
CBOR (RFC 7049)
Concise Binary Object Representation

Carsten Bormann, 2015-11-01

1

CBOR: Agenda

• What is it, and when might I want it?

• How does it work?

• How do I work with it?

2

CBOR: Agenda

• What is it, and when might I want it?

• How does it work?

• How do I work with it?

3

History of Data Formats

• Ad Hoc

• Database Model

• Document Model

• Programming Language Model

Slide stolen from Douglas Crockford

5

TLV

Box notation

6

XML XSD

JSON
• JavaScript Object Notation

• Minimal

• Textual

• Subset of JavaScript

Slide stolen from Douglas Crockford

Values
• Strings
• Numbers
• Booleans

• Objects
• Arrays

• null

Array
["Sunday", "Monday",
"Tuesday", "Wednesday",
"Thursday", "Friday",
"Saturday"]

[
 [0, -1, 0],
 [1, 0, 0],
 [0, 0, 1]

]

Object
{
 "name": "Jack B. Nimble",
 "at large": true,
 "grade": "A",
 "format": {
 "type": "rect",
 "width": 1920,
 "height": 1080,
 "interlace": false,
 "framerate": 24
 }
}

Object
{
 "name": "Jack B. Nimble",
 "at large": true,
 "grade": "A",
 "format": {
 "type": "rect",
 "width": 1920,
 "height": 1080,
 "interlace": false,
 "framerate": 24
 }
}

Map

JSON limitations
• No binary data (byte strings)
• Numbers are in decimal, some parsing required
• Format requires copying:

• Escaping for strings
• Base64 for binary

• No extensibility (e.g., date format?)
• Interoperability issues

• I-JSON further reduces functionality (RFC 7493)

12

BSON and friends

• Lots of “binary JSON” proposals

• Often optimized for data at rest, not protocol use  
(BSON ➔ MongoDB)

• Most are more complex than JSON

13

Why a new binary object format?

• Different design goals from current formats
– stated up front in the document

• Extremely small code size
– for work on constrained node networks

• Reasonably compact data size
– but no compression or even bit-fiddling

• Useful to any protocol or application that likes
the design goals

14

Concise Binary 
Object Representation

(CBOR)

15

“Sea Boar”

16
“Sea Boar”

Design goals (1 of 2)

1. unambiguously encode most common data
formats (such as JSON-like data) used in
Internet standards

2. compact implementation possible for
encoder and decoder
3. able to parse without a schema
description.

17

Design goals (2 of 2)

4. Serialization reasonably compact, but  
data compactness secondary to  
implementation compactness
5. applicable to both constrained nodes and
high-volume applications
6. support all JSON data types, conversion to
and from JSON
7. extensible, with the extended data being
able to be parsed by earlier parsers

18

CBOR: Agenda

• What is it, and when might I want it?

• How does it work?

• How do I work with it?

19

CBOR vs. “binary JSONs”

• Encoding [1, [2, 3]]: compact | stream

20

Very quick overview of the format

• Initial byte: major type (3 bits) and
additional information (5 bits: immediate
value or length information)

• Eight major types:
– unsigned (0) and negative (1) integers
– byte strings (2), UTF-8 strings (3)
– arrays (4), maps (5)
– optional tagging (6) and  

simple types (7) (floating point, Booleans,
etc.)

21

Additional information
• 5 bits

• 0..23: immediate value
• 24..27: 1, 2, 4, 8 bytes value follow
• 28..30: reserved
• 31: indefinite length

• terminated only by 0xFF in place of data item 

• Generates unsigned integer:
• Value for mt 0, 1 (unsigned/neg integers), 7 (“simple”)
• Length (in bytes) for mt 2, 3 (byte/text strings)
• Count (in items) for mt 4, 5 (array, map)
• Tag value for mt 6

22

Major types 6 and 7

• mt 7:
• special values for ai = 0..24

• false, true, null, undef
• IANA registry for more

• ai = 25, 26, 27: IEEE floats
• in 16 (“half”), 32 (“single”), and 64

(“double”) bits
• mt 6: semantic tagging for things like dates,

arbitrary-length bignums, and decimal fractions
23

Tags

• A Tag contains one data item
• 0: RFC 3339 (~ ISO 8601) text string date/time
• 1: UNIX time (number relative to 1970-01-01)
• 2/3: bignum (byte string encodes unsigned)
• 4: [exp, mant] (decimal fraction)
• 5: [exp, mant] (binary fraction, “bigfloat”)
• 21..23: expected conversion of byte string
• 24: nested CBOR data item in byte string
• 32…: URI, base64[url], regexp, mime (text strings)

24

New Tags

• Anyone can register a tag (IANA)
• 0..23: Standards action
• 24..255: Specification required
• 256..18446744073709551615: FCFS

• 25/256: stringref for simple compression
• 28/29: value sharing (beyond trees)
• 26/27: constructed object (Perl/generic)
• 22098: Perl reference (“indirection”)

25

Examples

• Lots of examples in RFC (making use of JSON–like “diagnostic notation”)
• 0 ➔ 0x00, 1 ➔ 0x01, 23 ➔ 0x17, 24 ➔ 0x1818
• 100 ➔ 0x1864, 1000 ➔ 0x1903e8, 1000000 ➔ 0x1a000f4240
• 18446744073709551615 ➔ 0x1bffffffffffffffff, 18446744073709551616 ➔

0xc249010000000000000000
• –1 ➔ 0x20, –10 ➔ 0x29, –100 ➔ 0x3863, –1000 ➔ 0x3903e7
• 1.0 ➔ 0xf93c00, 1.1 ➔ 0xfb3ff199999999999a, 1.5 ➔ 0xf93e00
• Infinity ➔ 0xf97c00, NaN ➔ 0xf97e00, –Infinity ➔ 0xf9fc00
• false ➔ 0xf4, true ➔ 0xf5, null ➔ 0xf6
• h'' ➔ 0x40, h'01020304' ➔ 0x4401020304
• "" ➔ 0x60, ”a" ➔ 0x6161, ”IETF" ➔ 0x6449455446
• [] ➔ 0x80, [1, 2, 3] ➔ 0x83010203, [1, [2, 3], [4, 5]] ➔ 0x8301820203820405
• {} ➔ 0xa0, {1: 2, 3: 4} ➔ 0xa201020304, {"a": 1, "b": [2, 3]} ➔

0xa26161016162820203
26

CBOR: Agenda

• What is it, and when might I want it?

• How does it work?

• How do I work with it?

27

http://cbor.me: CBOR playground

• Convert back and forth between diagnostic
notation (~JSON) and binary encoding

28

Implementations
• Parsing/generating CBOR

easier than interfacing with
application

• Minimal implementation:  
822 bytes of ARM code

• Different integration models,
different languages

• > 25 implementations (after
first two years) 

29 http://cbor.io

CBOR and CDDL
• CBOR takeup within IETF is increasing.  

How to write specs?

• CDDL: CBOR Data Definition Language  
https://tools.ietf.org/html/draft-greevenbosch-appsawg-cbor-cddl-07
• The best of ABNF, Relax-NG, JSON Content Rules
• Rough tool available: gem install cddl

• Generate example instances (CBOR or JSON)
• Check instances against the definition

https://tools.ietf.org/html/draft-greevenbosch-appsawg-cbor-cddl-07

reputation-object = {
 application: text
 reputons: [* reputon]
}

reputon = {
 rater: text
 assertion: text
 rated: text
 rating: float16
 ? confidence: float16
 ? normal-rating: float16
 ? sample-size: uint
 ? generated: uint
 ? expires: uint
 * text => any
}

; This is a map (JSON object)
; text string (vs. binary)
; Array of 0-∞ reputons

; Another map (JSON object)

; OK, float16 is a CBORism
; optional…

; unsigned integer

; 0-∞, express extensibility

How RFC 7071 would have looked like in CDDL

GRASP
• Generic Autonomic Signaling Protocol (GRASP)

• For once, try not to invent another TLV format: just use CBOR

• Messages are arrays, with type, id, option:  
 message /= [MESSAGE_TYPE, session-id, *option] 
 MESSAGE_TYPE = 123 ; a defined constant 
 session-id = 0..16777215 
 ; option is one of the options defined below

• Options are arrays, again:  
 option /= waiting-time-option 
 waiting-time-option = [O_WAITING, waiting-time] 
 O_WAITING = 456 ; a defined constant 
 waiting-time = 0..4294967295 ; in milliseconds

32

draft-ietf-anima-grasp-01.txt

Where from here?

• RFC 7049

• http://cbor.io

• cbor@ietf.org

• http://tools.ietf.org/html/cddl

33

