENO option to its SYN-ACK segment,
 including solely the TEP it wishes to enable.

 To establish distinct roles for the two hosts in each connection,
 tcpcrypt depends on the role-negotiation mechanism of TCP-ENO. As
 one result of the negotiation process, TCP-ENO assigns hosts unique
 roles abstractly called "A" at one end of the connection and "B" at
 the other. Generally, an active opener plays the "A" role and a
 passive opener plays the "B" role, but in the case of simultaneous
 open, an additional mechanism breaks the symmetry and assigns a
 distinct role to each host. TCP-ENO uses the terms "host A" and
 "host B" to identify each end of a connection uniquely, and this
 document employs those terms in the same way.

 An ENO suboption includes a flag "v" which indicates the presence of
 associated, variable-length data. In order to propose fresh key
 agreement with a particular tcpcrypt TEP, a host sends a one-byte
 suboption containing the TEP identifier and "v = 0". In order to
 propose session resumption (described further below) with a
 particular TEP, a host sends a variable-length suboption containing
 the TEP identifier, the flag "v = 1", an identifier derived from a
 session secret previously negotiated with the same host and the same
 TEP, and a nonce.

 Once two hosts have exchanged SYN segments, TCP-ENO defines the
 negotiated TEP to be the last valid TEP identifier in the SYN
 segment of host B (that is, the passive opener in the absence of

Bittau, et al. Expires June 14, 2019 [Page 5]

Internet-Draft tcpcrypt December 2018

 simultaneous open) that also occurs in that of host A. If there is
 no such TEP, hosts MUST disable TCP-ENO and tcpcrypt.

 If the negotiated TEP was sent by host B with "v = 0", it means that
 fresh key agreement will be performed as described below in
 Section 3.3. If, on the other hand, host B sent the TEP with "v = 1"
 and both hosts sent appropriate resumption identifiers in their
 suboption data, then the key-exchange messages will be omitted in
 favor of determining keys via session resumption as described in
 Section 3.5. With session resumption, protected application data MAY
 be sent immediately as detailed in Section 3.6.

 Note that the negotiated TEP is determined without reference to the
 "v" bits in ENO suboptions, so if host A offers resumption with a
 particular TEP and host B replies with a non-resumption suboption
 with the same TEP, that could become the negotiated TEP and fresh key
 agreement will be performed. That is, sending a resumption suboption
 also implies willingness to perform fresh key agreement with the
 indicated TEP.

 As REQUIRED by TCP-ENO, once a host has both sent and received an ACK
 segment containing a valid ENO option, encryption MUST be enabled and
 plaintext application data MUST NOT ever be exchanged on the
 connection. If the negotiated TEP is among those listed in Table 4,
 a host MUST follow the protocol described in this document.

3.3. Key Exchange

 Following successful negotiation of a tcpcrypt TEP, all further
 signaling is performed in the Data portion of TCP segments. Except
 when resumption was negotiated (described below in Section 3.5), the
 two hosts perform key exchange through two messages, "Init1" and
 "Init2", at the start of the data streams of host A and host B,
 respectively. These messages MAY span multiple TCP segments and need
 not end at a segment boundary. However, the segment containing the
 last byte of an "Init1" or "Init2" message MUST have TCP’s push flag
 (PSH) set.

 The key exchange protocol, in abstract, proceeds as follows:

 A -> B: Init1 = { INIT1_MAGIC, sym_cipher_list, N_A, Pub_A }
 B -> A: Init2 = { INIT2_MAGIC, sym_cipher, N_B, Pub_B }

 The concrete format of these messages is specified in Section 4.1.

 The parameters are defined as follows:

 o "INIT1_MAGIC", "INIT2_MAGIC": constants defined in Section 4.3.

Bittau, et al. Expires June 14, 2019 [Page 6]

Internet-Draft tcpcrypt December 2018

 o "sym_cipher_list": a list of identifiers of symmetric ciphers
 (AEAD algorithms) acceptable to host A. These are specified in
 Table 5 in Section 7.

 o "sym_cipher": the symmetric cipher selected by host B from the
 "sym_cipher_list" sent by host A.

 o "N_A", "N_B": nonces chosen at random by hosts A and B,
 respectively.

 o "Pub_A", "Pub_B": ephemeral public keys for hosts A and B,
 respectively. These, as well as their corresponding private keys,
 are short-lived values that MUST be refreshed frequently. The
 private keys SHOULD NOT ever be written to persistent storage.
 The security risks associated with the storage of these keys are
 discussed in Section 8.

 If a host receives an ephemeral public key from its peer and a key-
 validation step fails (see Section 5), it MUST abort the connection
 and raise an error condition distinct from the end-of-file condition.

 The ephemeral secret "ES" is the result of the key-agreement
 algorithm (see Section 5) indicated by the negotiated TEP. The
 inputs to the algorithm are the local host’s ephemeral private key
 and the remote host’s ephemeral public key. For example, host A
 would compute "ES" using its own private key (not transmitted) and
 host B’s public key, "Pub_B".

 The two sides then compute a pseudo-random key "PRK", from which all
 session secrets are derived, as follows:

 PRK = Extract(N_A, eno-transcript | Init1 | Init2 | ES)

 Above, "|" denotes concatenation; "eno-transcript" is the protocol-
 negotiation transcript defined in Section 4.8 of
 [I-D.ietf-tcpinc-tcpeno]; and "Init1" and "Init2" are the transmitted
 encodings of the messages described in Section 4.1.

 A series of "session secrets" are computed from "PRK" as follows:

 ss[0] = PRK
 ss[i] = CPRF(ss[i-1], CONST_NEXTK, K_LEN)

 The value "ss[0]" is used to generate all key material for the
 current connection. The values "ss[i]" for "i > 0" are used by
 session resumption to avoid public key cryptography when establishing
 subsequent connections between the same two hosts, as described later
 in Section 3.5. The "CONST_*" values are constants defined in

Bittau, et al. Expires June 14, 2019 [Page 7]

Internet-Draft tcpcrypt December 2018

 Section 4.3. The length "K_LEN" depends on the tcpcrypt TEP in use,
 and is specified in Section 5.

 Given a session secret "ss[i]", the two sides compute a series of
 master keys as follows:

 mk[0] = CPRF(ss[i], CONST_REKEY | sn[i], K_LEN)
 mk[j] = CPRF(mk[j-1], CONST_REKEY, K_LEN)

 The process of advancing through the series of master keys is
 described in Section 3.8. The values "sn[i]" are "session nonces."
 For the initial session with "i = 0", the session nonce is zero bytes
 long. The values for subsequent sessions are derived from fresh
 connection data as described in Section 3.5.

 Finally, each master key "mk[j]" is used to generate traffic keys for
 protecting application data using authenticated encryption:

 k_ab[j] = CPRF(mk[j], CONST_KEY_A, ae_key_len + ae_nonce_len)
 k_ba[j] = CPRF(mk[j], CONST_KEY_B, ae_key_len + ae_nonce_len)

 In the first session derived from fresh key-agreement, traffic keys
 "k_ab[j]" are used by host A to encrypt and host B to decrypt, while
 keys "k_ba[j]" are used by host B to encrypt and host A to decrypt.
 In a resumed session, as described more thoroughly below in
 Section 3.5, each host uses the keys in the same way as it did in the
 original session, regardless of its role in the current session: for
 example, if a host played role "A" in the first session, it will use
 keys "k_ab[j]" to encrypt in each derived session.

 The values "ae_key_len" and "ae_nonce_len" depend on the
 authenticated-encryption algorithm selected, and are given in Table 3
 in Section 6. The algorithm uses the first "ae_key_len" bytes of
 each traffic key as an authenticated-encryption key, and the
 following "ae_nonce_len" bytes as a "nonce randomizer".

 Implementations SHOULD provide an interface allowing the user to
 specify, for a particular connection, the set of AEAD algorithms to
 advertize in "sym_cipher_list" (when playing role "A") and also the
 order of preference to use when selecting an algorithm from those
 offered (when playing role "B"). A companion document
 [I-D.ietf-tcpinc-api] describes recommended interfaces for this
 purpose.

 After host B sends "Init2" or host A receives it, that host MAY
 immediately begin transmitting protected application data as
 described in Section 3.6.

Bittau, et al. Expires June 14, 2019 [Page 8]

Internet-Draft tcpcrypt December 2018

 If host A receives "Init2" with a "sym_cipher" value that was not
 present in the "sym_cipher_list" it previously transmitted in
 "Init1", it MUST abort the connection and raise an error condition
 distinct from the end-of-file condition.

 Throughout this document, to "abort the connection" means to issue
 the "Abort" command as described in [RFC0793], Section 3.8. That is,
 the TCP connection is destroyed, RESET is transmitted, and the local
 user is alerted to the abort event.

3.4. Session ID

 TCP-ENO requires each TEP to define a _session ID_ value that
 uniquely identifies each encrypted connection.

 A tcpcrypt session ID begins with the byte transmitted by host B that
 contains the negotiated TEP identifier along with the "v" bit. The
 remainder of the ID is derived from the session secret and session
 nonce, as follows:

 session_id[i] = TEP-byte | CPRF(ss[i], CONST_SESSID | sn[i], K_LEN)

 Again, the length "K_LEN" depends on the TEP, and is specified in
 Section 5.

3.5. Session Resumption

 If two hosts have previously negotiated a session with secret
 "ss[i-1]", they can establish a new connection without public-key
 operations using "ss[i]", the next session secret in the sequence
 derived from the original PRK.

 A host signals willingness to resume with a particular session secret
 by sending a SYN segment with a resumption suboption: that is, an ENO
 suboption containing the negotiated TEP identifier of the previous
 session, half of the "resumption identifier" for the new session, and
 a "resumption nonce".

 The resumption nonce MUST have a minimum length of zero bytes and
 maximum length of eight bytes. The value MUST be chosen randomly or
 using a mechanism that guarantees uniqueness even in the face of
 virtual machine cloning or other re-execution of the same session.
 An attacker who can force either side of a connection to reuse a
 session secret with the same nonce will completely break the security
 of tcpcrypt. Reuse of session secrets is possible in the event of
 virtual machine cloning or reuse of system-level hibernation state.
 Implementations SHOULD provide an API through which to set the

Bittau, et al. Expires June 14, 2019 [Page 9]

Internet-Draft tcpcrypt December 2018

 resumption nonce length, and MUST default to eight bytes if they
 cannot prohibit the reuse of session secrets.

 The resumption identifier is calculated from a session secret "ss[i]"
 as follows:

 resume[i] = CPRF(ss[i], CONST_RESUME, 18)

 To name a session for resumption, a host sends either the first or
 second half of the resumption identifier, according to the role it
 played in the original session with secret "ss[0]".

 A host that originally played role "A" and wishes to resume from a
 cached session sends a suboption with the first half of the
 resumption identifier:

 byte 0 1 9 10
 +------+------+--...--+------+------+--...--+------+
 | TEP- | resume[i]{0..8} | nonce_a |
 | byte | | |
 +------+------+--...--+------+------+--...--+------+

 Figure 2: Resumption suboption sent when original role was "A". The
 TEP-byte contains a tcpcrypt TEP identifier and v = 1. The nonce
 value MUST have length between 0 and 8 bytes.

 Similarly, a host that originally played role "B" sends a suboption
 with the second half of the resumption identifier:

 byte 0 1 9 10
 +------+------+--...--+------+------+--...--+------+
 | TEP- | resume[i]{9..17} | nonce_b |
 | byte | | |
 +------+------+--...--+------+------+--...--+------+

 Figure 3: Resumption suboption sent when original role was "B". The
 TEP-byte contains a tcpcrypt TEP identifier and v = 1. The nonce
 value MUST have length between 0 and 8 bytes.

 If a passive opener receives a resumption suboption containing an
 identifier-half that names a session secret that it has cached and
 the subobtion’s TEP matches the TEP used in the previous session, it
 SHOULD (with exceptions specified below) agree to resume from the
 cached session by sending its own resumption suboption, which will
 contain the other half of the identifier. Otherwise, it MUST NOT
 agree to resumption.

Bittau, et al. Expires June 14, 2019 [Page 10]

Internet-Draft tcpcrypt December 2018

 If a passive opener does not agree to resumption with a particular
 TEP, it MAY either request fresh key exchange by responding with a
 non-resumption suboption using the same TEP, or else respond to any
 other received TEP suboption.

 If a passive opener receives an ENO suboption with a TEP identifier
 and "v = 1", but the suboption data is less than 9 bytes in length,
 it MUST behave as if the same TEP had been sent with "v = 0". That
 is, the suboption MUST be interpreted as an offer to negotiate fresh
 key exchange with that TEP.

 If an active opener sends a resumption suboption with a particular
 TEP and the appropriate half of a resumption identifier and then, in
 the same TCP handshake, receives a resumption suboption with the same
 TEP and an identifier-half that does not match that resumption
 identifier, it MUST ignore that suboption. In the typical case that
 this was the only ENO suboption received, this means the host MUST
 disable TCP-ENO and tcpcrypt: that is, it MUST NOT send any more ENO
 options and MUST NOT encrypt the connection.

 When a host concludes that TCP-ENO negotiation has succeeded for some
 TEP that was received in a resumption suboption, it MUST then enable
 encryption with that TEP using the cached session secret. To do
 this, it first constructs "sn[i]" as follows:

 sn[i] = nonce_a | nonce_b

 Master keys are then computed from "s[i]" and "sn[i]" as described in
 Section 3.3, and application data encrypted as described in
 Section 3.6.

 The session ID (Section 3.4) is constructed in the same way for
 resumed sessions as it is for fresh ones. In this case the first
 byte will always have "v = 1". The remainder of the ID is derived
 from the cached session secret and the session nonce that was
 generated during resumption.

 In the case of simultaneous open where TCP-ENO is able to establish
 asymmetric roles, two hosts that simultaneously send SYN segments
 with compatible resumption suboptions MAY resume the associated
 session.

 In a particular SYN segment, a host SHOULD NOT send more than one
 resumption suboption (because this consumes TCP option space and is
 unlikely to be a useful practice), and MUST NOT send more than one
 resumption suboption with the same TEP identifier. But in addition
 to any resumption suboptions, an active opener MAY include non-

Bittau, et al. Expires June 14, 2019 [Page 11]

Internet-Draft tcpcrypt December 2018

 resumption suboptions describing other TEPs it supports (in addition
 to the TEP in the resumption suboption).

 After using the session secret "ss[i]" to compute "mk[0]",
 implementations SHOULD compute and cache "ss[i+1]" for possible use
 by a later session, then erase "ss[i]" from memory. Hosts MAY retain
 "ss[i+1]" until it is used or the memory needs to be reclaimed.
 Hosts SHOULD NOT write any session secrets to non-volatile storage.

 When proposing resumption, the active opener MUST use the lowest
 value of "i" that has not already been used (successfully or not) to
 negotiate resumption with the same host and for the same original
 session secret "ss[0]".

 A given session secret "ss[i]" MUST NOT be used to secure more than
 one TCP connection. To prevent this, a host MUST NOT resume with a
 session secret if it has ever enabled encryption in the past with the
 same secret, in either role. In the event that two hosts
 simultaneously send SYN segments to each other that propose
 resumption with the same session secret but the two segments are not
 part of a simultaneous open, both connections would need to revert to
 fresh key-exchange. To avoid this limitation, implementations MAY
 choose to implement session resumption such that all session secrets
 derived from a given "ss[0]" are used for either passive or active
 opens at the same host, not both.

 If two hosts have previously negotiated a tcpcrypt session, either
 host MAY later initiate session resumption regardless of which host
 was the active opener or played the "A" role in the previous session.

 However, a given host MUST either encrypt with keys "k_ab[j]" for all
 sessions derived from the same original session secret "ss[0]", or
 with keys "k_ba[j]". Thus, which keys a host uses to send segments
 is not affected by the role it plays in the current connection: it
 depends only on whether the host played the "A" or "B" role in the
 initial session.

 Implementations that cache session secrets MUST provide a means for
 applications to control that caching. In particular, when an
 application requests a new TCP connection, it MUST have a way to
 specify two policies for the duration of the connection: 1) that
 resumption requests will be ignored, and thus fresh key exchange will
 be necessary; and 2) that no session secrets will be cached. (These
 policies can be specified independently or as a unit.) And for an
 established connection, an application MUST have a means to cause any
 cache state that was used in or resulted from establishing the
 connection to be flushed. A companion document [I-D.ietf-tcpinc-api]
 describes recommended interfaces for this purpose.

Bittau, et al. Expires June 14, 2019 [Page 12]

Internet-Draft tcpcrypt December 2018

3.6. Data Encryption and Authentication

 Following key exchange (or its omission via session resumption), all
 further communication in a tcpcrypt-enabled connection is carried out
 within delimited _encryption frames_ that are encrypted and
 authenticated using the agreed upon keys.

 This protection is provided via algorithms for Authenticated
 Encryption with Associated Data (AEAD). The permitted algorithms are
 listed in Table 5 in Section 7. Additional algorithms can be
 specified in the future according to the policy in that section. One
 algorithm is selected during the negotiation described in
 Section 3.3. The lengths "ae_key_len" and "ae_nonce_len" associated
 with each algorithm are found in Table 3 in Section 6, together with
 requirements for which algorithms MUST be implemented.

 The format of an encryption frame is specified in Section 4.2. A
 sending host breaks its stream of application data into a series of
 chunks. Each chunk is placed in the "data" portion of a "plaintext"
 value, which is then encrypted to yield a frame’s "ciphertext" field.
 Chunks MUST be small enough that the ciphertext (whose length depends
 on the AEAD cipher used, and is generally slightly longer than the
 plaintext) has length less than 2^16 bytes.

 An "associated data" value (see Section 4.2.2) is constructed for the
 frame. It contains the frame’s "control" field and the length of the
 ciphertext.

 A "frame ID" value (see Section 4.2.3) is also constructed for the
 frame, but not explicitly transmitted. It contains a 64-bit "offset"
 field whose integer value is the zero-indexed byte offset of the
 beginning of the current encryption frame in the underlying TCP
 datastream. (That is, the offset in the framing stream, not the
 plaintext application stream.) The offset is then left-padded with
 zero-valued bytes to form a value of length "ae_nonce_len". Because
 it is strictly necessary for the security of the AEAD algorithms
 specified in this document, an implementation MUST NOT ever transmit
 distinct frames with the same frame ID value under the same
 encryption key. In particular, a retransmitted TCP segment MUST
 contain the same payload bytes for the same TCP sequence numbers, and
 a host MUST NOT transmit more than 2^64 bytes in the underlying TCP
 datastream (which would cause the "offset" field to wrap) before re-
 keying as decribed in Section 3.8.

 With reference to the "AEAD Interface" described in Section 2 of
 [RFC5116], tcpcrypt invokes the AEAD algorithm with values taken from
 the traffic key "k_ab[j]" or "k_ba[j]" for some "j", according to the
 host’s role as described in Section 3.3.

Bittau, et al. Expires June 14, 2019 [Page 13]

Internet-Draft tcpcrypt December 2018

 First, the traffic key is divided into two parts:

 ae_key_len + ae_nonce_len - 1
 |
 byte 0 ae_key_len |
 | | |
 v v v
 +----+----+--...--+----+----+----+--...--+----+
 | K | NR |
 +----+----+--...--+----+----+----+--...--+----+

 ___/
 traffic key

 The first "ae_key_len" bytes of the traffic key provide the AEAD key
 "K", while the remaining "ae_nonce_len" bytes provide a "nonce
 randomizer" value "NR". The frame ID is then combined via bitwise
 exclusive-or with the nonce randomizer to yield "N", the AEAD nonce
 for the frame:

 N = frame_ID XOR NR

 The plaintext value serves as "P", and the associated data as "A".
 The output of the encryption operation, "C", is transmitted in the
 frame’s "ciphertext" field.

 When a frame is received, tcpcrypt reconstructs the associated data
 and frame ID values (the former contains only data sent in the clear,
 and the latter is implicit in the TCP stream), computes the nonce "N"
 as above, and provides these and the ciphertext value to the AEAD
 decryption operation. The output of this operation is either a
 plaintext value "P" or the special symbol FAIL. In the latter case,
 the implementation SHOULD abort the connection and raise an error
 condition distinct from the end-of-file condition. But if none of
 the TCP segment(s) containing the frame have been acknowledged and
 retransmission could potentially result in a valid frame, an
 implementation MAY instead drop these segments (and "renege" if they
 have been SACKed, according to [RFC2018] Section 8).

3.7. TCP Header Protection

 The "ciphertext" field of the encryption frame contains protected
 versions of certain TCP header values.

 When the "URGp" bit is set, the "urgent" value indicates an offset
 from the current frame’s beginning offset; the sum of these offsets
 gives the index of the last byte of urgent data in the application
 datastream.

Bittau, et al. Expires June 14, 2019 [Page 14]

Internet-Draft tcpcrypt December 2018

 A sender MUST set the "FINp" bit on the last frame it sends in the
 connection (unless it aborts the connection), and MUST NOT set "FINp"
 on any other frame.

 TCP sets the FIN flag when a sender has no more data, which with
 tcpcrypt means setting FIN on the segment containing the last byte of
 the last frame. However, a receiver MUST report the end-of-file
 condition to the connection’s local user when and only when it
 receives a frame with the "FINp" bit set. If a host receives a
 segment with the TCP FIN flag set but the received datastream
 including this segment does not contain a frame with "FINp" set, the
 host SHOULD abort the connection and raise an error condition
 distinct from the end-of-file condition. But if there are
 unacknowledged segments whose retransmission could potentially result
 in a valid frame, the host MAY instead drop the segment with the TCP
 FIN flag set (and "renege" if it has been SACKed, according to
 [RFC2018] Section 8).

3.8. Re-Keying

 Re-keying allows hosts to wipe from memory keys that could decrypt
 previously transmitted segments. It also allows the use of AEAD
 ciphers that can securely encrypt only a bounded number of messages
 under a given key.

 As described above in Section 3.3, a master key "mk[j]" is used to
 generate two encryption keys "k_ab[j]" and "k_ba[j]". We refer to
 these as a _key-set_ with _generation number_ "j". Each host
 maintains a _local generation number_ that determines which key-set
 it uses to encrypt outgoing frames, and a _remote generation number_
 equal to the highest generation used in frames received from its
 peer. Initially, these two generation numbers are set to zero.

 A host MAY increment its local generation number beyond the remote
 generation number it has recorded. We call this action _initiating
 re-keying_.

 When a host has incremented its local generation number and uses the
 new key-set for the first time to encrypt an outgoing frame, it MUST
 set "rekey = 1" for that frame. It MUST set "rekey = 0" in all other
 cases.

 When a host receives a frame with "rekey = 1", it increments its
 record of the remote generation number. If the remote generation
 number is now greater than the local generation number, the receiver
 MUST immediately increment its local generation number to match.
 Moreover, if the receiver has not yet transmitted a segment with the

Bittau, et al. Expires June 14, 2019 [Page 15]

Internet-Draft tcpcrypt December 2018

 FIN flag set, it MUST immediately send a frame (with empty
 application data if necessary) with "rekey = 1".

 A host MUST NOT initiate more than one concurrent re-key operation if
 it has no data to send; that is, it MUST NOT initiate re-keying with
 an empty encryption frame more than once while its record of the
 remote generation number is less than its own.

 Note that when parts of the datastream are retransmitted, TCP
 requires that implementations always send the same data bytes for the
 same TCP sequence numbers. Thus, frame data in retransmitted
 segments MUST be encrypted with the same key as when it was first
 transmitted, regardless of the current local generation number.

 Implementations SHOULD delete older-generation keys from memory once
 they have received all frames they will need to decrypt with the old
 keys and have encrypted all outgoing frames under the old keys.

3.9. Keep-Alive

 Instead of using TCP Keep-Alives to verify that the remote endpoint
 is still responsive, tcpcrypt implementations SHOULD employ the re-
 keying mechanism for this purpose, as follows. When necessary, a
 host SHOULD probe the liveness of its peer by initiating re-keying
 and transmitting a new frame immediately (with empty application data
 if necessary).

 As described in Section 3.8, a host receiving a frame encrypted under
 a generation number greater than its own MUST increment its own
 generation number and (if it has not already transmitted a segment
 with FIN set) immediately transmit a new frame (with zero-length
 application data if necessary).

 Implementations MAY use TCP Keep-Alives for purposes that do not
 require endpoint authentication, as discussed in Section 8.2.

4. Encodings

 This section provides byte-level encodings for values transmitted or
 computed by the protocol.

4.1. Key-Exchange Messages

 The "Init1" message has the following encoding:

Bittau, et al. Expires June 14, 2019 [Page 16]

Internet-Draft tcpcrypt December 2018

 byte 0 1 2 3
 +-------+-------+-------+-------+
 | INIT1_MAGIC |
 | |
 +-------+-------+-------+-------+

 4 5 6 7
 +-------+-------+-------+-------+
 | message_len |
 | = M |
 +-------+-------+-------+-------+

 8
 +--------+-----+----+-----+----+---...---+-----+-----+
 |nciphers|sym_ |sym_ | |sym_ |
 | = K |cipher[0] |cipher[1] | |cipher[K-1]|
 +--------+-----+----+-----+----+---...---+-----+-----+

 2*K + 9 2*K + 9 + N_A_LEN
 | |
 v v
 +-------+---...---+-------+-------+---...---+-------+
 | N_A | Pub_A |
 | | |
 +-------+---...---+-------+-------+---...---+-------+

 M - 1
 +-------+---...---+-------+
 | ignored |
 | |
 +-------+---...---+-------+

 The constant "INIT1_MAGIC" is defined in Section 4.3. The four-byte
 field "message_len" gives the length of the entire "Init1" message,
 encoded as a big-endian integer. The "nciphers" field contains an
 integer value that specifies the number of two-byte symmetric-cipher
 identifiers that follow. The "sym_cipher[i]" identifiers indicate
 cryptographic algorithms in Table 5 in Section 7. The length
 "N_A_LEN" and the length of "Pub_A" are both determined by the
 negotiated TEP, as described in Section 5.

 Implementations of this protocol MUST construct "Init1" such that the
 field "ignored" has zero length; that is, they MUST construct the
 message such that its end, as determined by "message_len", coincides
 with the end of the field "Pub_A". When receiving "Init1", however,
 implementations MUST permit and ignore any bytes following "Pub_A".

 The "Init2" message has the following encoding:

Bittau, et al. Expires June 14, 2019 [Page 17]

Internet-Draft tcpcrypt December 2018

 byte 0 1 2 3
 +-------+-------+-------+-------+
 | INIT2_MAGIC |
 | |
 +-------+-------+-------+-------+

 4 5 6 7 8 9
 +-------+-------+-------+-------+-------+-------+
 | message_len | sym_cipher |
 | = M | |
 +-------+-------+-------+-------+-------+-------+

 10 10 + N_B_LEN
 | |
 v v
 +-------+---...---+-------+-------+---...---+-------+
 | N_B | Pub_B |
 | | |
 +-------+---...---+-------+-------+---...---+-------+

 M - 1
 +-------+---...---+-------+
 | ignored |
 | |
 +-------+---...---+-------+

 The constant "INIT2_MAGIC" is defined in Section 4.3. The four-byte
 field "message_len" gives the length of the entire "Init2" message,
 encoded as a big-endian integer. The "sym_cipher" value is a
 selection from the symmetric-cipher identifiers in the previously-
 received "Init1" message. The length "N_B_LEN" and the length of
 "Pub_B" are both determined by the negotiated TEP, as described in
 Section 5.

 Implementations of this protocol MUST construct "Init2" such that the
 field "ignored" has zero length; that is, they MUST construct the
 message such that its end, as determined by "message_len", coincides
 with the end of the "Pub_B" field. When receiving "Init2", however,
 implementations MUST permit and ignore any bytes following "Pub_B".

4.2. Encryption Frames

 An _encryption frame_ comprises a control byte and a length-prefixed
 ciphertext value:

Bittau, et al. Expires June 14, 2019 [Page 18]

Internet-Draft tcpcrypt December 2018

 byte 0 1 2 3 clen+2
 +-------+-------+-------+-------+---...---+-------+
 |control| clen | ciphertext |
 +-------+-------+-------+-------+---...---+-------+

 The field "clen" is an integer in big-endian format and gives the
 length of the "ciphertext" field.

 The byte "control" has this structure:

 bit 7 1 0
 +-------+---...---+-------+-------+
 | cres | rekey |
 +-------+---...---+-------+-------+

 The seven-bit field "cres" is reserved; implementations MUST set
 these bits to zero when sending, and MUST ignore them when receiving.

 The use of the "rekey" field is described in Section 3.8.

4.2.1. Plaintext

 The "ciphertext" field is the result of applying the negotiated
 authenticated-encryption algorithm to a "plaintext" value, which has
 one of these two formats:

 byte 0 1 plen-1
 +-------+-------+---...---+-------+
 | flags | data |
 +-------+-------+---...---+-------+

 byte 0 1 2 3 plen-1
 +-------+-------+-------+-------+---...---+-------+
 | flags | urgent | data |
 +-------+-------+-------+-------+---...---+-------+

 (Note that "clen" in the previous section will generally be greater
 than "plen", as the ciphertext produced by the authenticated-
 encryption scheme both encrypts the application data and provides
 redundancy with which to verify its integrity.)

 The "flags" byte has this structure:

 bit 7 6 5 4 3 2 1 0
 +----+----+----+----+----+----+----+----+
 | fres |URGp|FINp|
 +----+----+----+----+----+----+----+----+

Bittau, et al. Expires June 14, 2019 [Page 19]

Internet-Draft tcpcrypt December 2018

 The six-bit value "fres" is reserved; implementations MUST set these
 six bits to zero when sending, and MUST ignore them when receiving.

 When the "URGp" bit is set, it indicates that the "urgent" field is
 present, and thus that the plaintext value has the second structure
 variant above; otherwise the first variant is used.

 The meaning of "urgent" and of the flag bits is described in
 Section 3.7.

4.2.2. Associated Data

 An encryption frame’s "associated data" (which is supplied to the
 AEAD algorithm when decrypting the ciphertext and verifying the
 frame’s integrity) has this format:

 byte 0 1 2
 +-------+-------+-------+
 |control| clen |
 +-------+-------+-------+

 It contains the same values as the frame’s "control" and "clen"
 fields.

4.2.3. Frame ID

 Lastly, a "frame ID" (used to construct the nonce for the AEAD
 algorithm) has this format:

 byte 0 ae_nonce_len - 8 ae_nonce_len - 1
 | | |
 v v v
 +-----+--...--+-----+-----+--...--+-----+
 | 0 | | 0 | offset |
 +-----+--...--+-----+-----+--...--+-----+

 The 8-byte "offset" field contains an integer in big-endian format.
 Its value is specified in Section 3.6. Zero-valued bytes are
 prepended to the "offset" field to form a structure of length
 "ae_nonce_len".

4.3. Constant Values

 The table below defines values for the constants used in the
 protocol.

Bittau, et al. Expires June 14, 2019 [Page 20]

Internet-Draft tcpcrypt December 2018

 +------------+--------------+
 | Value | Name |
 +------------+--------------+
 | 0x01 | CONST_NEXTK |
 | 0x02 | CONST_SESSID |
 | 0x03 | CONST_REKEY |
 | 0x04 | CONST_KEY_A |
 | 0x05 | CONST_KEY_B |
 | 0x06 | CONST_RESUME |
 | 0x15101a0e | INIT1_MAGIC |
 | 0x097105e0 | INIT2_MAGIC |
 +------------+--------------+

 Table 1: Constant values used in the protocol

5. Key-Agreement Schemes

 The TEP negotiated via TCP-ENO indicates the use of one of the key-
 agreement schemes named in Table 4 in Section 7. For example,
 "TCPCRYPT_ECDHE_P256" names the tcpcrypt protocol using ECDHE-P256
 together with the CPRF and length parameters specified below.

 All the TEPs specified in this document require the use of HKDF-
 Expand-SHA256 as the CPRF, and these lengths for nonces and session
 secrets:

 N_A_LEN: 32 bytes
 N_B_LEN: 32 bytes
 K_LEN: 32 bytes

 Future documents assigning additional TEPs for use with tcpcrypt
 mmight specify different values for the lengths above. Note that the
 minimum session ID length specified by TCP-ENO, together with the way
 tcpcrypt constructs session IDs, implies that "K_LEN" MUST have
 length at least 32 bytes.

 Key-agreement schemes ECDHE-P256 and ECDHE-P521 employ the ECSVDP-DH
 secret value derivation primitive defined in [IEEE-1363]. The named
 curves are defined in [NIST-DSS]. When the public-key values "Pub_A"
 and "Pub_B" are transmitted as described in Section 4.1, they are
 encoded with the "Elliptic Curve Point to Octet String Conversion
 Primitive" described in Section E.2.3 of [IEEE-1363], and are
 prefixed by a two-byte length in big-endian format:

Bittau, et al. Expires June 14, 2019 [Page 21]

Internet-Draft tcpcrypt December 2018

 byte 0 1 2 L - 1
 +-------+-------+-------+---...---+-------+
 | pubkey_len | pubkey |
 | = L | |
 +-------+-------+-------+---...---+-------+

 Implementations MUST encode these "pubkey" values in "compressed
 format". Implementations MUST validate these "pubkey" values
 according to the algorithm in [IEEE-1363] Section A.16.10.

 Key-agreement schemes ECDHE-Curve25519 and ECDHE-Curve448 perform the
 Diffie-Helman protocol using the functions X25519 and X448,
 respectively. Implementations SHOULD compute these functions using
 the algorithms described in [RFC7748]. When they do so,
 implementations MUST check whether the computed Diffie-Hellman shared
 secret is the all-zero value and abort if so, as described in
 Section 6 of [RFC7748]. Alternative implementations of these
 functions SHOULD abort when either input forces the shared secret to
 one of a small set of values, as discussed in Section 7 of [RFC7748].

 For these schemes, public-key values "Pub_A" and "Pub_B" are
 transmitted directly with no length prefix: 32 bytes for ECDHE-
 Curve25519, and 56 bytes for ECDHE-Curve448.

 Table 2 below specifies the requirement levels of the four TEPs
 specified in this document. In particular, all implementations of
 tcpcrypt MUST support TCPCRYPT_ECDHE_Curve25519. However, system
 administrators MAY configure which TEPs a host will negotiate
 independent of these implementation requirements.

 +-------------+---------------------------+
 | Requirement | TEP |
 +-------------+---------------------------+
 | REQUIRED | TCPCRYPT_ECDHE_Curve25519 |
 | RECOMMENDED | TCPCRYPT_ECDHE_Curve448 |
 | OPTIONAL | TCPCRYPT_ECDHE_P256 |
 | OPTIONAL | TCPCRYPT_ECDHE_P521 |
 +-------------+---------------------------+

 Table 2: Requirements for implementation of TEPs

6. AEAD Algorithms

 This document uses "sym-cipher" identifiers in the messages "Init1"
 and "Init2" (see Section 3.3) to negotiate the use of AEAD
 algorithms; the values of these identifiers are given in Table 5 in
 Section 7. The algorithms "AEAD_AES_128_GCM" and "AEAD_AES_256_GCM"

Bittau, et al. Expires June 14, 2019 [Page 22]

Internet-Draft tcpcrypt December 2018

 are specified in [RFC5116]. The algorithm "AEAD_CHACHA20_POLY1305"
 is specified in [RFC7539].

 Implementations MUST support certain AEAD algorithms according to
 Table 3 below. Note that system administrators MAY configure which
 algorithms a host will negotiate independent of these requirements.

 Lastly, this document uses the lengths "ae_key_len" and
 "ae_nonce_len" to specify aspects of encryption and data formats.
 These values depend on the negotiated AEAD algorithm, also according
 to the table below.

 +------------------------+-------------+------------+--------------+
 | AEAD Algorithm | Requirement | ae_key_len | ae_nonce_len |
 +------------------------+-------------+------------+--------------+
AEAD_AES_128_GCM	REQUIRED	16 bytes	12 bytes
AEAD_AES_256_GCM	RECOMMENDED	32 bytes	12 bytes
AEAD_CHACHA20_POLY1305	RECOMMENDED	32 bytes	12 bytes
 +------------------------+-------------+------------+--------------+

 Table 3: Requirement and lengths for each AEAD algorithm

7. IANA Considerations

 For use with TCP-ENO’s negotiation mechanism, tcpcrypt’s TEP
 identifiers will need to be incorporated in IANA’s "TCP encryption
 protocol identifiers" registry under the "Transmission Control
 Protocol (TCP) Parameters" registry, as in Table 4 below. The
 various key-agreement schemes used by these tcpcrypt variants are
 defined in Section 5.

 +-------+---------------------------+-----------+
 | Value | Meaning | Reference |
 +-------+---------------------------+-----------+
 | 0x21 | TCPCRYPT_ECDHE_P256 | [RFC-TBD] |
 | 0x22 | TCPCRYPT_ECDHE_P521 | [RFC-TBD] |
 | 0x23 | TCPCRYPT_ECDHE_Curve25519 | [RFC-TBD] |
 | 0x24 | TCPCRYPT_ECDHE_Curve448 | [RFC-TBD] |
 +-------+---------------------------+-----------+

 Table 4: TEP identifiers for use with tcpcrypt

 In Section 6, this document defines the use of several AEAD
 algorithms for encrypting application data. To name these
 algorithms, the tcpcrypt protocol uses two-byte identifiers in the
 range 0x0001 to 0xFFFF inclusive, for which IANA is to maintain a new
 "tcpcrypt AEAD Algorithm" registry under the "Transmission Control
 Protocol (TCP) Parameters" registry. The initial values for this

Bittau, et al. Expires June 14, 2019 [Page 23]

Internet-Draft tcpcrypt December 2018

 registry are given in Table 5 below. Future assignments are to be
 made upon satisfying either of two policies defined in [RFC8126]:
 "IETF Review" or (for non-IETF stream specifications) "Expert Review
 with RFC Required." IANA will furthermore provide early allocation
 [RFC7120] to facilitate testing before RFCs are finalized.

 +--------+------------------------+---------------------+
 | Value | AEAD Algorithm | Reference |
 +--------+------------------------+---------------------+
 | 0x0001 | AEAD_AES_128_GCM | [RFC-TBD] Section 6 |
 | 0x0002 | AEAD_AES_256_GCM | [RFC-TBD] Section 6 |
 | 0x0010 | AEAD_CHACHA20_POLY1305 | [RFC-TBD] Section 6 |
 +--------+------------------------+---------------------+

 Table 5: Authenticated-encryption algorithms for use with tcpcrypt

8. Security Considerations

 All of the security considerations of TCP-ENO apply to tcpcrypt. In
 particular, tcpcrypt does not protect against active network
 attackers unless applications authenticate the session ID. If it can
 be established that the session IDs computed at each end of the
 connection match, then tcpcrypt guarantees that no man-in-the-middle
 attacks occurred unless the attacker has broken the underlying
 cryptographic primitives (e.g., ECDH). A proof of this property for
 an earlier version of the protocol has been published [tcpcrypt].

 To ensure middlebox compatibility, tcpcrypt does not protect TCP
 headers. Hence, the protocol is vulnerable to denial-of-service from
 off-path attackers just as plain TCP is. Possible attacks include
 desynchronizing the underlying TCP stream, injecting RST or FIN
 segments, and forging re-key bits. These attacks will cause a
 tcpcrypt connection to hang or fail with an error, but not in any
 circumstance where plain TCP could continue uncorrupted.
 Implementations MUST give higher-level software a way to distinguish
 such errors from a clean end-of-stream (indicated by an authenticated
 "FINp" bit) so that applications can avoid semantic truncation
 attacks.

 There is no "key confirmation" step in tcpcrypt. This is not needed
 because tcpcrypt’s threat model includes the possibility of a
 connection to an adversary. If key negotiation is compromised and
 yields two different keys, failed integrity checks on every
 subsequent frame will cause the connection either to hang or to
 abort. This is not a new threat as an active attacker can achieve
 the same results against a plain TCP connection by injecting RST
 segments or modifying sequence and acknowledgement numbers.

Bittau, et al. Expires June 14, 2019 [Page 24]

Internet-Draft tcpcrypt December 2018

 Tcpcrypt uses short-lived public keys to provide forward secrecy.
 That is, once an implementation removes these keys from memory, a
 compromise of the system will not provide any means to derive the
 session secrets for past connections. All currently-specified key
 agreement schemes involve ECDHE-based key agreement, meaning a new
 key-pair can be efficiently computed for each connection. If
 implementations reuse these parameters, they MUST limit the lifetime
 of the private parameters as far as practical in order to minimize
 the number of past connections that are vulnerable. Of course,
 placing private keys in persistent storage introduces severe risks
 that they will not be destroyed reliably and in a timely fashion, and
 SHOULD be avoided whenever possible.

 Attackers cannot force passive openers to move forward in their
 session resumption chain without guessing the content of the
 resumption identifier, which will be difficult without key knowledge.

 The cipher-suites specified in this document all use HMAC-SHA256 to
 implement the collision-resistant pseudo-random function denoted by
 "CPRF". A collision-resistant function is one for which, for
 sufficiently large L, an attacker cannot find two distinct inputs
 (K_1, CONST_1) and (K_2, CONST_2) such that CPRF(K_1, CONST_1, L) =
 CPRF(K_2, CONST_2, L). Collision resistance is important to assure
 the uniqueness of session IDs, which are generated using the CPRF.

 Lastly, many of tcpcrypt’s cryptographic functions require random
 input, and thus any host implementing tcpcrypt MUST have access to a
 cryptographically-secure source of randomness or pseudo-randomness.
 [RFC4086] provides recommendations on how to achieve this.

 Most implementations will rely on a device’s pseudo-random generator,
 seeded from hardware events and a seed carried over from the previous
 boot. Once a pseudo-random generator has been properly seeded, it
 can generate effectively arbitrary amounts of pseudo-random data.
 However, until a pseudo-random generator has been seeded with
 sufficient entropy, not only will tcpcrypt be insecure, it will
 reveal information that further weakens the security of the pseudo-
 random generator, potentially harming other applications. As
 REQUIRED by TCP-ENO, implementations MUST NOT send ENO options unless
 they have access to an adequate source of randomness.

8.1. Asymmetric Roles

 Tcpcrypt transforms a shared pseudo-random key (PRK) into
 cryptographic traffic keys for each direction. Doing so requires an
 asymmetry in the protocol, as the key derivation function must be
 perturbed differently to generate different keys in each direction.
 Tcpcrypt includes other asymmetries in the roles of the two hosts,

Bittau, et al. Expires June 14, 2019 [Page 25]

Internet-Draft tcpcrypt December 2018

 such as the process of negotiating algorithms (e.g., proposing vs.
 selecting cipher suites).

8.2. Verified Liveness

 Many hosts implement TCP Keep-Alives [RFC1122] as an option for
 applications to ensure that the other end of a TCP connection still
 exists even when there is no data to be sent. A TCP Keep-Alive
 segment carries a sequence number one prior to the beginning of the
 send window, and may carry one byte of "garbage" data. Such a
 segment causes the remote side to send an acknowledgment.

 Unfortunately, tcpcrypt cannot cryptographically verify Keep-Alive
 acknowledgments. Hence, an attacker could prolong the existence of a
 session at one host after the other end of the connection no longer
 exists. (Such an attack might prevent a process with sensitive data
 from exiting, giving an attacker more time to compromise a host and
 extract the sensitive data.)

 To counter this threat, tcpcrypt specifies a way to stimulate the
 remote host to send verifiably fresh and authentic data, described in
 Section 3.9.

 The TCP keep-alive mechanism has also been used for its effects on
 intermediate nodes in the network, such as preventing flow state from
 expiring at NAT boxes or firewalls. As these purposes do not require
 the authentication of endpoints, implementations MAY safely
 accomplish them using either the existing TCP keep-alive mechanism or
 tcpcrypt’s verified keep-alive mechanism.

8.3. Mandatory Key-Agreement Schemes

 This document mandates that tcpcrypt implementations provide support
 for at least one key-agreement scheme: ECDHE using Curve25519. This
 choice of a single mandatory algorithm is the result of a difficult
 tradeoff between cryptographic diversity and the ease and security of
 actual deployment.

 The IETF’s appraisal of best current practice on this matter
 [RFC7696] says, "Ideally, two independent sets of mandatory-to-
 implement algorithms will be specified, allowing for a primary suite
 and a secondary suite. This approach ensures that the secondary
 suite is widely deployed if a flaw is found in the primary one."

 To meet that ideal, it might appear natural to also mandate ECDHE
 using P-256. However, implementing the Diffie-Hellman function using
 NIST elliptic curves (including those specified for use with
 tcpcrypt, P-256 and P-521) appears to be very difficult to achieve

Bittau, et al. Expires June 14, 2019 [Page 26]

Internet-Draft tcpcrypt December 2018

 without introducing vulnerability to side-channel attacks
 [NIST-fail]. Although well-trusted implementations are available as
 part of large cryptographic libraries, these can be difficult to
 extract for use in operating-system kernels where tcpcrypt is usually
 best implemented. In contrast, the characteristics of Curve25519
 together with its recent popularity has led to many safe and
 efficient implementations, including some that fit naturally into the
 kernel environment.

 [RFC7696] insists that, "The selected algorithms need to be resistant
 to side-channel attacks and also meet the performance, power, and
 code size requirements on a wide variety of platforms." On this
 principle, tcpcrypt excludes the NIST curves from the set of
 mandatory-to-implement key-agreement algorithms.

 Lastly, this document encourages support for key-agreement with
 Curve448, categorizing it as RECOMMENDED. Curve448 appears likely to
 admit safe and efficient implementations. However, support is not
 REQUIRED because existing implementations might not yet be
 sufficiently well-proven.

9. Experiments

 Some experience will be required to determine whether the tcpcrypt
 protocol can be deployed safely and successfully across the diverse
 environments of the global internet.

 Safety means that TCP implementations that support tcpcrypt are able
 to communicate reliably in all the same settings as they would
 without tcpcrypt. As described in [I-D.ietf-tcpinc-tcpeno]
 Section 9, this property can be subverted if middleboxes strip ENO
 options from non-SYN segments after allowing them in SYN segments; or
 if the particular communication patterns of tcpcrypt offend the
 policies of middleboxes doing deep-packet inspection.

 Success, in addition to safety, means hosts that implement tcpcrypt
 actually enable encryption when connecting to one another. This
 property depends on the network’s treatment of the TCP-ENO handshake,
 and can be subverted if middleboxes merely strip unknown TCP options
 or if they terminate TCP connections and relay data back and forth
 unencrypted.

 Ease of implementation will be a further challenge to deployment.
 Because tcpcrypt requires encryption operations on frames that may
 span TCP segments, kernel implementations are forced to buffer
 segments in different ways than are necessary for plain TCP. More
 implementation experience will show how much additional code

Bittau, et al. Expires June 14, 2019 [Page 27]

Internet-Draft tcpcrypt December 2018

 complexity is required in various operating systems, and what kind of
 performance effects can be expected.

10. Acknowledgments

 We are grateful for contributions, help, discussions, and feedback
 from the TCPINC working group and from other IETF reviewers,
 including Marcelo Bagnulo, David Black, Bob Briscoe, Jana Iyengar,
 Stephen Kent, Tero Kivinen, Mirja Kuhlewind, Yoav Nir, Christoph
 Paasch, Eric Rescorla, Kyle Rose, and Dale Worley.

 This work was funded by gifts from Intel (to Brad Karp) and from
 Google; by NSF award CNS-0716806 (A Clean-Slate Infrastructure for
 Information Flow Control); by DARPA CRASH under contract
 #N66001-10-2-4088; and by the Stanford Secure Internet of Things
 Project.

11. Contributors

 Dan Boneh and Michael Hamburg were co-authors of the draft that
 became this document.

12. References

12.1. Normative References

 [I-D.ietf-tcpinc-tcpeno]
 Bittau, A., Giffin, D., Handley, M., Mazieres, D., and E.
 Smith, "TCP-ENO: Encryption Negotiation Option", draft-
 ietf-tcpinc-tcpeno-19 (work in progress), June 2018.

 [IEEE-1363]
 IEEE, "IEEE Standard Specifications for Public-Key
 Cryptography (IEEE Std 1363-2000)", 2000.

 [NIST-DSS]
 NIST, "FIPS PUB 186-4: Digital Signature Standard (DSS)",
 2013.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996,
 <https://www.rfc-editor.org/info/rfc2018>.

Bittau, et al. Expires June 14, 2019 [Page 28]

Internet-Draft tcpcrypt December 2018

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC7120] Cotton, M., "Early IANA Allocation of Standards Track Code
 Points", BCP 100, RFC 7120, DOI 10.17487/RFC7120, January
 2014, <https://www.rfc-editor.org/info/rfc7120>.

 [RFC7539] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 7539, DOI 10.17487/RFC7539, May 2015,
 <https://www.rfc-editor.org/info/rfc7539>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

12.2. Informative References

 [I-D.ietf-tcpinc-api]
 Bittau, A., Boneh, D., Giffin, D., Handley, M., Mazieres,
 D., and E. Smith, "Interface Extensions for TCP-ENO and
 tcpcrypt", draft-ietf-tcpinc-api-06 (work in progress),
 June 2018.

Bittau, et al. Expires June 14, 2019 [Page 29]

Internet-Draft tcpcrypt December 2018

 [NIST-fail]
 Bernstein, D. and T. Lange, "Failures in NIST’s ECC
 standards", 2016,
 <https://cr.yp.to/newelliptic/nistecc-20160106.pdf>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC7696] Housley, R., "Guidelines for Cryptographic Algorithm
 Agility and Selecting Mandatory-to-Implement Algorithms",
 BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,
 <https://www.rfc-editor.org/info/rfc7696>.

 [tcpcrypt]
 Bittau, A., Hamburg, M., Handley, M., Mazieres, D., and D.
 Boneh, "The case for ubiquitous transport-level
 encryption", USENIX Security , 2010.

Authors’ Addresses

 Andrea Bittau
 Google
 345 Spear Street
 San Francisco, CA 94105
 US

 Email: bittau@google.com

 Daniel B. Giffin
 Stanford University
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Email: dbg@scs.stanford.edu

Bittau, et al. Expires June 14, 2019 [Page 30]

Internet-Draft tcpcrypt December 2018

 Mark Handley
 University College London
 Gower St.
 London WC1E 6BT
 UK

 Email: M.Handley@cs.ucl.ac.uk

 David Mazieres
 Stanford University
 353 Serra Mall, Room 290
 Stanford, CA 94305
 US

 Email: dm@uun.org

 Quinn Slack
 Sourcegraph
 121 2nd St Ste 200
 San Francisco, CA 94105
 US

 Email: sqs@sourcegraph.com

 Eric W. Smith
 Kestrel Institute
 3260 Hillview Avenue
 Palo Alto, CA 94304
 US

 Email: eric.smith@kestrel.edu

Bittau, et al. Expires June 14, 2019 [Page 31]

