Our focus Constrained Devices

- Low-Cost Crypto
 - Energy, Message Size

- for low-cost devices
 - Energy Harvesting
 - Applications like agriculture in developing countries
Possible (conflicting) Goals

- **Privacy**
 - Confidentiality
 - Consent of the Resource Owner (RO)
 - Non-linkability of Identities of Communication Partners (C & S)

- **Authorization & Integrity**
 - C is allowed to send commands to S
 - C is allowed to receive data from S

- **DoS Resilience**

- **Energy Consumption**

- **Message Size**
 - Padding
 - Headers
One solution possibly does not fit all

- Many ways of constructing tokens/keys
 - Given some key material
- Many ways of using them
 - As one-time-pads
 - For DTLS
 - AES/MACs
A Low-Cost Solution

🔹 Use Pseudo-Random Generators
 🔹 An attacker may not distinguish if a (long) bit stream
 ▪ is purely random
 ▪ has been generated by a Pseudo-Random Generator G(k)
 • where k is a (“small”: 128, 256 bits) random key
 🔹 Use the long pseudo-random stream as a set of “Tokens and keys”

<table>
<thead>
<tr>
<th></th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>VerifK₁</td>
<td>VerifK₂</td>
<td>VerifK₃</td>
<td></td>
</tr>
<tr>
<td>PSK₁</td>
<td>PSK₂</td>
<td>PSK₃</td>
<td></td>
</tr>
<tr>
<td>IntK₁</td>
<td>IntK₂</td>
<td>IntK₃</td>
<td></td>
</tr>
<tr>
<td>ConfK₁</td>
<td>ConfK₂</td>
<td>ConfK₃</td>
<td></td>
</tr>
</tbody>
</table>
A Low-Cost Solution

- Propose to Use ChaCha 20 (or ChaCha7?) as a pseudo-random generator
- Use One-Time Pads for Confidentiality
 - No need for padding