CCNx Key Exchange

IETF 94 - Yokohama - ICNRG
Christopher A. Wood
November 5, 2015

IETF 94 - Yokohama - ICNRG 1

Motivation and GGoals

Motivation

 We need a way to establish session keys between consumers and producers
that makes use of CCN properties

 (D)TLS, QUIC, etc. are a good start
Requirements
e Session keys must be forward secure
o Compromising long-term secrets does not put session keys at risk

At most 2 RTTs to establish a session key, with the possibility for session
resumption in O RTT

* Allow extensions for client authentication in addition to server authentication

TLS and QUIC Overview

Support O-, 1-, and 2-RTT forward secure key derivation

* Long-term public key shares enable taster handshakes

Different keys are used to encrypt (and MAC) different parts of
the protocol

* A short-term ephemeral key is used for exchanging random
key shares to derive a master key

Server is authenticated to the client

Prevents address spoofing (via SYN cookies) and replay attacks
(via QUIC Source Address Tokens and TLS nonce)

CCNx Key Exchange
(CCNx-KE)

Assumptions

* Consumers know the prefix of the target producer,
e.qg., /prefix/

e Consumers possess the appropriate trust anchors
to authenticate the server

e . thatsit

Protocol Overview

 Round 1: Obtain the server config (if not available
or it has expired)

 Round 2: FULL HELLO handshake and establish
ephemeral keys

 Round 3: Final exchange to derive torward-secure
secrets for all subsequent communication

Sketch of the Full Protocol

1 Interest: BARE HELLO

B ContentObject: BARE HELLO reject response Round 1

3 Interest: FULL HELLO
_—

4 ContentObject: FULL HELLO response Round 2
———ee

5 Interest: FINALIZE and data

_—

6 ContentObject: FINALIZE response and data Round 3

Sketch of the Full Protocol

Interest[/prefix/nonce]
1 payload: (HELLO)
COl/prefix/nonce]
2 payload: Config, nonce2, salt

Interest|[/prefix/nonce?]
3 payload: ClientShare1, {AlgorithmOptions,

<y s.t. H(y) = noncel>, ClientShare2}_SS I

COl/prefix/nonce?]
4 payload:[SessionlD, ({RC}_FSK-P),
{ACK, ServerShare2}_SS | {REJ, Reason}_SS]

Interest|/prefix/SessionID/{...}_FSK-C]
payload: {ConsumerData}_FSK-C

—_—

6 COl/prefix/SessionID/...}_FSK-C]
payload: {ProducerData}_FSK-P
————————————————————
8

Round 1

Round 2

Round 3

SS Derivation

SS = HKDF(Salt, IKM)
Salt = CSALT1||PSALT1|| “ss generation”
IKM = 32-byte key-exchange output

FSK-C/P Derivation

Second key exchange uses the ServerShare?2 and ClientShare?2 inputs

FSK = HKDF(Salt, IKM)
Salt = CSALT2||PSALT2||“fsk generation”
IKM = Second 32-byte key-exchange output

FSP-C/P and IVs are pumped from FSK in the following order:

-SK-C

-SK-P

FSK-CIV (client [V)
-SK-PIV (producer V)

> wn =

10

SessionlD and RC Properties

SessionlD
e Used to uniquely identities a single session
e ... arandom string/number suffices

RC

* Used to recover SS and FSK for a given session

11

Option #1: HELLO prefix redirection

Interest[/prefix/nonce] ﬂ
1 payload: (HELLO)

COl/pretix/nonce]
2 payload: Config, nonce2, salt, prefix2

Interest[/prefix2/nonce?2]
3 payload: ClientShare1, {AlgorithmOptions,

<y s.t. H(y) = noncel>, ClientShare2}_SS I

COl/prefix2/nonce?]
payload:[Session|D, ({RC}_FSK-P),

{ACK, ServerShare2}_SS | {REJ, Reason}_SS]
4—

Interest|/prefix2/SessionIDA. ..} _FSK-C]
payload: {ConsumerData}_FSK-C

—_—

6 COl/prefix2/Session|D/{...}_FSK-C]
payload: {ProducerData}_FSK-P
————————————————————
12

Option #2: Final prefix redirection

Interest[/prefix/nonce] ﬂ
1 payload: (HELLO)
EE——.SS

COl/prefix/nonce]
2 payload: Config, nonce2, salt

4—
Interest|[/prefix/nonce?]

3 payload: ClientShare1, {AlgorithmOptions,

<y s.t. H(y) = noncel1>, ClientShare2} SS I

COl/prefix/nonce?]
q4 Payload:[SessionID, ({RC}_FSK-P), {ACK, ServerShare?2,
(prefix3, MoveToken)}_SS | {REJ, Reason}_SS]

Interest|/prefix3/SessionIDA...} _FSK-C]
payload: {MoveToken, ConsumerData}_FSK-C

—_—

6 COl/prefix3/Session|D/{...}_FSK-C]
payload: {ProducerData}_FSK-P
————————————————————
13

Option #3: Resumption Cookie Echo

Interest[/prefix/noncel] ﬂ
1 payload: (HELLO)
—>
COl/prefix/nonce]
2 payload: Config, nonce2, salt
4—

Interest|[/prefix/nonce?]
3 payload: ClientShare1, {AlgorithmOptions,

<y s.t. H(y) = noncel>, ClientShare2}_SS I

COl/prefix/nonce?]
payload:[SessionlD, ({RC}_FSK-P),

{ACK, ServerShare2}_SS | {REJ, Reason}_SS]
4—

Interest|/prefix/SessionID/{...}_FSK-C]
payload: {ConsumerData}_FSK-C

—_—

6 COl/prefix/SessionID/...}_FSK-C]
payload: {ProducerData}_FSK-P, {RC}_FSK-P
————————————————————————————
14

CCNx-KE Properties

Minimal deviation from TLS and QUIC.

Forward-secure session keys derived similar to TLS and QUIC.
Server-to-client authentication.

* Client-to-server authentication is future work.

Clients are securely bound to the protocol execution (via the
hash-based tokens).

Session state can be securely migrated from the producer to a
trusted party.

Backup

Session|D”*

Structure: Generated as encryption of the hash
digest of a sever secret, FSK, and optional prefix

(e.qg., Prefix3). Encryption happens with a long-term,
orivate key held by the server.

SessionlD = Enc(k, H(secret||FSK]| (Prefix3| 1)))

Usage: Append to service prefix (in the name) to
indicate what key Is used for encrypting payload data

*** This is only one way to create the Session|D

Resumption Cookie (RC)*

Structure: Encryption of H(server secret), SS, FSK, and the
(Prefix3,MoveToken) tuple (if provided), with a producer
secret key that Is also known to the service operating under
Prefix3 (if provided)

RC = Enc(k, SS||FSK|| ((Prefix3||MoveToken)| 1))

Usage: The SessionlD and RC are needed to resume a
session (i.e., recompute SessionlD and check for equality):

(SS||FSK]| ((Prefix3||MoveToken)| L)) = Dec(RC)
SessionlD =7Enc(k, H(secret||FSK]|| (Prefix3| 1)))

*** This is only one way to create the RC

Session Resumption

* Approach O: If client has nothing, start with HELLO
[2 RTT delay]

* Approach 1: It the client already has the config,
start at the second step [1 RTT delay]

 Approach 2: If the client already has the Session|D
and the ResumptionCookie, provide both to resume
sessions after long periods of inactivity (requires
producer state) [0 RTT delay]

19

Session Resumption (cont'd)

Interest|[/prefix/SessionID/{...}_FSK-C] ﬂ

1 payload: {RC}_FSK-C
{ConsumerData}_FSK-C

COl/prefix/SessionID/. ..} _FSK-C]
2 payload: {ProducerData}_FSK-P,

(NewRC)_FSK-P
e

Note: SessionlD is used to verify ownership of the SessionlD,
the MSK-C encryption key, and the real RC.

20

