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History of Data Formats

• Ad Hoc 

• Database Model 

• Document Model 

• Programming Language Model

Slide stolen from Douglas Crockford
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TLV

Box notation
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XML XSD



JSON
• JavaScript Object Notation 

• Minimal 

• Textual 

• Subset of JavaScript

Slide stolen from Douglas Crockford



Values
• Strings 
• Numbers 
• Booleans 

• Objects 
• Arrays 

• null



Array
["Sunday", "Monday", 
"Tuesday", "Wednesday", 
"Thursday", "Friday", 
"Saturday"] 

[ 
 [0, -1, 0], 
 [1, 0, 0], 
 [0, 0, 1] 

]



Object
{ 
    "name":     "Jack B. Nimble",  
    "at large": true,  
    "grade":    "A",  
    "format": { 
        "type":      "rect",  
        "width":     1920,  
        "height":    1080,  
        "interlace": false,  
        "framerate": 24 
    } 
}
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    "grade":    "A",  
    "format": { 
        "type":      "rect",  
        "width":     1920,  
        "height":    1080,  
        "interlace": false,  
        "framerate": 24 
    } 
}

Map



JSON limitations
• No binary data (byte strings) 
• Numbers are in decimal, some parsing required 
• Format requires copying: 

• Escaping for strings 
• Base64 for binary 

• No extensibility (e.g., date format?) 
• Interoperability issues 

• I-JSON further reduces functionality (RFC 7493)
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BSON and friends

• Lots of “binary JSON” proposals 

• Often optimized for data at rest, not protocol use  
(BSON ➔ MongoDB) 

• Most are more complex than JSON
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Why a new binary object format?

• Different design goals from current formats 
– stated up front in the document 

• Extremely small code size  
– for work on constrained node networks 

• Reasonably compact data size 
– but no compression or even bit-fiddling 

• Useful to any protocol or application that likes 
the design goals
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Concise Binary 
Object Representation 

(CBOR)
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“Sea Boar”
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“Sea Boar”



Design goals (1 of 2)

1. unambiguously encode most common data 
formats (such as JSON-like data) used in 
Internet standards 

2. compact implementation possible for 
encoder and decoder 
3. able to parse without a schema 
description.
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Design goals (2 of 2)

4. Serialization reasonably compact, but  
data compactness secondary to  
implementation compactness 
5. applicable to both constrained nodes and 
high-volume applications 
6. support all JSON data types, conversion to 
and from JSON 
7. extensible, with the extended data being 
able to be parsed by earlier parsers
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CBOR vs. “binary JSONs”

• Encoding [1, [2, 3]]:   compact      |           stream
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Very quick overview of the format

• Initial byte: major type (3 bits) and 
additional information (5 bits: immediate 
value or length information) 

• Eight major types:  
– unsigned (0) and negative (1) integers  
– byte strings (2), UTF-8 strings (3) 
– arrays (4), maps (5) 
– optional tagging (6) and  

simple types (7) (floating point, Booleans, 
etc.)
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Additional information
• 5 bits 

• 0..23: immediate value 
• 24..27: 1, 2, 4, 8 bytes value follow 
• 28..30: reserved 
• 31: indefinite length 

• terminated only by 0xFF in place of data item 

• Generates unsigned integer: 
• Value for mt 0, 1 (unsigned/neg integers), 7 (“simple”) 
• Length (in bytes) for mt 2, 3 (byte/text strings) 
• Count (in items) for mt 4, 5 (array, map) 
• Tag value for mt 6
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Major types 6 and 7

• mt 7: 
• special values for ai = 0..24 

• false, true, null, undef 
• IANA registry for more 

• ai = 25, 26, 27: IEEE floats  
• in 16 (“half”), 32 (“single”), and 64 

(“double”) bits 
• mt 6: semantic tagging for things like dates, 

arbitrary-length bignums, and decimal fractions
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Tags

• A Tag contains one data item 
• 0: RFC 3339 (~ ISO 8601) text string date/time 
• 1: UNIX time (number relative to 1970-01-01) 
• 2/3: bignum (byte string encodes unsigned) 
• 4: [exp, mant] (decimal fraction) 
• 5: [exp, mant] (binary fraction, “bigfloat”) 
• 21..23: expected conversion of byte string 
• 24: nested CBOR data item in byte string 
• 32…: URI, base64[url], regexp, mime (text strings)
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New Tags

• Anyone can register a tag (IANA) 
• 0..23: Standards action 
• 24..255: Specification required 
• 256..18446744073709551615: FCFS 

• 25/256: stringref for simple compression 
• 28/29: value sharing (beyond trees) 
• 26/27: constructed object (Perl/generic) 
• 22098: Perl reference (“indirection”)

25



Examples

• Lots of examples in RFC (making use of JSON–like “diagnostic notation”) 
• 0 ➔ 0x00, 1 ➔ 0x01, 23 ➔ 0x17, 24 ➔ 0x1818 
• 100 ➔ 0x1864, 1000 ➔ 0x1903e8, 1000000 ➔ 0x1a000f4240 
• 18446744073709551615 ➔ 0x1bffffffffffffffff, 18446744073709551616 ➔ 

0xc249010000000000000000 
• –1 ➔ 0x20, –10 ➔ 0x29, –100 ➔ 0x3863, –1000 ➔ 0x3903e7 
• 1.0 ➔ 0xf93c00, 1.1 ➔ 0xfb3ff199999999999a, 1.5 ➔ 0xf93e00 
• Infinity ➔ 0xf97c00, NaN ➔ 0xf97e00, –Infinity ➔ 0xf9fc00 
• false ➔ 0xf4, true ➔ 0xf5, null ➔ 0xf6 
• h'' ➔ 0x40, h'01020304' ➔ 0x4401020304 
• "" ➔ 0x60, ”a" ➔ 0x6161, ”IETF" ➔ 0x6449455446 
• [] ➔ 0x80, [1, 2, 3] ➔ 0x83010203, [1, [2, 3], [4, 5]] ➔ 0x8301820203820405 
• {} ➔ 0xa0, {1: 2, 3: 4} ➔ 0xa201020304, {"a": 1, "b": [2, 3]} ➔ 

0xa26161016162820203
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http://cbor.me: CBOR playground

• Convert back and forth between diagnostic 
notation (~JSON) and binary encoding
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Implementations
• Parsing/generating CBOR 

easier than interfacing with 
application 

• Minimal implementation:  
822 bytes of ARM code 

• Different integration models, 
different languages 

• > 25 implementations (after 
first two years) 

29 http://cbor.io



CBOR and CDDL
• CBOR takeup within IETF is increasing.   

How to write specs? 

• CDDL: CBOR Data Definition Language  
https://tools.ietf.org/html/draft-greevenbosch-appsawg-cbor-cddl-07 
• The best of ABNF, Relax-NG, JSON Content Rules 
• Rough tool available: gem install cddl 

• Generate example instances (CBOR or JSON) 
• Check instances against the definition

https://tools.ietf.org/html/draft-greevenbosch-appsawg-cbor-cddl-07


reputation-object = { 
  application: text 
  reputons: [* reputon] 
} 

reputon = { 
  rater: text 
  assertion: text 
  rated: text 
  rating: float16 
  ? confidence: float16 
  ? normal-rating: float16 
  ? sample-size: uint 
  ? generated: uint 
  ? expires: uint 
  * text => any 
}

; This is a map (JSON object) 
;  text string (vs. binary) 
;  Array of 0-∞ reputons 

; Another map (JSON object) 

; OK, float16 is a CBORism 
; optional… 

; unsigned integer 

; 0-∞, express extensibility 

How RFC 7071 would have looked like in CDDL



GRASP
• Generic Autonomic Signaling Protocol (GRASP) 

• For once, try not to invent another TLV format: just use CBOR 

• Messages are arrays, with type, id, option:  
     message /= [MESSAGE_TYPE, session-id, *option] 
     MESSAGE_TYPE = 123 ; a defined constant 
     session-id =  0..16777215 
     ; option is one of the options defined below 

• Options are arrays, again:  
     option /= waiting-time-option 
     waiting-time-option = [O_WAITING, waiting-time] 
     O_WAITING =  456 ; a defined constant 
     waiting-time = 0..4294967295 ; in milliseconds
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Where from here?

• RFC 7049 

• http://cbor.io 

• cbor@ietf.org 

• http://tools.ietf.org/html/cddl
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