
DNS message checksums
draft-muks-dnsop-dns-message-checksums-01

Mukund Sivaraman

Internet Systems Consortium



IP layer fragmentation

I IP layer PDUs (“packets”) can get fragmented — broken into
multiple pieces during transmission — because they don’t fit
in the MTU somewhere on the path.

I Identifier field in the IPv4 header is 16-bit.

I IP fragments present an opportunity for an off-path attacker
to succeed in poisoning a reply over IPv4 by injecting spoofed
fragments into a network.

I List of problems in “Fragmentation Considered Poisonous” by
Amir Herzberg and Haya Shulman.
http:

//u.cs.biu.ac.il/~herzbea/security/13-03-frag.pdf

http://u.cs.biu.ac.il/~herzbea/security/13-03-frag.pdf
http://u.cs.biu.ac.il/~herzbea/security/13-03-frag.pdf


DNS message poisoning (UDP checksum pass)

I UDP checksum is trivially defeated and is insufficient to
protect against malicious modifications of datagrams.

I RFC5452 anti-Kaminsky measures (random source port,
random message ID) cannot be used in detecting message
modification (poisoning); they can only be used in detecting
spoofing at the whole-packet level.

I DNS cookies similarly cannot be used in detecting message
modification, except detecting spoofing at the whole-packet
level.



Denial of service (UDP checksum fail)

I Response blocking — attacker spoofs bogus fragments causing
assembled UDP datagram to fail UDP checksum verification.

I Nameserver blocking — attacker repeatedly blocks responses
from a nameserver, and resolver blacklists it denying itself
access to the nameserver for all the zones it serves.

I The general problem is that the IP layer is vulnerable as
fragment assembly is controlled here. Higher layers may drop
assembled packets from incorrect fragments and it’s not
possible to control fragment assembly from the higher layers,
allowing unstoppable disruption to UDP while IP
fragmentation is occurring.

I It is worth making better use of DF=1 and switching to
application level fragmentation for larger responses (see DNS
message fragments draft) where the application controls
assembly.



Off-path attackers

I Unable to snoop on packets (no loss of privacy)

I Able to inject forged packets (poisoning)

I Unable to filter packets (no loss of service)

I Effects: Poisoning of data, some control (protocol
information), cause havoc with IP fragments

I Solutions: Strong checks and application level fragmentation
with DF=1 are reasonable protection measures



On-path attackers

I May be able to snoop on packets (loss of privacy)

I May be able to inject forged packets (poisoning)

I May be able to filter packets (loss of service)

I Effects: MITM attacks, TCP RSTs, packet drops, total chaos

I Solutions: Cryptographic signatures (including for control —
e.g., TLS cannot stop TCP reset injection), encryption; even
then nothing can be done to prevent total loss of service



“Just use DNSSEC!”

I RRSIGs can be used to validate the contents of RRsets.

I Some content of messages do not have RRSIGs and are
unprotected, such as NS records and glue at a delegation
point in a referral, and EDNS0 options.

I DNSSEC is not designed to be used to validate what RRs
were chosen by a server to be part of a message.



DNSSEC “what RRs” example

I Consider a HTTP service ‘files.example.com’ with address
192.0.2.1 for users in Tolmekia and address 198.51.100.1 for
users in Atlantis, which are only accessible from those
countries respectively — there is no route to these addresses
from outside the respective country.

I NS serves A 192.0.2.1 to Tolmekia, A 198.51.100.1 to Atlantis
using views. The zones are signed with the same KSK and
ZSK.

I Attacker who’s able to spoof traffic in Atlantis uses shell
account in Tolmekia to grab DNS message for Tolmekia and
poisons resolver in Atlantis with Tolmekia’s address record
with its correct RRSIG.

I User in Atlantis is unable to access ‘files.example.com’ using
an address from AD=1 reply because there’s no route.



“Just use TCP!”

I UDP has annoying problems allowing poisoning, amplification
attacks, etc. In DNS, they are mostly known and addressed.

I DNS over TCP doubles roundtrips compared to UDP. Name
resolution involves iteration including indirection (glueless NS
referral) during lookup. As DNS lookup is at the head of any
list of network operations, it increases the turnaround time of
every item on the list when resolution is required. This is very
conspicuous in parts of the world with large RTTs to the
majority of nameservers for domains of medium-to-high
popularity and must not be ignored.

I Truncating UDP on purpose to force TCP is worse. It triples
roundtrips (1 for UDP attempt, +2 until TCP first data).

I draft-ietf-dnsop-5966bis explores ways of improving
DNS over TCP, but some problems will take a long time to go
away.



The EDNS CHECKSUM option

I CHECKSUM option tries to protect UDP DNS traffic in its
existing form from off-path modifications.

I Option contains 3 fields: NONCE, ALGORITHM and DIGEST

Option field Type Field size

NONCE byte array 8 octets

ALGORITHM unsigned integer 1 octet

DIGEST byte array variable length

I Client sends DNS query with random NONCE inside an EDNS
option.

I Server generates reply message, copies received NONCE to it
and computes the checksum digest over the entire message,
and returns the DIGEST embedded in the reply to the client.



DNS message with CHECKSUM — QR=0



DNS message with CHECKSUM — QR=1



Security considerations

I Risk of downgrade attack by IP fragment spoofing — client
can detect it and retry over TCP.

I CHECKSUM cannot protect against UDP checksum
validation failures due to spoofed IP fragments, allowing
response blocking and NS blocking attacks. DNS message
fragments can be used in addressing these problems.

I On-path message poisoning is better handled by DPRIVE;
would require significantly different operation and possible
protocol changes.

I Checksum digest computation has a processing overhead.

I Nonces require a pseudo-random entropy source.



Open issues

I Whether to replace the NONCE field with dependency on
DNS cookies — after implementation experience, this doesn’t
seem so good as the packet overhead of the NONCE field is
very small, verifying the NONCE takes a single instruction,
and there is a larger overhead to checking that the cookie
option was found.

I Whether to merge checksums into DNS cookies — checksums
have a computation overhead that may not be welcome in
cookies. Other than that, we can try this.



100 END

Thanks for watching.

A BIND implementation is in the dns-message-checksums

branch at: https://github.com/muks/bind9/

https://github.com/muks/bind9/

	Intro
	Design
	Conclusion

