Measurement-Driven Protocol Engineering

IAB Technical Plenary, IETF 94 Yokohama Brian Trammell, IAB Stack Evolution Program

Measurement-driven engineering in one slide

- Engineering decisions about protocols to deploy in the Internet should be based on relevant data about the environment they face.
 - Design for common occurrences.
 - Know the risks of uncommon ones.
 - Apply measurement liberally to know the difference. Maybe even at runtime.

Today's talks

- IP stack evolution and path impairment
 - Can we run the Internet over UDP? Need more data.
- Understanding interdomain topology and **BGP dynamics**.
 - Need more data, better tools for data we have.
- Discussion: what can measurement do for you, and what can you do for measurement?

IP Stack Evolution and Path Impairment

Evolving the stack: explicit relayering and cooperation

- Rethinking the layer boundary
 - UDP encapsulation (ports for NAT)
 - crypto (reinforce the boundary between endpoint and path visible headers)
 - explicit cooperation (give back transport and application semantics the path actually needs)

Evolving the stack: explicit relayering and cooperation

- Rethinking the layer boundary
 - UDP encapsulation (ports for NAT)
 - crypto (reinforce the boundary between endpoint and path visible headers)
 - explicit cooperation (give back transport and application semantics the path actually needs)

Evolving the stack: explicit relayering and cooperation

- Rethinking the layer boundary
 - UDP encapsulation (ports for NAT)
 - crypto (reinforce the boundary between endpoint and path visible headers)
 - explicit cooperation (give back transport and application semantics the path actually needs)

Evolving the stack: explicit relayering and cooperation

- Rethinking the layer boundary
 - UDP encapsulation (ports for NAT)
 - crypto (reinforce the boundary between endpoint and path visible headers)
 - explicit cooperation (give back transport and application semantics the path actually needs)

We assume that UDP works. Does it?

Measuring path impairment

- Path impairment: the likelihood that traffic with given characteristics will experience problems on a given path.
 - Increased latency, reordering
 - Loss/connectivity failure
 - "Bleaching" or selective disablement of features
- Utopian goals:
 - Given a proposed feature, how and how often does it break?
 - Given a path, what works over it?
- Specific question: can we run the Internet over UDP?

First step: sharing what we know. HOPSRG (<u>hops@ietf.org</u>)

What can go wrong?

Modification	Planetlab	Ark
IP Address	74.9%	79.0%
ECN IP	13.7%	13.2%
TCP ISN	10.7%	1.8%
TCP MSS	10.8%	5.9%
TCP Ex.Opt.	8.8%	0.5%
MPCAPABLE	8.4%	0.3%
ECN TCP	0.6%	0.6%
TCP SackOK	0.3%	0.0%
TCP TS	0.3%	0.4%
TCP WScale	0.2%	0.2%

- Best studies look at O(10k) paths¹.
- The Internet has billions and billions.
- Results highly dependent on vantage point.
- Need more diversity to answer the question.

Percentage of paths modifying selected packet feature on two research-oriented testbeds.

[1]: R. Craven, R. Beverly, M. Allman. **A Middlebox-Cooperative TCP for a non End-to-End Internet**. SIGCOMM, August 2014.

Application to Protocol Engineering

- We want our protocols to work when stuff breaks.
- Engineering tradeoff: robust code v.
 robustness against the path.

Application to Protocol Engineering

- Special cases that never happen lead to dead code.
 - NAT? Design for it.
 - Custom hack deployed in one network? Write a polite email.
- We need information about prevalence to make informed decisions.

Measuring the Internet is hard

- Measurements often don't measure what you want.
 - e.g.: ICMP latency and connectivity correlate less than we'd like with application latency and connectivity.
- The Internet is not homogeneous.
 - e.g. how much encryption you see on a given link depends on application mix and the vagaries of CDN policy².
 - What is easy to measure not necessarily most relevant.
- Not enough data and too much data at the same time.

[2]: P. Richter et al. Distilling the Internet's Application Mix from Packet-Sampled Traffic. PAM, March 2015.

Measuring without measuring

• Lots of things that don't look like measurement are.

e.g. HTTP first-byte time, telemetry.mozilla.org

- TCP
- Version negotiation and fallback
- Platform-level diagnostics
- **Vision**: Let's design protocols with this fact in mind.
 - Make instrumentation accessible.
 - Explicitly measure and react at runtime.

Improving the best available data

- We have lots of **tools**...
 - platforms and testbeds (e.g. Atlas, mLab, Ark, BisMARK, SamKnows, PlanetLab...)
 - protocols (e.g. O/TWAMP, PSAMP, IPFIX, LMAP)
- ...but lack a framework to bring comparability and repeatability to their observations.
- Goal: combine measurements from different vantage points and data sources for wider and deeper insight.
 - Develop common information models and query sources³.
 - Common coordination and control protocols⁴.

[3] e.g. BGPstream (see next talk)[4] e.g. mPlane, <u>ict-mplane.eu</u>, draft-trammell-mplane-protocol

Understanding real-world BGP Dynamics

Discussion

Ask what measurement can do for you...

- Questions to ask during protocol design:
 - What assumptions about the environment is protocol X based on? Do these hold?
 - What **sources** already exist that allow me to verify these assumptions?
 - What sources would help that don't exist?
 - What information does the protocol **generate** as a side effect that can lead to better insight? Can implementations use this at runtime?

...and what you can do for measurement

- There are many other insights to be gained from the Internet by measuring it in different ways.
- Integration of diverse measurements leads to better insight.
- Data generated as a side effect of a protocol's operation might be useful in other contexts.