
Network Topology Models
draft-ietf-i2rs-yang-network-topo-01.txt*

draft-ietf-i2rs-yang-l3-topo-00.txt^

IETF 94, 2-Nov-2015, Yokohama, Japan

Alexander Clemm, Jan Medved (Cisco)*^

Robert Varga, Tony Tkacik (Pantheon)*^

Nitin Bahadur (Bracket Computing)*^

Hari Ananthakrishnan (Packet Design)*^

Xufeng Liu (Ericsson)^
Igor Bryskin, Aihua Guo (Adva Optical)^

Pavan Beeram (Juniper)^

Updates from WGLC

• Comments received from Juergen Schoenwaelder
– Mail from 10/1 – number of nits – accepted

• Open topic: dealing with configurable vs. read-only topology
– Topologies can be layered
– Topology/nodes/links/TPs can be layered on top of supporting topology/nodes/links/TPs
– Specifically, topologies could be configured on top of topologies that are server-provided

• Current solution
– Server-provided object indicates source of network topology

description
"Indicates whether the information concerning this
particular network is populated by the server
(server-provided true, the general case for network
information discovered from the server),
or whether it is configured by a client
(server-provided true, possible e.g. for
service overlays managed through a controller).";

– Same model is used whether network topology is discovered or whether it is configured by a
client application

– Server-provided topologies are in effect configured by server-internal app; attempts to
configure by non-server should in effect be rejected

module: network

+--rw network* [network-id]

+--rw network-id network-id

+--ro server-provided? boolean

+--rw network-types

+--rw supporting-network* [network-ref]

| +--rw network-ref leafref

+--rw node* [node-id]

| +--rw node-id node-id

| +--rw supporting-node* [network-ref node-ref]

| | +--rw network-ref leafref

| | +--rw node-ref leafref

| +--rw lnk:termination-point* [tp-id]

| +--rw lnk:tp-id tp-id

| +--rw lnk:supporting-termination-point*

[network-ref node-ref tp-ref]

| +--rw lnk:network-ref leafref

| +--rw lnk:node-ref leafref

| +--rw lnk:tp-ref leafref

+--rw lnk:link* [link-id]

+--rw lnk:link-id link-id

+--rw lnk:source

| +--rw lnk:source-node leafref

| +--rw lnk:source-tp? leafref

+--rw lnk:destination

| +--rw lnk:dest-node leafref

| +--rw lnk:dest-tp? leafref

+--rw lnk:supporting-link* [network-ref link-ref]

+--rw lnk:network-ref leafref

+--rw lnk:link-ref leafref

network.yang

network-topology.yang

Issues raised

• Separate config true and config false information
Move “server-provided” object into a separate tree for state

• What happens to overlay in wake of underlay changes
– Can maintain integrity by building topologies from bottom to top, tearing down from top to

bottom
– Changing underlay can lead to referential integrity issues
– Requires auto-updating the overlay as needed (e.g. by removing references to underlay

concurrently)
– Alternatively, might consider introducing state indicating whether layering integrity

compromised (and notifications when this occurs)

• How to deal with server-provided semantics – suggested alternatives
– Leave as is – topology data is configuration data, populated by client or server-

based app
– Split model into network state (operational) and network configuration
– Don’t support configuration of topology
– Add metadata annotation

Treat all topology as “regular” config

• Servers can have embedded app that populates topology

• Issues with not differentiating between apps

– Other clients could access server-provided topology as well
• Server provided app could “revert back”

• Malicious clients could “lock out” server provided app

• Possible extension: add metadata

– Tag server-provided data as such

– Configuration and locking attempts by other clients will be
rejected

– Metadata does affect behavior of config data in this case

Split model into network state and
network config

• Network state tracks network configuration where it is provided
• Issues with model split

– Configuration data in YANG cannot refer operational data in YANG
• Layering of configured overlays on top of server-provided networks?

– Possible solution: replace leafrefs to references with names
• This punts the problem to the user; model no longer ensures integrity
• Reminiscent of MIB descriptions
• Distinguish topology/node/link/tp-”config”-ref and topology/nod/link/tp-state-ref

– Various integrity rules of the model can no longer be supported
• E.g. underlay nodes/links need to be part of a supporting network
• List keys cannot support choices of data nodes (either state of or config)

– More complex model augmentation
• Two subtrees to augment (cannot augment groupings themselves)

– Concern: split results in higher complexity and reduced accuracy,
vs. best practices purity

• Note: model split by itself does not address problem of underlay changes
(applications still required to deal with updating overlay)

Leave current solution in place

• Accept semantics of server-provided topology
– Leverage YANG semantics provided by YANG

framework to validate configuration of overlays,
instead of punting this responsibility to applications

– Simpler model structure, augmentation
– Involves acceptance to not treat topology

configuration as configuration like any other

• Possible modifications
– Move server-provided leaf into separate state branch
– Add documentation re: referential integrity in event of

underlay changes

