IPv6 over MS/TP Networks

draft-ietf-6lo-6lobac-03

Kerry Lynn, Editor <kerlyn@ieee.org>
Jerry Martocci <jerald.p.martocci@jci.com>
Carl Neilson <cneilson@deltacontrols.com>
Stuart Donaldson <stuart.donaldson@honeywell.com>
6lo WG, IETF 94, Yokohama, 5 Nov 2015

Changes since -02

- § 2: Support for 115,200 baud is REQUIRED
- § 4: Support for MSDU length of 1500 octets is RECOMMENDED
- § 8: Format of S/TLLAO is aligned with RFC 4944
- Added Appendix D, Example 6LoBAC Packet Decode
- TBD: Finalize § 12, Security Considerations

Motivation

Develop a low-cost **wired** IPv6 solution for commercial building control applications

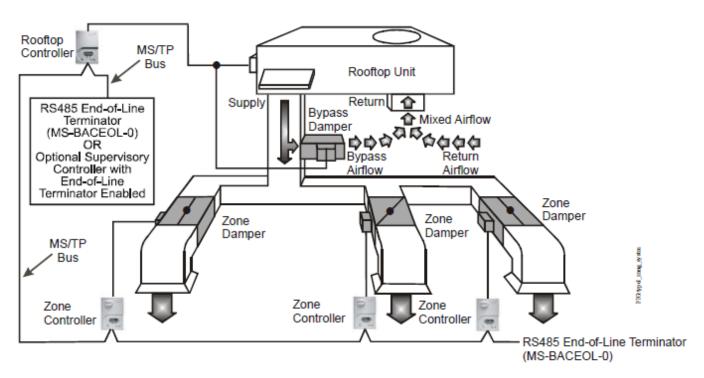


Figure 1: Typical Zoning Control System Installed on a Single MS/TP Bus

Background

- BACnet is the ISO/ANSI/ASHRAE [Standard 135-2012] data communication protocol for Building Automation and Control networks
- MS/TP (Master-Slave/Token-Passing) is a widely used data link defined in BACnet
 - Based on RS-485 single twisted pair PHY; supports data rates up to 115.2 kpbs and 1 km diameter
 - Contention-less MAC (token passing bus)
 - Consider it a wired alternative to IEEE 802.15.4

Technical Approach

- Leverage elements of 6LoWPAN [RFC 4944]
- Minimize changes to existing MS/TP specification [BACnet Clause 9]
- Goal: co-existence with legacy MS/TP nodes
 - No changes to frame header format, control frames, or MS/TP Master Node state machine
- MS/TP Extended Frames proposal includes:
 - New frame type for IPv6 (LoBAC) Encapsulation
 - Larger MSDU (1500+ octets)
 - 32-bit FCS (CRC-32K)
 - COBS (Consistent Overhead Byte Stuffing) encoding

MS/TP Control Frame Format

0x55	0xFF	FrameType	DestAddr
SrcAddr	Length = 0		HeaderCRC

Optional 0xFF

Frame Type: 0 = Token

1 = Poll for Master

2 = Reply to Poll for Master

Destination Address: 0 - 127

Source Address: 0 - 127

MS/TP Encoded Data Frame Format

0 | I

0x55	0xFF	FrameType	DestAddr
SrcAddr	Length (MS octet first)		HeaderCRC

COBS Encoded Data (1 - 1500 octets before encoding)

Data CRC (CRC-32K, LS octet first, COBS Encoded)

Optional 0xFF

Frame Type: 34 = IPv6 (LoBAC) Encapsulation

Destination Address: 0 - 127 or 255 (all nodes)

Source Address: 0 - 127

LoBAC Encapsulation

Uses 6LoWPAN Dispatch Header [RFC 4944]:

Pattern	Header Type
01 1XXXXX	LOWPAN_IPHC – Compressed IPv6 header

LoBAC Encapsulation (cont.)

- No mesh, broadcast, or fragmentation headers
 - One option remains:

IPHC Dispatch	IPHC Header	Payload
---------------	-------------	---------

A LoBAC encapsulated LOWPAN_IPHC [RFC 6282] compressed datagram

IPHC Compression [RFC 6282]

- Assumes some 6LBR-like behavior, e.g. 6LoWPAN Context Option (6CO, [RFC 6775])
- Uses 6LoWPAN short address format, formed by appending 8-bit MS/TP address to the octet 0x00
 - For example, an MS/TP node with a MAC address of 0x4F results in the following IPHC short address:

```
|0 1|
|0 5|
+-----+
|0000000001001111|
+-----
```

Stateless Address Auto-Configuration

- Typically, 8-bit MAC address is appended to the seven octets 0x00, 0x00, 0x00, 0xFF, 0xFE, 0x00
 - For example, an MS/TP node with a MAC address of 0x4F results in the following Interface ID:

- A privacy address may be used for the Interface Identifier (SHOULD be for ULA/Global addresses)
 - In this case there must be a way to map the address to an 8-bit MAC address (e.g. ARO in NS [RFC 6775])

IPv6 Link Local Address

 The IPv6 link-local address [RFC 4291] for an MS/TP interface is formed by appending the Interface Identifier (defined in previous slide) to the prefix FE80::/64:

10 bits	54 bits	64 bits
++		++
1111111010	(zeros)	Interface Identifier
++		++

Unicast Address Mapping

 The Source/Target Link-Layer Address option has the following form when the link layer is MS/TP and the addresses are 8-bit MS/TP MAC addresses:

```
0
                          Option fields:
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                          Type:
            Length=1
                            1 = Source Link-layer address
2 = Target Link-layer address
           MS/TP Address
Length:
                            The value of this field is
         Padding
                            1 for 8-bit MS/TP addresses
        (all zeros)
MS/TP Address:
                            The 8-bit MAC address in
```

canonical bit order


Multicast Address Mapping

- MS/TP only supports link-local broadcast
- Uses 6LoWPAN short address format, formed by appending 0xFF to the octet 0x00
 - All IPv6 multicasts on the MS/TP link map to the following IPHC short destination address:

Backup Slides

COBS Encoding Basics

Code	Followed By	Meaning
0x00	(not applicable)	(not allowed)
0x01	nothing	A single zero byte
0x02	one data byte	The single data byte, followed by a zero byte
n	(n-1) data bytes	The $(n-1)$ data bytes, followed by a zero byte
0xFE	253 data bytes	The 253 data bytes, followed by a zero byte
0xFF	254 data bytes	The 254 data bytes, not followed by a zero byte

COBS Encoding in Detail

• "Phantom zero" is appended to input to resolve ambiguity in final code block:

- An arbitrary octet (e.g. 0x55) may be removed by XOR-ing it over the COBS encoder output stream
- COBS overhead:
 - At least one octet per encoded field
 - At most one octet in 255 (6 octets in 1501;
 ≈ 0.4%)