
INTERNET-DRAFT                                                T. Herbert
Intended Status: Informational                                  Facebook
Expires: April 17, 2016                                          L. Yong
                                                              Huawei USA
                                                        October 15, 2015

                           UDP Magic Numbers
                   draft-herbert-udp-magic-numbers-01

Abstract

   This specification defines magic numbers in UDP which allow a node to
   determine or confirm the protocol contained in a UDP payload. This is
   primarily applicable for encapsulation and transport protocols
   encapsulated within UDP where intermediate devices, such as middle
   boxes, need to parse these protocols for providing service. Magic
   numbers can also be used to multiplex different UDP encapsulated
   protocols over the same UDP port.

Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as
   Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/1id-abstracts.html

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html

Copyright and License Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors. All rights reserved.

Herbert, Yong            Expires April 17, 2016                 [Page 1]



INTERNET DRAFT             UDP Magic Numbers            October 15, 2015

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document. Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document. Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . .  3
     1.1  Terminology . . . . . . . . . . . . . . . . . . . . . . . .  4
   2  Magic number format . . . . . . . . . . . . . . . . . . . . . .  4
     2.1 Magic value  . . . . . . . . . . . . . . . . . . . . . . . .  5
     2.2 Protocol types . . . . . . . . . . . . . . . . . . . . . . .  5
     2.3 Magic number checksum  . . . . . . . . . . . . . . . . . . .  6
   3  Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
     3.1 End hosts  . . . . . . . . . . . . . . . . . . . . . . . . .  6
       3.1.1 Required magic numbers . . . . . . . . . . . . . . . . .  6
       3.1.2 Optional magic numbers . . . . . . . . . . . . . . . . .  6
       3.1.3 Use with DTLS  . . . . . . . . . . . . . . . . . . . . .  7
     3.2 Intermediate devices . . . . . . . . . . . . . . . . . . . .  7
   4  Security Considerations . . . . . . . . . . . . . . . . . . . .  8
   5  IANA Considerations . . . . . . . . . . . . . . . . . . . . . .  8
   6  References  . . . . . . . . . . . . . . . . . . . . . . . . . .  8
     6.1  Normative References  . . . . . . . . . . . . . . . . . . .  8
     6.2  Informative References  . . . . . . . . . . . . . . . . . .  8
   Appendix A: Example of creating a UDP magic number . . . . . . . . 10
   Appendix B: Checking magic numbers . . . . . . . . . . . . . . . . 10
     B.1 Matching a single magic number . . . . . . . . . . . . . . . 10
     B.2 Matching against a set of magic numbers  . . . . . . . . . . 11
     B.3 Magic number validation  . . . . . . . . . . . . . . . . . . 11
   Authors’ Addresses . . . . . . . . . . . . . . . . . . . . . . . . 12

Herbert, Yong            Expires April 17, 2016                 [Page 2]



INTERNET DRAFT             UDP Magic Numbers            October 15, 2015

1  Introduction

   Several transport and encapsulation protocols have been defined to be
   encapsulated within UDP [RFC0768]. In this model, the payload of a
   UDP packet contains a protocol header and payload for an encapsulated
   protocol. Transport protocols encapsulated in UDP include QUIC
   [QUIC], SCTP-in-UDP [RFC6951], and SPUD [I-D.hildebrand-spud-
   prototype]. Encapsulation protocols include Geneve [I-D.ietf-nvo3-
   geneve], VXLAN-GPE [I-D.ietf-nvo3-vxlan-gpe], GUE [I-D.ietf-nvo3-
   gue], MPLS-in-UDP [RFC7510], and GRE-in-UDP [I-D.ietf-tsvwg-gre-in-
   udp-encap]. For various reasons, intermediate devices in a network
   may want to parse these protocols. For instance, a middlebox would
   need to parse an encapsulated transport protocol to implement a
   stateful firewall. To parse the encapsulated protocol in a UDP
   packet, a node must positively identify the encapsulated protocol.

   The destination UDP port number is commonly used to interpret the
   contents of a UDP payload, however this is problematic in
   intermediate devices for several reasons:

      - Port numbers can only be correctly interpreted by the endpoints.
        Interpretation by intermediate devices in the network may be
        incorrect ([RFC7605]]).

      - Encapsulation and transport protocols will usually have assigned
        UDP ports, but they are not restricted to use only those.

      - UDP encapsulated protocols may use a "substrate" protocol header
        as espoused in SPUD. Use of a substrate header may be common
        across several port numbers. Configuring each network device for
        each port that uses the substrate could be cumbersome.

   This specification describes UDP magic numbers which allows network
   nodes to identify UDP encapsulated protocols without relying solely
   on UDP port numbers. A UDP magic number is a protocol specific,
   constant value which is logically inserted between the UDP header and
   the encapsulated protocol header. If a node matches the magic number
   in a packet to a known protocol’s magic number, then it can parse the
   encapsulated payload per the matched protocol. Each UDP encapsulated
   protocol uses a different magic number which allows multiplexing
   multiple encapsulated protocols over the same UDP port.

   Note that the use of magic numbers is inherently probabilistic. It is
   possible that a UDP packet may have a payload that inadvertently
   matches a magic number. The magic number is defined to minimize the
   probability of this occurring (1/2^^64 assuming that UDP data has a
   random distribution), nevertheless the probability is non-zero. The
   consequences of incorrectly matching a UDP packet should be

Herbert, Yong            Expires April 17, 2016                 [Page 3]



INTERNET DRAFT             UDP Magic Numbers            October 15, 2015

   considered for each UDP encapsulated protocol. An encapsulated
   protocol may include its own verification to ensure correct
   interpretation.

   The use of magic numbers to identify UDP encapsulated protocols was
   specified in the SPUD prototype protocol ([I-D.hildebrand-spud-
   prototype]) and in "Session Traversal Utilities for NAT (STUN)"
   ([RFC5389]). This proposal generalizes the concept.

1.1  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

2  Magic number format

   The UDP magic number is a sixty-four bit value that includes a fixed
   constant, an encapsulated protocol type, and a checksum. The magic
   number within a UDP packet is diagrammed below.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        Source port            |      Destination port         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Length              |          Checksum             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Magic value = 0xffd871a2                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Xor’ed protocol       |       Xor’ed checksum         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      ˜                     Encapsulated protocol                     ˜
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The fields of the magic number are:

      o Magic value: A fixed constant of 0xffd871a2. This value is the
        same for all encapsulated protocol types.

      o Xor’ed protocol: Indicates the protocol type of the encapsulated
        protocol. The value in the field is a protocol type number
        exclusive or’ed with 0x36b4.

      o Xor’ed Checksum: Indicates the standard one’s complement

Herbert, Yong            Expires April 17, 2016                 [Page 4]



INTERNET DRAFT             UDP Magic Numbers            October 15, 2015

        checksum over the magic number (including the Magic value and
        Xor’ed Protocol fields). The value in this field is the
        calculated checksum exclusive or’ed with 0x5ce9.

      o Encapsulated protocol: This contains the header and payload of
        the encapsulated protocol. The type for the protocol is
        indicated in the Xor’ed protocol field.

2.1 Magic value

   The first byte of the Magic value field is 0xff and the other three
   bytes are a randomly chosen constant.

   For UDP encapsulated protocols that allow magic number use to be
   optional, the magic number must be clearly distinguishable from a
   valid header. Each such protocol must declare that a header which
   would match the associated magic number is invalid. The value of 0xff
   as the first byte in the magic number was chosen as a likely value
   that would indicate an invalid header. It is common that the first
   byte of a protocol header contains a version number, and most
   protocols have not gotten past version zero. So if a magic number is
   received by a node that does not yet support magic numbers, the UDP
   payload would likely be interpreted as a protocol header with a bad
   version number; this should result in dropping the packet and not
   misinterpreting it. In this way, the use of magic numbers can be
   enabled for many existing protocols with forward compatibility.

2.2 Protocol types

   Protocol types can generally refer to any encapsulation, transport,
   substrate, or application specific protocol that is encapsulated in
   UDP for which intermediate devices might need to parse. A protocol
   type number is encoded in UDP magic numbers to allow intermediate
   devices to distinguish different payload types while still using a
   common magic number format.

   Protocol types are indicated by sixteen bits numbers, and the space
   is divided into three regions.

      Numbers 0-49151 are reserved to mirror the assigned UDP port
      number space. If a port number is assigned to a UDP encapsulated
      protocol, that same number can be used as the protocol type
      number. This is allowed for convenience, there is no required
      correlation between protocol type numbers and UDP port numbers.

      Numbers 49152-57343 are reserved for assigned protocol types.

      Numbers 57344-65535 are reserved for private protocol types.

Herbert, Yong            Expires April 17, 2016                 [Page 5]



INTERNET DRAFT             UDP Magic Numbers            October 15, 2015

   The Xor’ed protocol field in a magic number is a protocol type number
   exclusive or’ed with 0x36b4.

2.3 Magic number checksum

   The magic number checksum is calculated as the standards one
   complement checksum computed over the sixty-four bit magic number
   where the Xor’ed checksum field is set to zero for the purposes of
   calculation. The checksum calculation covers the Magic value and the
   Xor’ed protocol fields. The Xor’ed checksum field is set to the
   result of the calculation exclusive or’ed with 0x5ce9.

   Note that the magic number checksum is performed over constant fields
   and is itself a constant value per protocol type. An implementation
   should not need to perform this calculation when processing packets.
   Appendix A demonstrates how the checksum is applied to create a magic
   number constant for Generic UDP Encapsulation.

   The magic number checksum may be used to validate the presence of a
   well formed UDP magic number. This is demonstrated in Appendix B.

3  Usage

   This section describes the processing of UDP magic numbers on end
   hosts and intermediate devices.

3.1 End hosts

   The use of UDP magic numbers is enabled on a per port basis. Magic
   numbers may be required for every UDP packet sent on a port, or may
   be optional. If a UDP port is assigned to a single protocol, the
   magic number in packets sent to that port is the one assigned to the
   protocol. If different encapsulated protocols are multiplexed on the
   same UDP port, magic numbers for those protocols will be used.

3.1.1 Required magic numbers

   If magic numbers are required for a UDP port, a sender must set the
   magic number in any packets sent to the destination port. A receiver
   must check for a valid magic number. If the magic number is valid,
   that is the Magic value is correct and the protocol type is supported
   by the receiver for the port, then the packet is accepted. Otherwise,
   the magic number is not matched so the packet is dropped.

3.1.2 Optional magic numbers

   When magic numbers are optional for a UDP port, a receiver must check
   if a magic number is present in a received packet. If a magic number

Herbert, Yong            Expires April 17, 2016                 [Page 6]



INTERNET DRAFT             UDP Magic Numbers            October 15, 2015

   is matched for a protocol type supported by the receiver, then the
   packet must be accepted and the Encapsulated protocol in the packet
   is processed according to the protocol type. If the magic number is
   not matched, the packet is still accepted and the UDP payload is
   processed as a protocol type implied by the port number.

   If it is not feasible in a protocol to distinguish a magic number
   from a valid header (MPLS-in-UDP for instance), UDP magic numbers
   cannot be optional on the protocol’s port number. They can be used on
   a separate port number for which magic numbers would be required.

3.1.3 Use with DTLS

   UDP magic numbers are intended to occupy the first bytes of the UDP
   payload to facilitate interpretation at middleboxes. When they are
   used with DTLS [RFC6347], the magic number must precede the DTLS
   headers. The protocol type in the magic number would refer to the
   payload type contained in DTLS.

3.2 Intermediate devices

   Intermediate devices may match magic numbers in two ways:

      - Match both the destination port and magic numbers associated
        with the port.

      - Match magic numbers across a range (possibly all) of ports.

   Matching both the port and magic number is recommended. This is
   feasible in cases where a UDP encapsulated protocol has an assigned
   port number. Matching the port number and magic number significantly
   reduces the possibility of misinterpreting a packet.

   Matching just the magic number and not a port may be done when UDP
   encapsulated protocols are used on unassigned ports, or configuring
   port numbers on intermediate devices is prohibitive.

   In either case, if a middlebox is able to match a magic number it may
   parse the encapsulated payload of the packet for the associated
   protocol.

   If a middle box does not match a magic number for a packet it should
   follow default processing for UDP packets. If magic numbers are known
   to be required for a port, a middlebox may perform some alternative
   processing when the magic number is not present. This alternative
   processing should not be more restrictive than had the packet been
   sent to another arbitrary UDP port. In particular, if UDP packets for
   other ports would not be dropped, failure to match a magic number

Herbert, Yong            Expires April 17, 2016                 [Page 7]



INTERNET DRAFT             UDP Magic Numbers            October 15, 2015

   should not result in the packet being dropped.
4  Security Considerations

   UDP magic numbers are not a security mechanism and should not
   increase security risk.

5  IANA Considerations

   IANA will be requested to create a "UDP Magic Number Protocol Type"
   registry to allocate protocol types.  This shall be a registry of 16-
   bit values along with descriptive strings. The allocation ranges are
   described in section 2.2.

6  References

6.1  Normative References

   [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
             August 1980, <http://www.rfc-editor.org/info/rfc768>.

   [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, DOI
              10.17487/RFC2119, March 1997, <http://www.rfc-
              editor.org/info/rfc2119>.

   [RFC1776]  Crocker, S., "The Address is the Message", RFC 1776, DOI
              10.17487/RFC1776, April 1 1995, <http://www.rfc-
              editor.org/info/rfc1776>.

   [TRUTHS]   Callon, R., "The Twelve Networking Truths", RFC 1925, DOI
              10.17487/RFC1925, April 1 1996, <http://www.rfc-
              editor.org/info/rfc1925>.

6.2  Informative References

   [RFC6951] Tuexen, M. and R. Stewart, "UDP Encapsulation of Stream
             Control Transmission Protocol (SCTP) Packets for End-Host
             to End-Host Communication", RFC 6951, May 2013,
             <http://www.rfc-editor.org/info/rfc6951>.

   [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
             "Session Traversal Utilities for NAT (STUN)", RFC 5389,
             October 2008, <http://www.rfc-editor.org/info/rfc5389>.

   [QUIC]    Roskind, J., "QUIC: Multiplexed Stream Transport Over UDP",
             http://www.ietf.org/proceedings/88/slides/slides-88-

Herbert, Yong            Expires April 17, 2016                 [Page 8]



INTERNET DRAFT             UDP Magic Numbers            October 15, 2015

             tsvarea-10.pdf

   [I-D.hildebrand-spud-prototype] Hildebrand, J. and Trammell, B.
             "Substrate Protocol for User Datagrams (SPUD) Prototype",
             draft-hildebrand-spud-prototype-03 (work in preogress),
             March 2015.

   [I-D.ietf-nvo3-geneve] Gross, J., Sridhar, T., Garg, P., Wright, C.,
             Ganga, I., Agarwal, P., Duda, K., Dutt, D., and J. Hudson,
             "Geneve: Generic Network Virtualization Encapsulation",
             draft-ietf-nvo3-geneve-00, May 2015.

   [I-D.ietf-nvo3-vxlan-gpe] Quinn, P., Manur, R., Kreeger, L., Lewis,
             D., Maino, F., Smith, M., Agarwal, P., Yong, L., Xu, X,
             Elzur, U., Garg, P., and Melman, D. "Generic Protocol
             Extension for VXLAN" draft-ietf-nvo3-vxlan-gpe-00draft-
             quinn-vxlan-gpe-00, February 2015

   [I-D.ietf-nvo3-gue] Herbert, T., Yong, L., and Zia, O., "Generic UDP
             Encapsulation", draft-ietf-nvo3-gue-01 (work in progress),
             June 2015.

   [RFC7510] Xu, X., Sheth, N., Yong, L., Callon, R., and D. Black,
             "Encapsulating MPLS in UDP", RFC 7510, April 2015,
             <http://www.rfc-editor.org/info/rfc7510>.

             [I-D.ietf-tsvwg-gre-in-udp-encap] Crabbe, E., Yong, L., Xu,
             X., and Herbert, T. "GRE-in-UDP Encapsulation", draft-ietf-
             tsvwg-gre-in-udp-encap-07, July 2015

   [RFC7605] Touch, J., "Recommendations on Using Assigned Transport
             Port Numbers", BCP 165, RFC 7605, DOI 10.17487/RFC7605,
             August 2015, <http://www.rfc-editor.org/info/rfc7605>.

   [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
             Security Version 1.2", RFC 6347, January 2012,
             <http://www.rfc-editor.org/info/rfc6347>.

   [EVILBIT]  Bellovin, S., "The Security Flag in the IPv4 Header",
              RFC 3514, DOI 10.17487/RFC3514, April 1 2003,
              <http://www.rfc-editor.org/info/rfc3514>.

   [RFC5513]  Farrel, A., "IANA Considerations for Three Letter
              Acronyms", RFC 5513, DOI 10.17487/RFC5513, April 1 2009,
              <http://www.rfc-editor.org/info/rfc5513>.

   [RFC5514]  Vyncke, E., "IPv6 over Social Networks", RFC 5514, DOI
              10.17487/RFC5514, April 1 2009, <http://www.rfc-

Herbert, Yong            Expires April 17, 2016                 [Page 9]



INTERNET DRAFT             UDP Magic Numbers            October 15, 2015

              editor.org/info/rfc5514>.

Appendix A: Example of creating a UDP magic number

   This section demonstrates how a magic can be created for a UDP
   encapsulated protocol. For this example we consider Generic UDP
   Encapsulation (GUE), and assume that the assigned port number is used
   as the protocol type number.

   The assigned port number for GUE in 6080 or 0x17c0 in hexadecimal. So
   the value of the Xor’ed protocol field is:

     0x17c0 ^ 0x36b4 = 0x2174

   To compute the magic checksum we first sum the words of the Magic
   value and the Xor’ed protocol field value computed above:

     0xffd8 + 0x71a2 + 0x2174 = 0x192ee

   The result is folded and then complemented:

     (0x92ee + 1) ^ 0xffff = 0x6d10

   So the value in the Xor’ed checksum field is:

     0x6d10 ^ 0x5ce9 = 0x31f9

   Thus the full 64 bit magic number value for GUE is:

     0xffd871a2:0x217431f9

Appendix B: Checking magic numbers

   This section provides some guidelines for how to check magic numbers.

B.1 Matching a single magic number

   When a port supports precisely one protocol type there is only one
   magic number to check. This will be a common case at a receiver where
   magic numbers are enabled for encapsulated protocols that have
   assigned ports. Receiver processing in pseudo code may be:

      dataptr = UDP_payload_ptr
      good_magic = false
      PROTO_MAGIC_NUMBER = Pre computed 64 bit value for protocol type

      if (UDP_payload_length >= 8 &&
          memcmp(UDP_payload_ptr, PROTO_MAGIC_NUMBER, 8) == 0) {

Herbert, Yong            Expires April 17, 2016                [Page 10]



INTERNET DRAFT             UDP Magic Numbers            October 15, 2015

              /* Magic number matched, skip it for further processing */
              dataptr += 8
              good_magic = true
      }

      if (good_magic || magic_numbers_are_optional)
              process_packet(dataptr)
      else
          /* Handle bad packet */

B.2 Matching against a set of magic numbers

   A host needs to check against a set of magic numbers when different
   encapsulated protocols are multiplexed over a single port, and an
   intermediate device checks against a set when matching magic numbers
   across a range of ports. In either case, the typical method is to
   check the first four bytes of the UDP payload against the constant
   magic number value. If this is a match then the protocol type number
   is extracted and a lookup is performed to find a context. If a
   context is found, the checksum field in the packet is compared
   against a precomputed value in the context. In pseudo code this is:

      dataptr = UDP_payload_ptr;
      good_magic = false;

      if (UDP_payload_length >= 8 &&
          *(u32 *)UDP_payload_ptr == 0xffd871a2) {
             proto = *(u16 *)(UDP_payload_ptr + 4) ^ 0x36b4
             checksum = *(u16 *)(UDP_payload_ptr + 6)
             ctx = protocol_lookup(proto)
             if (ctx && checksum == ctx->checksum) {
                    /* Protocol found and matched */
                    good_magic = true
                    dataptr += 8;
             }
      }

      if (good_magic)
             process_as_protocol(dataptr, proto);
      else
             /* Handle bad packet */

B.3 Magic number validation

   A node can validate that a magic number is well formed for any
   protocol. This requires checking the Magic value is correct and
   verifying the checksum. In pseudo code this would be:

Herbert, Yong            Expires April 17, 2016                [Page 11]



INTERNET DRAFT             UDP Magic Numbers            October 15, 2015

      good_magic = false
      u16 checksum(start, len) /* Checksum function */
      if (UDP_payload_length >= 8 &&
          *(u32 *)UDP_payload_ptr == 0xffd871a2) {
              csum = checksum(UDP_payload_ptr, 6)
              if (csum ^ 0x5ce9 == *(u16 *)(UDP_payload_ptr + 6))
                     good_magic = true
      }

Authors’ Addresses

      Tom Herbert
      Facebook
      1 Hacker Way
      Menlo Park, CA
      US

      EMail: tom@herbertland.com

      Lucy Yong
      Huawei USA
      5340 Legacy Dr.
      Plano, TX 75024
      US

      Email: lucy.yong@huawei.com

Herbert, Yong            Expires April 17, 2016                [Page 12]


