Information Distribution over GRASP

(draft-liu-anima-grasp-distribution-00)

Bing Liu (speaker), Sheng Jiang
@Anima WG, ietf94, Nov 2015
Background

- This new draft was inherited from draft-liu-anima-intent-distribution
 - Not limit the information to Intent only
 - Specifically proposed to use GRASP (A GeneRic Autonomic Signaling Protocol)

- This draft contains:
 - information distribution scenarios
 - requirements analysis of information distribution
 - gap analysis
Distribution Scenarios

• Whole domain distribution
 – E.g. flood network Intent to all the nodes in an autonomic domain

• Selective distribution
 – E.g. distribute some specific policies to the nodes that support a certain objective (possibly based on Discovery cache)
 – E.g. distribute some information to the nodes that belong to a certain role or hierarchy.
 • To reduce signaling storm
 • To gain some information isolation if the information is sensitive

• Incremental distribution
 – E.g. only distribute to the nodes newly get online
Basic Requirements for Node Behavior

• Flooding behavior
 – flood to all interfaces
 • includes both physical interfaces and virtual interfaces such as ACP tunnels
 – loop avoidance

• Selective Flooding
 – only flood the information to part of the interfaces
 – flood to a set of IP addresses (possibly by unicast)

• Point to Point exchange
Basic Requirements for Protocol Indication

• Indicate the distributed information
 – The autonomic nodes need to be able to distinguish the information that needs to be distributed from the other information.

• Indicate the selective flooding criteria
 – The node needs to be indicated which interfaces/addresses should be sent the distributed information.
Gap Analysis 1/2

• Node behavior
 – Flood within ACP
 • [Open Question] The nodes might need to distinguish the ACP tunnel interfaces from other physical/virtual interfaces
 – Loop avoidance
 • Current GRASP defines loop count, which could reduce possible loop messages but could not avoid them

• Indicate the distributed information
 – Current GRASP uses *Unsolicited Response* messages (encapsulate Synchronization objectives) to indicate information distribution. Nodes receive *Unsolicited Response* messages MUST flood them to all the other interfaces.
 • [Open Question] Unsolicited Response is an overloading of Response message. The overloading might easily cause protocol state machine bugs in implementations.
 – Alternatives
 • Define a new type of message dedicated for information distribution.
 • Define a new option dedicated for distribution. (could possibly encapsulated in Request/Negotiation messages)
 • Add flag(s) in current message(s)/option(s).
 • [Open Question] Which is the most proper method?
Gap Analysis 2/2

- Indicate the selective flooding criteria
 - Alternatives:
 - The criteria is carried in band of the message. (E.g. the message indicates a role or an objective)
 - Pub-sub mode: nodes to subscribe specific information to the distribution source. The source floods the information to subscribers only.
 - Problems:
 » pub-sub might need a central distribution source, which is in contrast to the architecture
 » distributed pub-sub between neighbors might too heavy for signaling?
 - [Open Question] Which do we want? Or other alternative(s)?
Other requirements for distribution

• **Autonomic domain boundary**
 – The domain boundary devices are supposed to know themselves as boundary. When the distribution messages come to the devices, they do not distribute them outside the domain.

• **Arbitrary Injecting Point (Optional?)**
 – The distributed object SHOULD be injected at any autonomic node within the domain (or within a specific group [TBD])

• **Confliction Handling (Optional?)**
 – There is possibility that two nodes advertise the same object but with conflict content.

• **Verification of Distributed Information**
 – Information integrity verification
 • The receiving node SHOULD be able to verify whether the information has been modified.
 – Source authorization verification
 • The receiving node SHOULD be able to verify whether the distribution source has the right to distribute such information (the source might just exceed its authority)
Next Steps

• Solicit opinions on the distribution requirements

• Discuss solutions for the gaps

• A question to the Chairs:
 – It is a work within the scope of current charter
 – Could possibly add it as a new milestone?
Comments?

Thank you!

IETF94, Yokohama