Network Reordering
Measurements from QUIC and TCP at Google

Presenter: Ian Swett
QUIC
Quick UDP Internet Connections

- A reliable, multiplexed transport over UDP
- Always encrypted and authenticated
- Reduces latency
- Runs in user-space
- Open sourced in Chromium
Measuring the distribution of packet reordering
- Measured at the receiver
- Includes ack only packets, which have packet numbers in QUIC
TCP Reordering - Server Side, Video Traffic

Measuring the largest packet reordering on a request
- Fewer than 7% of connections had reordering degree > 3 packets
Loss Recovery Comparison

QUIC implements modern TCP features
- Fast Retransmit
- Early Retransmit with timer
- Tail Loss probe
- All QUIC loss detection is RACK-style
- Pacing is always enabled

Two Loss Recovery Algorithms
- **Basis**: A packet is lost if some packet sent sufficiently later is acked
 - FACK with a fixed reordering threshold of 3
 - Time based with a fixed reordering threshold of $\frac{1}{4}$ RTT
Loss Recovery Metrics - Server Side

Time based loss detection reduces spurious retransmits almost 50%

6.04% to 3.54%
Loss Recovery Metrics - Server Side

Time based loss detection reduces early slow start exit
41% to 34%
Loss Recovery Comparison - Summary

Time loss detection
● Reduces spurious retransmits by ~50%
● Reduces overall retransmit rate 1-2%
● Fewer connections prematurely exit slow start

User metrics
● Most user metrics are unchanged
● Reduces overall retransmit rate over 2% on long connections
QUIC

Source: QUIC in Chromium
Page: www.chromium.org/quic
Public Mailing list: proto-quic@chromium.org
QUIC IETF draft: draft-tsvwg-quic-protocol-01
RACK IETF draft: draft-cheng-tcpm-rack-00

Thanks to Yuchung Cheng, Ryan Hamilton, and Jana Iyengar for helping me gather this data.