Benchmarking Virtual Switches in OPNFV
draft-v sperf-bmw g-vsw itch-opnf v-01

• Maryam Tahhan
 Al Morton
Outline

• VSPERF test specification updates
• VSPERF in practice
• Future work
• Summary
VSPERF test specification updates

• New tests have been added to extend the matrix coverage.
• Soak tests were migrated from using “RFC2544 Throughput” to referring to “RFC 2889 Maximum Forwarding Rate”.
• Refined the Fully-Meshed RFC 2889 tests to include deployment and to report the number of ports used for the test.
• Scalability tests now look at the situations where flows are not installed and pre installed on the switch.
Matrix Coverage of the Current LTD

<table>
<thead>
<tr>
<th>Activation</th>
<th>Operation</th>
<th>De-Activation</th>
</tr>
</thead>
</table>
| • Activation.RFC2889.AddressLearningRate
• Activation.RFC2889.AddressCachingCapacity
• PacketLatency.InitialPacketProcessingLatency | • Throughput.RFC2544.PacketLossRatio
• Throughput.RFC2544.PacketLossRateFrmMod
• Throughput.RFC2544.BackToBackFrames
• Throughput.RFC2889.MaxForwardingRate
• Throughput.RFC2889.ForwardPressure
• Throughput.RFC2889.BroadcastFrameForwarding
• RFC2889 Broadcast Frame Latency test
• CPU.RFC2544.0PacketLoss | |
| • CPDP.Coupling.Flow.Addition | • Throughput.RFC2889.ErrorFramesFiltering
• Throughput.RFC2544.Profile | • Throughput.RFC2889.ErrorFramesFiltering
• Throughput.RFC2544.Profile |
| • Throughput.RFC2544.Sys temRecoveryTime
• Throughput.RFC2544.ResetTime | | • Throughput.RFC2889.AddressCachingCapacity |

New tests in white.
VSPERF LTD Supported Deployment Scenarios

Phy2Phy

VM

Logical port

Logical port

Test Device (Send&Rcv)

PVP

VM

Logical port

Logical port

Test Device (Send&Rcv)

PVVP

VM

Logical port

Logical port

Test Device (Send&Rcv)

PVVP
VSPERF LTD Supported Deployment Scenarios cont.
In Practice

BRACE YOURSELF

BENCHMARKING IS COMING
VSPERF Test Framework

• A Python based test framework for characterizing the performance of virtual switches.
• Used to prove out and refine the tests and the methodologies for VSPERF.
• As of today, capable of conducting the following tests on stock OVS and OVS with DPDK:

Available Tests:
=====
* phy2phy_tput: LTD.Throughput.RFC2544.PacketLossRatio
* back2back: LTD.Throughput.RFC2544.BackToBackFrames
* phy2phy_tput_mod_vlan:LTD.Throughput.RFC2544.PacketLossRatioFrameModification
* phy2phy_cont: Phy2Phy Continuous Stream
* pvp_cont: PVP Continuous Stream
* ppvp_cont: PVVP Continuous Stream
* phy2phy_scalability:LTD.Scalability.RFC2544.0PacketLoss
* pvp_tput: LTD.Throughput.RFC2544.PacketLossRatio
* pvp_back2back: LTD.Throughput.RFC2544.BackToBackFrames
* ppvp_tput: LTD.Throughput.RFC2544.PacketLossRatio
* ppvp_back2back: LTD.Throughput.RFC2544.BackToBackFrames
* phy2phy_cpu_load: LTD.CPU.RFC2544.0PacketLoss
* phy2phy_mem_load: LTD.Memory.RFC2544.0PacketLoss

• Supported deployment scenarios to date: Phy2Phy, PVP and PVVP.
VSPERF Framework Supported Deployment Scenarios
<table>
<thead>
<tr>
<th></th>
<th>SPEED</th>
<th>ACCURACY</th>
<th>RELIABILITY</th>
<th>SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* Activation.RFC2889. AddressCachingCapacity</td>
<td></td>
<td>* Throughput.RFC2544. ResetTime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* PacketLatency.Initial PacketProcessingLatency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Throughput.RFC2544. BackToBackFrames</td>
<td></td>
<td>FrameModification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Throughput.RFC2889. MaxForwardingRate</td>
<td></td>
<td>* PacketDelayVariation.RFC3393.Soak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Throughput.RFC2889. ForwardPressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Throughput.RFC2889. BroadcastFrameForwarding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* RFC2889 Broadcast Frame Latency test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* CPU.RFC2544.0PacketLoss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De-Activation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Implemented tests in white for Phy2Phy, PVP and PVVP.
VM2VM in Practice

- Hasn’t been implemented yet
- Concerns around time synchronization between VMs and clock accuracy.
- Recommendation under consideration: Test must include an external HW traffic generator to act as the tester/traffic source and sink.
Future Work

• Integrating multiple traffic gens: Spirent, Moongen and Xena. (current IXIA)
• Methodology extensions: Iterations for the short trial tests
• Prove out and refine methodology and tests through the framework
• Add more tests to the LTD and the framework, an initial list:
 • Scalability Tests adding More VMs in succession and building a performance profile as we add more VMs.
 • Overlay Networking Tests: VXLAN performance testing, encap, decap, encap and decap.
 • Match action performance testing? The cost of the different actions supported by a vSwitch.
 • Classifying L2, L3 and L4 traffic Profile Tests.
 • Stream/bulk Data transfer "unidirectional stream" performance.
 • Request & response/transaction rate tests.
 • Performance testing with Mirroring enabled on the switch.
 • TCP Max connections per second, Max # of active sessions, Max transactions per second.
 • IPv6 considerations
 • Best of N and Worst of N Tests
 • Deactivation tests
Summary

• The LTD and the test framework will be developed continuously for some time.

• We would like your opinion on:
 • **WG Adoption** of this Summary Draft as a snapshot of next OPNFV Release (Brahmaputra),
 • with pointers to Released and current versions of LTD spec and VSPERF as it grows/evolves.
 • Eventually, Convert entire LTD spec to an Internet Draft/RFC
 • Whether we should continue to provide periodic updates on the expanding/evolving LTD Spec.
BACKUP
What is OPNFV?

Open Platform for NFV Project (OPNFV):

- A Linux Foundation open source project focused on accelerating the evolution of Network Functions Virtualization (NFV).
- OPNFV will establish a carrier-grade, integrated, open source reference platform for NFV that ensures consistency, performance and interoperability among multiple open source components.
- OPNFV will work with upstream projects to coordinate continuous integration and testing while filling development gaps.
How can I join OPNFV?

• Create a Linux Foundation account that you will use for all the tools provided by the Linux Foundation. You also need this account to contribute to OPNFV projects.

• To participate, via contribution, in any project in OPNFV, you will need to contact the project manager/lead for the project.

• Project Roles: contributor, committer, and project lead.
What is VSWITCHPERF AKA VSPERF?

• An [OPNFV Project](#)

• Goal: Characterize the performance of a virtual switch for [Telco](#) NFV use cases.

• Virtual switches have not typically been designed for Telco NFV use cases that require Telco grade determinism in their performance and support for latency/jitter-sensitive Telco traffic.

• This project proposes defining and executing an appropriate set of tests in order to objectively measure the current Telco characteristics of a virtual switch in the NFVI
Additional Test Setups (single traffic direction shown)
vSwitch deployment scenarios

• Physical port → vSwitch → physical port.
• Physical port → vSwitch → VM → vSwitch → physical port.
• Physical port → vSwitch → VM → vSwitch → VM → vSwitch → physical port.
• Physical port → vSwitch → VM.
• VM → vSwitch → physical port.
• VM → vSwitch → VM.

Please note a Physical port is connected to a traffic generator. A VM is connected to the vSwitch through a logical port.