
DOTS T. Reddy
Internet-Draft D. Wing
Intended status: Standards Track P. Patil
Expires: February 9, 2017 M. Geller
 Cisco
 M. Boucadair
 Orange
 August 8, 2016

 Co-operative DDoS Mitigation
 draft-reddy-dots-transport-06

Abstract

 This document specifies a mechanism that a DOTS client can use to
 signal that a network is under a Distributed Denial-of-Service (DDoS)
 attack to an upstream DOTS server so that appropriate mitigation
 actions are undertaken (including, blackhole, drop, rate-limit, or
 add to watch list) on the suspect traffic. The document specifies
 both DOTS signal and data channels. Happy Eyeballs considerations
 for the DOTS signal channel are also elaborated.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 9, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Reddy, et al. Expires February 9, 2017 [Page 1]

Internet-Draft Co-operative DDoS Mitigation August 2016

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Notational Conventions and Terminology 3
 3. Solution Overview . 4
 4. Happy Eyeballs for DOTS Signal Channel 5
 5. DOTS Signal Channel . 6
 5.1. Overview . 6
 5.2. Mitigation Service Requests 7
 5.2.1. Convey DOTS Signals 8
 5.2.2. Withdraw a DOTS Signal 11
 5.2.3. Retrieving a DOTS Signal 12
 5.2.4. Efficacy Update from DOTS Client 16
 6. DOTS Data Channel . 16
 6.1. Filtering Rules . 17
 6.1.1. Install Filtering Rules 18
 6.1.2. Remove Filtering Rules 20
 6.1.3. Retrieving Installed Filtering Rules 20
 7. (D)TLS Protocol Profile and Performance considerations . . . 22
 8. Mutual Authentication of DOTS Agents & Authorization of DOTS
 Clients . 23
 9. IANA Considerations . 25
 10. Security Considerations 25
 11. Contributors . 25
 12. Acknowledgements . 26
 13. References . 26
 13.1. Normative References 26
 13.2. Informative References 27
 Authors’ Addresses . 29

1. Introduction

 A distributed denial-of-service (DDoS) attack is an attempt to make
 machines or network resources unavailable to their intended users.
 In most cases, sufficient scale can be achieved by compromising
 enough end-hosts and using those infected hosts to perpetrate and
 amplify the attack. The victim in this attack can be an application
 server, a client, a router, a firewall, or an entire network, etc.

 In a lot of cases, it may not be possible for an enterprise to
 determine the cause for an attack, but instead just realize that

Reddy, et al. Expires February 9, 2017 [Page 2]

Internet-Draft Co-operative DDoS Mitigation August 2016

 certain resources seem to be under attack. The document proposes
 that, in such cases, the DOTS client just inform the DOTS server that
 the enterprise is under a potential attack and that the Mitigator
 monitor traffic to the enterprise to mitigate any possible attack.
 This document also describes a means for an enterprise, which act as
 DOTS clients, to dynamically inform its DOTS server of the IP
 addresses or prefixes that are causing DDoS. A Mitigator can use
 this information to discard flows from such IP addresses reaching the
 customer network.

 The proposed mechanism can also be used between applications from
 various vendors that are deployed within the same network, some of
 them are responsible for monitoring and detecting attacks while
 others are responsible for enforcing policies on appropriate network
 elements. This cooperations contributes to a ensure a highly
 automated network that is also robust, reliable and secure. The
 advantage of this mechanism is that the DOTS server can provide
 protection to the DOTS client from bandwidth-saturating DDoS traffic.

 How a Mitigator determines which network elements should be modified
 to install appropriate filtering rules is out of scope. A variety of
 mechanisms and protocols (including NETCONF [RFC6241]) may be
 considered to exchange information through a communication interface
 between the server and these underlying elements; the selection of
 appropriate mechanisms and protocols to be invoked for that
 interfaces is deployment-specific.

 Terminology and protocol requirements for co-operative DDoS
 mitigation are obtained from DOTS requirements
 [I-D.ietf-dots-requirements]. This document satisfies all the use
 cases discussed in [I-D.ietf-dots-use-cases] except the Third-party
 DOTS notifications use case in Section 3.2.3 of
 [I-D.ietf-dots-use-cases] which is an optional feature and not a core
 use case. Third-party DOTS notifications are not part of the DOTS
 requirements document and the DOTS architecture
 [I-D.ietf-dots-architecture] does not assess whether that use case
 may have an impact on the architecture itself and/or trust model.

2. Notational Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 (D)TLS: For brevity this term is used for statements that apply to
 both Transport Layer Security [RFC5246] and Datagram Transport Layer
 Security [RFC6347]. Specific terms will be used for any statement
 that applies to either protocol alone.

Reddy, et al. Expires February 9, 2017 [Page 3]

Internet-Draft Co-operative DDoS Mitigation August 2016

3. Solution Overview

 Network applications have finite resources like CPU cycles, number of
 processes or threads they can create and use, maximum number of
 simultaneous connections it can handle, limited resources of the
 control plane, etc. When processing network traffic, such an
 application uses these resources to offer its intended task in the
 most efficient fashion. However, an attacker may be able to prevent
 the application from performing its intended task by causing the
 application to exhaust the finite supply of a specific resource.

 TCP DDoS SYN-flood, for example, is a memory-exhaustion attack on the
 victim and ACK-flood is a CPU exhaustion attack on the victim
 ([RFC4987]). Attacks on the link are carried out by sending enough
 traffic such that the link becomes excessively congested, and
 legitimate traffic suffers high packet loss. Stateful firewalls can
 also be attacked by sending traffic that causes the firewall to hold
 excessive state and the firewall runs out of memory, and can no
 longer instantiate the state required to pass legitimate flows.
 Other possible DDoS attacks are discussed in [RFC4732].

 In each of the cases described above, the possible arrangements
 between the DOTS client and DOTS server to mitigate the attack are
 discussed in [I-D.ietf-dots-use-cases]. An example of network
 diagram showing a deployment of these elements is shown in Figure 1.
 Architectural relationship between DOTS agents is explained in
 [I-D.ietf-dots-architecture]. In this example, the DOTS server is
 operating on the access network.

 Network
 Resource CPE router Access network __________
 +-----------+ +--------------+ +-------------+ / \
	____		_______		___	Internet
DOTS client		DOTS gateway		DOTS server		
 +-----------+ +--------------+ +-------------+ __________/

 Figure 1

 The DOTS server can also be running on the Internet, as depicted in
 Figure 2.

Reddy, et al. Expires February 9, 2017 [Page 4]

Internet-Draft Co-operative DDoS Mitigation August 2016

 Network DDoS mitigation
 Resource CPE router __________ service
 +-----------+ +-------------+ / \ +-------------+
	____		_______		___		
DOTS client		DOTS gateway		Internet		DOTS server	
 +-----------+ +-------------+ __________/ +-------------+

 Figure 2

 In typical deployments, the DOTS client belongs to a different
 administrative domain than the DOTS server. For example, the DOTS
 client is a web server serving content owned and operated by an
 domain, while the DOTS server is owned and operated by a different
 domain providing DDoS mitigation services. That domain providing
 DDoS mitigation service might, or might not, also provide Internet
 access service to the website operator.

 The DOTS server may (not) be co-located with the DOTS mitigator. In
 typical deployments, the DOTS server belongs to the same
 administrative domain as the mitigator.

 The DOTS client can communicate directly with the DOTS server or
 indirectly with the DOTS server via a DOTS gateway.

4. Happy Eyeballs for DOTS Signal Channel

 DOTS signaling can happen with DTLS [RFC6347] over UDP and TLS
 [RFC5246] over TCP. A DOTS client can use DNS to determine the IP
 address(es) of a DOTS server or a DOTS client may be provided with
 the list of DOTS server IP addresses. The DOTS client MUST know a
 DOTS server’s domain name; hard-coding the domain name of the DOTS
 server into software is NOT RECOMMENDED in case the domain name is
 not valid or needs to change for legal or other reasons. The DOTS
 client performs A and/or AAAA record lookup of the domain name and
 the result will be a list of IP addresses, each of which can be used
 to contact the DOTS server using UDP and TCP.

 If an IPv4 path to reach a DOTS server is found, but the DOTS
 server’s IPv6 path is not working, a dual-stack DOTS client can
 experience a significant connection delay compared to an IPv4-only
 DOTS client. The other problem is that if a middlebox between the
 DOTS client and DOTS server is configured to block UDP, the DOTS
 client will fail to establish a DTLS session with the DOTS server and
 will, then, have to fall back to TLS over TCP incurring significant
 connection delays. [I-D.ietf-dots-requirements] discusses that DOTS
 client and server will have to support both connectionless and
 connection-oriented protocols.

Reddy, et al. Expires February 9, 2017 [Page 5]

Internet-Draft Co-operative DDoS Mitigation August 2016

 To overcome these connection setup problems, the DOTS client can try
 connecting to the DOTS server using both IPv6 and IPv4, and try both
 DTLS over UDP and TLS over TCP in a fashion similar to the Happy
 Eyeballs mechanism [RFC6555]. These connection attempts are
 performed by the DOTS client when its initializes, and the client
 uses that information for its subsequent alert to the DOTS server.
 In order of preference (most preferred first), it is UDP over IPv6,
 UDP over IPv4, TCP over IPv6, and finally TCP over IPv4, which
 adheres to address preference order [RFC6724] and the DOTS preference
 that UDP be used over TCP (to avoid TCP’s head of line blocking).

 DOTS client DOTS server
 | |
 |--DTLS ClientHello, IPv6 ---->X |
 |--TCP SYN, IPv6-------------->X |
 |--DTLS ClientHello, IPv4 ---->X |
 |--TCP SYN, IPv4--->|
 |--DTLS ClientHello, IPv6 ---->X |
 |--TCP SYN, IPv6-------------->X |
 |<-TCP SYNACK---|
 |--DTLS ClientHello, IPv4 ---->X |
 |--TCP ACK--->|
 |<------------Establish TLS Session---------------------->|
 |----------------DOTS signal----------------------------->|
 | |

 Figure 3: Happy Eyeballs

 In reference to Figure 3, the DOTS client sends two TCP SYNs and two
 DTLS ClientHello messages at the same time over IPv6 and IPv4. In
 this example, it is assumed that the IPv6 path is broken and UDP is
 dropped by a middle box but has little impact to the DOTS client
 because there is no long delay before using IPv4 and TCP. The IPv6
 path and UDP over IPv6 and IPv4 is retried until the DOTS client
 gives up.

5. DOTS Signal Channel

5.1. Overview

 Constrained Application Protocol (CoAP) [RFC7252] is used for DOTS
 signal channel. COAP was designed according to the REST
 architecture, and thus exhibits functionality similar to that of
 HTTP, it is quite straightforward to map from CoAP to HTTP and from
 HTTP to CoAP. CoAP has been defined to make use of both DTLS over
 UDP and TLS over TCP. The advantages of COAP are: (1) Like HTTP,
 CoAP is based on the successful REST model, (2) CoAP is designed to

Reddy, et al. Expires February 9, 2017 [Page 6]

Internet-Draft Co-operative DDoS Mitigation August 2016

 use minimal resources, (3) CoAP integrates with JSON, CBOR or any
 other data format, (4) asynchronous message exchanges, etc.

 +--------------+
 | DOTS |
 +--------------+
 | CoAP |
 +--------------+
 | TLS | DTLS |
 +--------------+
 | TCP | UDP |
 +--------------+
 | IP |
 +--------------+

 Figure 4: Abstract Layering of DOTS signal channel over CoAP over
 (D)TLS

 JSON [RFC7159] payloads are used to convey signal channel specific
 payload messages that convey request parameters and response
 information such as errors.

 TBD: Do we want to use CBOR [RFC7049] instead of JSON?

5.2. Mitigation Service Requests

 The following APIs define the means to convey a DOTS signal from a
 DOTS client to a DOTS server:

 POST requests: are used to convey the DOTS signal from a DOTS client
 to a DOTS server over the signal channel, possibly traversing a
 DOTS gateway, indicating the DOTS client’s need for mitigation, as
 well as the scope of any requested mitigation (Section 5.2.1).
 DOTS gateway act as a CoAP-to-CoAP Proxy (explained in [RFC7252]).

 DELETE requests: are used by the DOTS client to withdraw the request
 for mitigation from the DOTS server (Section 5.2.2).

 GET requests: are used by the DOTS client to retrieve the DOTS
 signal(s) it had conveyed to the DOTS server (Section 5.2.3).

 PUT requests: are used by the DOTS client to convey mitigation
 efficacy updates to the DOTS server (Section 5.2.4).

 Reliability is provided to the POST, DELETE, GET, and PUT requests by
 marking them as Confirmable (CON) messages. As explained in
 Section 2.1 of [RFC7252], a Confirmable message is retransmitted
 using a default timeout and exponential back-off between

Reddy, et al. Expires February 9, 2017 [Page 7]

Internet-Draft Co-operative DDoS Mitigation August 2016

 retransmissions, until the DOTS server sends an Acknowledgement
 message (ACK) with the same Message ID conveyed from the DOTS client.
 Message transmission parameters are defined in Section 4.8 of
 [RFC7252]. Reliablity is provided to the responses by marking them
 as Confirmable (CON) messages. The DOTS server can either piggback
 the response in the acknowledgement message or if the DOTS server is
 not able to respond immediately to a request carried in a Confirmable
 message, it simply responds with an Empty Acknowledgement message so
 that the DOTS client can stop retransmitting the request. Empty
 Acknowledgement message is explained in Section 2.2 of [RFC7252].
 When the response is ready, the server sends it in a new Confirmable
 message which then in turn needs to be acknowledged by the DOTS
 client (see Sections 5.2.1 and Sections 5.2.2 in [RFC7252]).

 Implementation Note: A DOTS client that receives a response in a CON
 message may want to clean up the message state right after sending
 the ACK. If that ACK is lost and the DOTS server retransmits the
 CON, the DOTS client may no longer have any state to which to
 correlate this response, making the retransmission an unexpected
 message; the DOTS client will send a Reset message so it does not
 receive any more retransmissions. This behavior is normal and not an
 indication of an error (see Section 5.3.2 in [RFC7252] for more
 details).

5.2.1. Convey DOTS Signals

 When suffering an attack and desiring DoS/DDoS mitigation, a DOTS
 signal is sent by the DOTS client to the DOTS server. A POST request
 is used to convey a DOTS signal to the DOTS server (Figure 5). The
 DOTS server can enable mitigation on behalf of the DOTS client by
 communicating the DOTS client’s request to the mitigator and relaying
 any mitigator feedback to the requesting DOTS client.

Reddy, et al. Expires February 9, 2017 [Page 8]

Internet-Draft Co-operative DDoS Mitigation August 2016

 Header: POST (Code=0.02)
 Uri-Host: "host"
 Uri-Path: ".well-known"
 Uri-Path: "DOTS-signal"
 Uri-Path: "version"
 Content-Type: "application/json"
 {
 "policy-id": "integer",
 "target-ip": "string",
 "target-port": "string",
 "target-protocol": "string",
 "lifetime": "number"
 }

 Figure 5: POST to convey DOTS signals

 The header fields are described below.

 policy-id: Identifier of the policy represented using a integer.
 This identifier MUST be unique for each policy bound to the DOTS
 client, i.e. ,the policy-id needs to be unique relative to the
 active policies with the DOTS server. This identifier must be
 generated by the DOTS client. This document does not make any
 assumption about how this identifier is generated. This is a
 mandatory attribute.

 target-ip: A list of IP addresses or prefixes under attack. IP
 addresses and prefixes are separated by commas. Prefixes are
 represented using CIDR notation [RFC4632]. This is an optional
 attribute.

 target-port: A list of ports under attack. Ports are seperated by
 commas and port number range (using "-"). For TCP, UDP, SCTP, or
 DCCP: the range of ports (e.g., 1024-65535). This is an optional
 attribute.

 target-protocol: A list of protocols under attack. Valid protocol
 values include tcp, udp, sctp, and dccp. Protocol values are
 seperated by commas. This is an optional attribute.

 lifetime: Lifetime of the mitigation request policy in seconds.
 Upon the expiry of this lifetime, and if the request is not
 refreshed, the mitigation request is removed. The request can be
 refreshed by sending the same request again. The default lifetime
 of the policy is 60 minutes -- this value was chosen to be long
 enough so that refreshing is not typically a burden on the DOTS
 client, while expiring the policy where the client has

Reddy, et al. Expires February 9, 2017 [Page 9]

Internet-Draft Co-operative DDoS Mitigation August 2016

 unexpectedly quit in a timely manner. A lifetime of zero
 indicates indefinite lifetime for the mitigation request. The
 server MUST always indicate the actual lifetime in the response.
 This is an optional attribute in the request.

 The relative order of two rules is determined by comparing their
 respective policy identifiers. The rule with lower numeric policy
 identifier value has higher precedence (and thus will match before)
 than the rule with higher numeric policy identifier value.

 To avoid DOTS signal message fragmentation and the consequently
 decreased probability of message delivery, DOTS agents MUST ensure
 that the DTLS record MUST fit within a single datagram. If the Path
 MTU is not known to the DOTS server, an IP MTU of 1280 bytes SHOULD
 be assumed. The length of the URL MUST NOT exceed 256 bytes. If UDP
 is used to convey the DOTS signal and the request size exceeds the
 Path MTU then the DOTS client MUST split the DOTS signal into
 separate messages, for example the list of addresses in the ’target-
 ip’ field could be split into multiple lists and each list conveyed
 in a new POST request.

 Implementation Note: DOTS choice of message size parameters works
 well with IPv6 and with most of today’s IPv4 paths. However, with
 IPv4, it is harder to absolutely ensure that there is no IP
 fragmentation. If IPv4 support on unusual networks is a
 consideration and path MTU is unknown, implementations may want to
 limit themselves to more conservative IPv4 datagram sizes such as 576
 bytes, as per [RFC0791] IP packets up to 576 bytes should never need
 to be fragmented, thus sending a maximum of 500 bytes of DOTS signal
 over a UDP datagram will generally avoid IP fragmentation.

 Figure 6 shows a POST request to signal that ports 80, 8080, and 443
 on the servers 2002:db8:6401::1 and 2002:db8:6401::2 are being
 attacked.

Reddy, et al. Expires February 9, 2017 [Page 10]

Internet-Draft Co-operative DDoS Mitigation August 2016

 Header: POST (Code=0.02)
 Uri-Host: "www.example.com"
 Uri-Path: ".well-known"
 Uri-Path: "v1"
 Uri-Path: "DOTS-signal"
 Content-Type: "application/json"
 {
 "policy-id":123321333242,
 "target-ip":[
 "2002:db8:6401::1",
 "2002:db8:6401::2"
],
 "target-port":[
 "80",
 "8080",
 "443"
],
 "target-protocol":"tcp"
 }

 Figure 6: POST for DOTS signal

 The DOTS server indicates the result of processing the POST request
 using CoAP response codes. CoAP 2xx codes are success, CoAP 4xx
 codes are some sort of invalid request and 5xx codes are returned if
 the DOTS server has erred or is incapable of performing the
 mitigation. Response code 2.01 (Created) will be returned in the
 response if the DOTS server has accepted the mitigation request and
 will try to mitigate the attack. If the request is missing one or
 more mandatory attributes then 4.00 (Bad Request) will be returned in
 the response or if the request contains invalid or unknown parameters
 then 4.02 (Invalid query) will be returned in the response. The CoAP
 response will include the JSON body received in the request.

5.2.2. Withdraw a DOTS Signal

 A DELETE request is used to withdraw a DOTS signal from a DOTS server
 (Figure 7).

Reddy, et al. Expires February 9, 2017 [Page 11]

Internet-Draft Co-operative DDoS Mitigation August 2016

 Header: DELETE (Code=0.04)
 Uri-Host: "host"
 Uri-Path: ".well-known"
 Uri-Path: "version"
 Uri-Path: "DOTS-signal"
 Content-Type: "application/json"
 {
 "policy-id": "number"
 }

 Figure 7: Withdraw DOTS signal

 If the DOTS server does not find the policy number conveyed in the
 DELETE request in its policy state data, then it responds with a 4.04
 (Not Found) error response code. The DOTS server successfully
 acknowledges a DOTS client’s request to withdraw the DOTS signal
 using 2.02 (Deleted) response code, and ceases mitigation activity as
 quickly as possible.

5.2.3. Retrieving a DOTS Signal

 A GET request is used to retrieve information and status of a DOTS
 signal from a DOTS server (Figure 8). If the DOTS server does not
 find the policy number conveyed in the GET request in its policy
 state data, then it responds with a 4.04 (Not Found) error response
 code.

Reddy, et al. Expires February 9, 2017 [Page 12]

Internet-Draft Co-operative DDoS Mitigation August 2016

 1) To retrieve all DOTS signals signaled by the DOTS client.

 Header: GET (Code=0.01)
 Uri-Host: "host"
 Uri-Path: ".well-known"
 Uri-Path: "version"
 Uri-Path: "DOTS-signal"
 Uri-Path: "list"
 Observe : 0

 2) To retrieve a specific DOTS signal signaled by the DOTS client.
 The policy information in the response will be formatted in the
 same order it was processed at the DOTS server.

 Header: GET (Code=0.01)
 Uri-Host: "host"
 Uri-Path: ".well-known"
 Uri-Path: "version"
 Uri-Path: "DOTS-signal"
 Uri-Path: "policy-id value"
 Observe : 0

 Figure 8: GET to retrieve the rules

 Figure 9 shows the response of all the active policies on the DOTS
 server.

Reddy, et al. Expires February 9, 2017 [Page 13]

Internet-Draft Co-operative DDoS Mitigation August 2016

 {
 "policy-data":[
 {
 "policy-id":123321333242,
 "target-protocol":"tcp",
 "lifetime":3600,
 "status":"mitigation in progress"
 },
 {
 "policy-id":123321333244,
 "target-protocol":"udp",
 "lifetime":1800,
 "status":"mitigation complete"
 },
 {
 "policy-id":123321333245,
 "target-protocol":"tcp",
 "lifetime":1800,
 "status":"attack stopped"
 }
]
 }

 Figure 9: Response body

 The various possible values of status field are explained below:

 mitigation in progress: Attack mitigation is in progress (e.g.,
 changing the network path to re-route the inbound traffic to DOTS
 mitigator).

 mitigation complete: Attack is successfully mitigated (e.g., attack
 traffic is dropped).

 attack stopped: Attack has stopped and the DOTS client can withdraw
 the mitigation request.

 The observe option defined in [RFC7641] extends the CoAP core
 protocol with a mechanism for a CoAP client to "observe" a resource
 on a CoAP server: the client retrieves a representation of the
 resource and requests this representation be updated by the server as
 long as the client is interested in the resource. A DOTS client
 conveys the observe option set to 0 in the GET request to receive
 unsolicited notifications of attack mitigation status from the DOTS
 server. Unidirectional notifications within the bidirectional signal
 channel allows unsolicited message delivery, enabling asynchronous
 notifications between the agents. A DOTS client that is no longer
 interested in receiving notifications from the DOTS server can simply

Reddy, et al. Expires February 9, 2017 [Page 14]

Internet-Draft Co-operative DDoS Mitigation August 2016

 "forget" the observation. When the DOTS server then sends the next
 notification, the DOTS client will not recognize the token in the
 message and thus will return a Reset message. This causes the DOTS
 server to remove the associated entry.

 DOTS Client DOTS Server
 | |
 | GET /<policy-id number> |
 | Token: 0x4a | Registration
 | Observe: 0 |
 +-------------------------->|
 | |
 | 2.05 Content |
 | Token: 0x4a | Notification of
 | Observe: 12 | the current state
 | status: "mitigation |
 | in progress" |
 |<--------------------------+
 | 2.05 Content |
 | Token: 0x4a | Notification upon
 | Observe: 44 | a state change
 | status: "mitigation |
 | complete" |
 |<--------------------------+
 | 2.05 Content |
 | Token: 0x4a | Notification upon
 | Observe: 60 | a state change
 | status: "attack stopped" |
 |<--------------------------+
 | |

 Figure 10: Notifications of attack mitigation status

5.2.3.1. Mitigation Status

 A DOTS client retrieves the information about a DOTS signal at
 frequent intervals to determine the status of an attack. If the DOTS
 server has been able to mitigate the attack and the attack has
 stopped, the DOTS server indicates as such in the status, and the
 DOTS client recalls the mitigation request.

 A DOTS client should react to the status of the attack from the DOTS
 server and not the fact that it has recognized, using its own means,
 that the attack has been mitigated. This ensures that the DOTS
 client does not recall a mitigation request in a premature fashion
 because it is possible that the DOTS client does not sense the DDOS
 attack on its resources but the DOTS server could be actively
 mitigating the attack and the attack is not completely averted.

Reddy, et al. Expires February 9, 2017 [Page 15]

Internet-Draft Co-operative DDoS Mitigation August 2016

5.2.4. Efficacy Update from DOTS Client

 While DDoS mitigation is active, a DOTS client MAY frequently
 transmit DOTS mitigation efficacy updates to the relevant DOTS
 server. An PUT request (Figure 11) is used to convey the mitigation
 efficacy update to the DOTS server. The PUT request MUST include all
 the header fields used in the POST request to convey the DOTS signal
 (Section 5.2.1). If the DOTS server does not find the policy number
 conveyed in the PUT request in its policy state data, it responds
 with a 4.04 (Not Found) error response code.

 Header: PUT (Code=0.03)
 Uri-Host: "host"
 Uri-Path: ".well-known"
 Uri-Path: "version"
 Uri-Path: "DOTS-signal"
 Uri-Path: "policy-id value"
 Content-Type: "application/json"
 {
 "target-ip": "string",
 "target-port": "string",
 "target-protocol": "string",
 "lifetime": "number",
 "attack-status": "string"
 }

 Figure 11: Efficacy Update

 The ’attack-status’ field is a mandatory attribute. The various
 possible values contained in the ’attack-status’ field are explained
 below:

 in-progress: DOTS client determines that it is still under attack.

 terminated: Attack is successfully mitigated (e.g., attack traffic
 is dropped).

6. DOTS Data Channel

 Note: Based on discussions at IETF-96 DOTS implementers meeting, in
 later revision this section becomes its own stand-alone specification
 and will include https://tools.ietf.org/html/draft-nishizuka-dots-
 inter-domain-mechanism-01.

 The DOTS data channel is intended to be used for bulk data exchanges
 between DOTS agents. Unlike the signal channel, which must operate
 nominally even when confronted with despite signal degradation due to
 packet loss, the data channel is not expected to be constructed to

Reddy, et al. Expires February 9, 2017 [Page 16]

Internet-Draft Co-operative DDoS Mitigation August 2016

 deal with attack conditions. As the primary function of the data
 channel is data exchange, a reliable transport is required in order
 for DOTS agents to detect data delivery success or failure. CoAP
 over TLS over TCP is used for DOTS data channel.

 +--------------+
 | DOTS |
 +--------------+
 | CoAP |
 +--------------+
 | TLS |
 +--------------+
 | TCP |
 +--------------+
 | IP |
 +--------------+

 Figure 12: Abstract Layering of DOTS data channel over CoAP over TLS

 JSON payloads is used to convey both filtering rules as well as data
 channel specific payload messages that convey request parameters and
 response information such as errors. All data channel URIs defined
 in this document, and in subsequent documents, MUST NOT have a URI
 containing "/DOTS-signal".

 One of the possible arrangements for DOTS client to signal filtering
 rules to a DOTS server via the DOTS gateway is discussed below:

 The DOTS data channel conveys the filtering rules to the DOTS
 gateway. The DOTS gateway validates if the DOTS client is authorized
 to signal the filtering rules and if the client is authorized
 propagates the rules to the DOTS server. Likewise, the DOTS server
 validates if the DOTS gateway is authorized to signal the filtering
 rules. To create or purge filters, the DOTS client sends CoAP
 requests to the DOTS gateway. The DOTS gateway acts as a proxy,
 validates the rules and proxies the requests containing the filtering
 rules to a DOTS server. When the DOTS gateway receives the
 associated CoAP response from the DOTS server, it propagates the
 response back to the DOTS client.

6.1. Filtering Rules

 The following APIs define means for a DOTS client to configure
 filtering rules on a DOTS server.

Reddy, et al. Expires February 9, 2017 [Page 17]

Internet-Draft Co-operative DDoS Mitigation August 2016

6.1.1. Install Filtering Rules

 An POST request is used to push filtering rules to a DOTS server
 (Figure 13).

 Header: POST (Code=0.02)
 Uri-Host: "host"
 Uri-Path: ".well-known"
 Uri-Path: "version"
 Uri-Path: "DOTS-data-channel"
 Content-Type: "application/json"
 {
 "policy-id": "integer",
 "traffic-protocol": "string",
 "source-protocol-port": "string",
 "destination-protocol-port": "string",
 "destination-ip": "string",
 "source-ip": "string",
 "lifetime": "number",
 "traffic-rate" : "number"
 }

 Figure 13: POST to install filtering rules

 The header fields are described below:

 policy-id: Identifier of the policy represented using a integer.
 This identifier MUST be unique for each policy bound to the DOTS
 client, i.e., the policy-id needs to be unique relative to the
 active policies with the DOTS server. This identifier must be
 generated by the client. This document does not make any
 assumption about how this identifier is generated. This is an
 mandatory attribute.

 traffic-protocol: Valid protocol values include tcp, udp, sctp, and
 dccp. Protocol values are seperated by commas (e.g. "tcp, udp").
 This is an mandatory attribute.

 source-protocol-port: The source port number. Ports are seperated
 by commas and port number range (using "-"). For TCP, UDP, SCTP,
 or DCCP: the source range of ports (e.g., 1024-65535). This is an
 optional attribute.

 destination-protocol-port: The destination port number. Ports are
 seperated by commas and port number range (using "-"). For TCP,
 UDP, SCTP, or DCCP: the destination range of ports (e.g.,
 443-443). This information is useful to avoid disturbing a group

Reddy, et al. Expires February 9, 2017 [Page 18]

Internet-Draft Co-operative DDoS Mitigation August 2016

 of customers when address sharing is in use [RFC6269]. This is an
 optional attribute.

 destination-ip: The destination IP address or prefix. IP addresses
 and prefixes are separated by commas. Prefixes are represented
 using CIDR notation. This is an optional attribute.

 source-ip: The source IP addresses or prefix. IP addresses and
 prefixes are separated by commas. Prefixes are represented using
 CIDR notation. This is an optional attribute.

 lifetime: Lifetime of the rule in seconds. Upon the expiry of this
 lifetime, and if the request is not refreshed, this particular
 rule is removed. The rule can be refreshed by sending the same
 message again. The default lifetime of the rule is 60 minutes --
 this value was chosen to be long enough so that refreshing is not
 typically a burden on the DOTS client, while expiring the rule
 where the client has unexpectedly quit in a timely manner. A
 lifetime of zero indicates indefinite lifetime for the rule. The
 server MUST always indicate the actual lifetime in the response.
 This is an optional attribute in the request.

 traffic-rate: This is the allowed traffic rate in bytes per second
 indicated in IEEE floating point [IEEE.754.1985] format. The
 value 0 indicates all traffic for the particular flow to be
 discarded. This is a mandatory attribute.

 The relative order of two rules is determined by comparing their
 respective policy identifiers. The rule with lower numeric policy
 identifier value has higher precedence (and thus will match before)
 than the rule with higher numeric policy identifier value.

 Figure 14 shows a POST request to block traffic from attacker IPv6
 prefix 2001:db8:abcd:3f01::/64 to network resource using IPv6 address
 2002:db8:6401::1 to operate a server on TCP port 443.

Reddy, et al. Expires February 9, 2017 [Page 19]

Internet-Draft Co-operative DDoS Mitigation August 2016

 Header: POST (Code=0.02)
 Uri-Host: "www.example.com"
 Uri-Path: ".well-known"
 Uri-Path: "v1"
 Uri-Path: "DOTS-data-channel"
 Content-Type: "application/json"
 {
 "policy-id": 123321333242,
 "traffic-protocol": "tcp",
 "source-protocol-port": "0-65535",
 "destination-protocol-port": "443",
 "destination-ip": "2001:db8:abcd:3f01::/64",
 "source-ip": "2002:db8:6401::1",
 "lifetime": 1800,
 "traffic-rate": 0
 }

 Figure 14: POST to Install Black-list Rules

6.1.2. Remove Filtering Rules

 A DELETE request is used to delete filtering rules from a DOTS server
 (Figure 15).

 Header: DELETE (Code=0.04)
 Uri-Host: "host"
 Uri-Path: ".well-known"
 Uri-Path: "version"
 Uri-Path: "DOTS-data-channel"
 Content-Type: "application/json"
 {
 "policy-id": "number"
 }

 Figure 15: DELETE to remove the rules

6.1.3. Retrieving Installed Filtering Rules

 The DOTS client periodically queries the DOTS server to check the
 counters for installed filtering rules. A GET request is used to
 retrieve filtering rules from a DOTS server.

 Figure 16 shows an example to retrieve all the filtering rules
 programmed by the DOTS client while Figure 17 shows an example to
 retrieve specific filtering rules programmed by the DOTS client.

Reddy, et al. Expires February 9, 2017 [Page 20]

Internet-Draft Co-operative DDoS Mitigation August 2016

 Header: GET (Code=0.01)
 Uri-Host: "host"
 Uri-Path: ".well-known"
 Uri-Path: "version"
 Uri-Path: "DOTS-data-channel"
 Uri-Path: "list"

 Figure 16: GET to retrieve the rules (1)

 Header: GET (Code=0.01)
 Uri-Host: "host"
 Uri-Path: ".well-known"
 Uri-Path: "version"
 Uri-Path: "DOTS-data-channel"
 Uri-Path: "policy-id value"

 Figure 17: GET to retrieve the rules (2)

 Figure 18 shows response for all active policies on the DOTS server.

 {
 "policy-data":[
 {
 "policy-id":123321333242,
 "traffic-protocol": "tcp",
 "source-protocol-port": "0-65535",
 "destination-protocol-port": "443",
 "destination-ip": "2001:db8:abcd:3f01::/64",
 "source-ip": "2002:db8:6401::1",
 "lifetime": 1800,
 "traffic-rate": 0,
 "match-count": 689324,
 },
 {
 "policy-id":123321333242,
 "traffic-protocol": "udp",
 "source-protocol-port": "0-65535",
 "destination-protocol-port": "53",
 "destination-ip": "2001:db8:abcd:3f01::/64",
 "source-ip": "2002:db8:6401::2",
 "lifetime": 1800,
 "traffic-rate": 0,
 "match-count": 6666,
 }
]
 }

 Figure 18: Response body

Reddy, et al. Expires February 9, 2017 [Page 21]

Internet-Draft Co-operative DDoS Mitigation August 2016

7. (D)TLS Protocol Profile and Performance considerations

 This section defines the (D)TLS protocol profile of DOTS signal
 channel over (D)TLS and DOTS data channel over TLS.

 There are known attacks on (D)TLS, such as machine-in-the-middle and
 protocol downgrade. These are general attacks on (D)TLS and not
 specific to DOTS over (D)TLS; please refer to the (D)TLS RFCs for
 discussion of these security issues. DOTS agents MUST adhere to the
 (D)TLS implementation recommendations and security considerations of
 [RFC7525] except with respect to (D)TLS version. Since encryption of
 DOTS using (D)TLS is virtually a green-field deployment DOTS agents
 MUST implement only (D)TLS 1.2 or later.

 Implementations compliant with this profile MUST implement all of the
 following items:

 o DOTS client can use (D)TLS session resumption without server-side
 state [RFC5077] to resume session and convey the DOTS signal.

 o While the communication to the DOTS server is quiescent, the DOTS
 client MAY probe the server to ensure it has maintained
 cryptographic state. Such probes can also keep alive firewall or
 NAT bindings. This probing reduces the frequency of needing a new
 handshake when a DOTS signal needs to be conveyed to the DOTS
 server.

 * A (D)TLS heartbeat [RFC6520] verifies the DOTS server still has
 DTLS state by returning a DTLS message. If the server has lost
 state, it returns a DTLS Alert. Upon receipt of an
 unauthenticated DTLS Alert, the DTLS client validates the Alert
 is within the replay window (Section 4.1.2.6 of [RFC6347]). It
 is difficult for the DTLS client to validate the DTLS Alert was
 generated by the DTLS server in response to a request or was
 generated by an on- or off-path attacker. Thus, upon receipt
 of an in-window DTLS Alert, the client SHOULD continue re-
 transmitting the DTLS packet (in the event the Alert was
 spoofed), and at the same time it SHOULD initiate DTLS session
 resumption.

 * TLS runs over TCP, so a simple probe is a 0-length TCP packet
 (a "window probe"). This verifies the TCP connection is still
 working, which is also sufficient to prove the server has
 retained TLS state, because if the server loses TLS state it
 abandons the TCP connection. If the server has lost state, a
 TCP RST is returned immediately.

Reddy, et al. Expires February 9, 2017 [Page 22]

Internet-Draft Co-operative DDoS Mitigation August 2016

 * Raw public keys [RFC7250] which reduce the size of the
 ServerHello, and can be used by servers that cannot obtain
 certificates (e.g., DOTS gateways on private networks).

 Implementations compliant with this profile SHOULD implement all of
 the following items to reduce the delay required to deliver a DOTS
 signal:

 o TLS False Start [I-D.ietf-tls-falsestart] which reduces round-
 trips by allowing the TLS second flight of messages
 (ChangeCipherSpec) to also contain the DOTS signal.

 o Cached Information Extension [I-D.ietf-tls-cached-info] which
 avoids transmitting the server’s certificate and certificate chain
 if the client has cached that information from a previous TLS
 handshake.

 o TCP Fast Open [RFC7413] can reduce the number of round-trips to
 convey DOTS signal.

8. Mutual Authentication of DOTS Agents & Authorization of DOTS Clients

 (D)TLS based on client certificate can be used for mutual
 authentication between DOTS agents. If a DOTS gateway is involved,
 DOTS clients and DOTS gateway MUST perform mutual authentication;
 only authorized DOTS clients are allowed to send DOTS signals to a
 DOTS gateway. DOTS gateway and DOTS server MUST perform mutual
 authentication; DOTS server only allows DOTS signals from authorized
 DOTS gateway, creating a two-link chain of transitive authentication
 between the DOTS client and the DOTS server.

Reddy, et al. Expires February 9, 2017 [Page 23]

Internet-Draft Co-operative DDoS Mitigation August 2016

 +---+
 | example.com domain +---------+ |
	AAA	
+---------------+	Server	
	Application	+------+--+
	server + ^	
	(DOTS client)	<-----------------+
+---------------+ +		example.net
domain		
V V		
+-------------+	+-------------	
--+		
+--------------+		
	Guest +<-----x----->+ +<---------------->+ DOTS	
	(DOTS client)	
+--------------+	Gateway	
+----+--------+	+-------------	
--+		
^		
+----------------+		
	DDOS detector	
	(DOTS client) +<--------------+	
+----------------+		
 +---+

 Figure 19: Example of Authentication and Authorization of DOTS Agents

 In the example depicted in Figure 19, the DOTS gateway and DOTS
 clients within the ’example.com’ domain mutually authenticate with
 each other. After the DOTS gateway validates the identity of a DOTS
 client, it communicates with the AAA server in the ’example.com’
 domain to determine if the DOTS client is authorized to request DDOS
 mitigation. If the DOTS client is not authorized, a 4.01
 (Unauthorized) is returned in the response to the DOTS client. In
 this example, the DOTS gateway only allows the application server and
 DDOS detector to request DDOS mitigation, but does not permit the
 user of type ’guest’ to request DDOS mitigation.

 Also, DOTS gateway and DOTS server MUST perform mutual authentication
 using certificates. A DOTS server will only allow a DOTS gateway
 with a certificate for a particular domain to request mitigation for
 that domain. In reference to Figure 19, the DOTS server only allows
 the DOTS gateway to request mitigation for ’example.com’ domain and
 not for other domains.

Reddy, et al. Expires February 9, 2017 [Page 24]

Internet-Draft Co-operative DDoS Mitigation August 2016

9. IANA Considerations

 TODO

 [TBD: DOTS WG will probably have to do something similar to
 https://tools.ietf.org/html/rfc7519#section-10, create JSON DOTS
 claim registry and register the JSON attributes defined in this
 specification].

10. Security Considerations

 Authenticated encryption MUST be used for data confidentiality and
 message integrity. (D)TLS based on client certificate MUST be used
 for mutual authentication. The interaction between the DOTS agents
 requires Datagram Transport Layer Security (DTLS) and Transport Layer
 Security (TLS) with a ciphersuite offering confidentiality protection
 and the guidance given in [RFC7525] MUST be followed to avoid attacks
 on (D)TLS.

 If TCP is used between DOTS agents, attacker may be able to inject
 RST packets, bogus application segments, etc., regardless of whether
 TLS authentication is used. Because the application data is TLS
 protected, this will not result in the application receiving bogus
 data, but it will constitute a DoS on the connection. This attack
 can be countered by using TCP-AO [RFC5925]. If TCP-AO is used, then
 any bogus packets injected by an attacker will be rejected by the
 TCP-AO integrity check and therefore will never reach the TLS layer.

 Special care should be taken in order to ensure that the activation
 of the proposed mechanism won’t have an impact on the stability of
 the network (including connectivity and services delivered over that
 network).

 Involved functional elements in the cooperation system must establish
 exchange instructions and notification over a secure and
 authenticated channel. Adequate filters can be enforced to avoid
 that nodes outside a trusted domain can inject request such as
 deleting filtering rules. Nevertheless, attacks can be initiated
 from within the trusted domain if an entity has been corrupted.
 Adequate means to monitor trusted nodes should also be enabled.

11. Contributors

 Robert Moskowitz

Reddy, et al. Expires February 9, 2017 [Page 25]

Internet-Draft Co-operative DDoS Mitigation August 2016

12. Acknowledgements

 Thanks to Christian Jacquenet, Roland Dobbins, Andrew Mortensen,
 Roman D. Danyliw, and Gilbert Clark for the discussion and comments.

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <http://www.rfc-editor.org/info/rfc5925>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <http://www.rfc-editor.org/info/rfc7250>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/rfc7525>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

Reddy, et al. Expires February 9, 2017 [Page 26]

Internet-Draft Co-operative DDoS Mitigation August 2016

13.2. Informative References

 [I-D.ietf-dots-architecture]
 Mortensen, A., Andreasen, F., Reddy, T.,
 christopher_gray3@cable.comcast.com, c., Compton, R., and
 N. Teague, "Distributed-Denial-of-Service Open Threat
 Signaling (DOTS) Architecture", draft-ietf-dots-
 architecture-00 (work in progress), July 2016.

 [I-D.ietf-dots-requirements]
 Mortensen, A., Moskowitz, R., and T. Reddy, "Distributed
 Denial of Service (DDoS) Open Threat Signaling
 Requirements", draft-ietf-dots-requirements-02 (work in
 progress), July 2016.

 [I-D.ietf-dots-use-cases]
 Dobbins, R., Fouant, S., Migault, D., Moskowitz, R.,
 Teague, N., and L. Xia, "Use cases for DDoS Open Threat
 Signaling", draft-ietf-dots-use-cases-01 (work in
 progress), March 2016.

 [I-D.ietf-tls-cached-info]
 Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", draft-ietf-tls-
 cached-info-23 (work in progress), May 2016.

 [I-D.ietf-tls-falsestart]
 Langley, A., Modadugu, N., and B. Moeller, "Transport
 Layer Security (TLS) False Start", draft-ietf-tls-
 falsestart-02 (work in progress), May 2016.

 [IEEE.754.1985]
 Institute of Electrical and Electronics Engineers,
 "Standard for Binary Floating-Point Arithmetic", August
 1985.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <http://www.rfc-editor.org/info/rfc791>.

 [RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing
 (CIDR): The Internet Address Assignment and Aggregation
 Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, August
 2006, <http://www.rfc-editor.org/info/rfc4632>.

Reddy, et al. Expires February 9, 2017 [Page 27]

Internet-Draft Co-operative DDoS Mitigation August 2016

 [RFC4732] Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
 Denial-of-Service Considerations", RFC 4732,
 DOI 10.17487/RFC4732, December 2006,
 <http://www.rfc-editor.org/info/rfc4732>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <http://www.rfc-editor.org/info/rfc4987>.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <http://www.rfc-editor.org/info/rfc5077>.

 [RFC5575] Marques, P., Sheth, N., Raszuk, R., Greene, B., Mauch, J.,
 and D. McPherson, "Dissemination of Flow Specification
 Rules", RFC 5575, DOI 10.17487/RFC5575, August 2009,
 <http://www.rfc-editor.org/info/rfc5575>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6269] Ford, M., Ed., Boucadair, M., Durand, A., Levis, P., and
 P. Roberts, "Issues with IP Address Sharing", RFC 6269,
 DOI 10.17487/RFC6269, June 2011,
 <http://www.rfc-editor.org/info/rfc6269>.

 [RFC6520] Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) Heartbeat Extension", RFC 6520,
 DOI 10.17487/RFC6520, February 2012,
 <http://www.rfc-editor.org/info/rfc6520>.

 [RFC6555] Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with
 Dual-Stack Hosts", RFC 6555, DOI 10.17487/RFC6555, April
 2012, <http://www.rfc-editor.org/info/rfc6555>.

 [RFC6724] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
 "Default Address Selection for Internet Protocol Version 6
 (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
 <http://www.rfc-editor.org/info/rfc6724>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

Reddy, et al. Expires February 9, 2017 [Page 28]

Internet-Draft Co-operative DDoS Mitigation August 2016

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <http://www.rfc-editor.org/info/rfc7413>.

Authors’ Addresses

 Tirumaleswar Reddy
 Cisco Systems, Inc.
 Cessna Business Park, Varthur Hobli
 Sarjapur Marathalli Outer Ring Road
 Bangalore, Karnataka 560103
 India

 Email: tireddy@cisco.com

 Dan Wing
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, California 95134
 USA

 Email: dwing@cisco.com

 Prashanth Patil
 Cisco Systems, Inc.

 Email: praspati@cisco.com

 Mike Geller
 Cisco Systems, Inc.
 3250
 Florida 33309
 USA

 Email: mgeller@cisco.com

 Mohamed Boucadair
 Orange
 Rennes 35000
 France

 Email: mohamed.boucadair@orange.com

Reddy, et al. Expires February 9, 2017 [Page 29]

