Internet Storage Sync

Problem Statement

draft-cui-iss-problem

Zeqi Lai

Tsinghua University
Outline

• Background
• Problem Statement
 • Service Usability
 • Protocol Capabilities
• Our Exploration on Protocol Capabilities
• Summary
The way we store our data...
Internet Storage Sync Services

• New data entrance of the Internet
 • Basic function: storing, sharing and synchronizing data
 • Large user base: Dropbox has more than 400 million users
 • Significant traffic: Dropbox accounts for approximately 4% of the total Internet traffic [IMC 2012]
Internet Storage Sync Services

• New data entrance of the Internet
 • Major players: Dropbox, Google Drive, One Drive, Box.com, Apple ...

• Combining other services via APIs: photo sharing, email attachment, social apps
Typical Architecture & Flow

- Typical architecture of ISS services
 - Control flow: exchanging metadata
 - Storage flow: exchanging contents
 - Sync process with your multiple clients
Capabilities in Sync Protocol

• Key storage capabilities [IMC’ 13]
 • Chunking: splitting a large file into multiple units
 • Bundling: multiple small chunks as a single one
 • Deduplication: avoiding the retransmission of content already available in the server
 • Delta-encoding: updating the modified portion

<table>
<thead>
<tr>
<th>Capabilities</th>
<th>Windows</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dropbox</td>
<td>Google Drive</td>
<td>OneDrive</td>
<td>Seafile</td>
</tr>
<tr>
<td>Chunking</td>
<td>4 MB</td>
<td>8 MB</td>
<td>var.</td>
<td>var.</td>
</tr>
<tr>
<td>Bundling</td>
<td>√</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Deduplication</td>
<td>√</td>
<td>×</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>Delta encoding</td>
<td>√</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Data compression</td>
<td>√</td>
<td>√</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
Outline

• Background
• **Problem Statement (draft-cui-iss-problem)**
 • Service Usability
 • Protocol Capabilities
• Our Exploration on Protocol Capabilities
• Summary
Outline

• Background
• Problem Statement
 • Service Usability
 • Protocol Capabilities
• Our Exploration on Protocol Capabilities
• Summary
Using Multiple ISS Services

• Users may use multiple services
 • Performance or functionality diversity
 • Dropbox works better for synchronizing docs
 • Google Drive connects to Gmail and Google Doc
 • BaiDu cloud provides 2TB free space
However that is not easy …

• For users
 • Users may install multiple similar clients
 • It is unable to synchronize data across services (e.g. sync between a Dropbox user and a Google Drive user)

• For application developers
 • A developer has to deal with many different APIs in order to connect his app with multiple sync services
Using a Private ISS Service

- Enterprise may want their own storage
 - Public ISS services may not be trusted
 - Like what email is doing

- It is difficult to build and use a private ISS service
 - There is no standard sync protocol
 - Need to start from scratch
Outline

• Background
• Problem Statement
 • Service Usability
 • Protocol Capabilities
• Our Exploration on Protocol Capabilities
• Summary
Rethinking about Capabilities

• Ideal
 • With these capabilities, sync services can efficiently synchronize our data

• Reality
 • The *sync time is still much longer than expected* with various network conditions!

• Measurement study
 • We measured several sync services to identify and analyze the sync inefficiency problem
Impact of Missing Capabilities

• Bandwidth inefficiency
 • Sync is not efficient for large # of small files in high RTT conditions because the client waits for an app-level ACK before sending next chunk
 • Bundling is quite important!
Impact of Misusing Capabilities

• Deduplication is NOT always efficient
 • More effective dedup does not work well in good network conditions because of its high computation overhead
 • Network-aware dedup may be important

DER: the ratio of the deduplicated file size to the original file size
Impact of Misusing Capabilities

- Delta-encoding fails with fixed-size chunking
 - 3 basic file operations (flip bits, insert, delete)
 - Changing 2MB of a 10MB file leads to more than 6MB sync traffic

TUO: Traffic data / modified data

15/11/3
Impact of Misusing Capabilities

• Why the delta-encoding fails?
 • A large file is split into multiple chunks
 • Delta-encoding is performed between chunks
 • But modifications will move cut points!
Measurement Conclusion

• Missing or Misusing these key capabilities leads to the sync inefficiency problem

• Challenges of improving sync efficiency
 • Are these capabilities enough?
 • Should we combine these storage techniques with network parameters (e.g. delay, loss and etc.)?
 • And how?
Outline

• Background
• Problem Statement
 • Service Usability
 • Protocol Capabilities
• Our Exploration on Protocol Capabilities
• Summary
Exploration on Capabilities

• QuickSync [MobiCom15] with 3 techniques
 • Propose network-aware content-defined chunker to identify redundant data
 • Design improved incremental sync approach that correctly performs delta-encoding between similar chunks to reduce sync traffic
 • Delay-batched ACK to improve sync throughput
QuickSync Implementation

• Implementation over Dropbox
 • Unable to directly modify Dropbox, so we design a proxy-based architecture built on Amazon EC2

• Implementation over Seafile
 • The proxy-based architecture adds overhead
 • Full implementation with Seafile (open source)
Impact of Network-aware Chunker

• Network-aware Chunker
 • Larger chunks in good network conditions, make aggressive chunking in slow networks

• Performance results
 • 200GB backup; up to 31% speed improvement
 • Network-aware chunker works well
Integrated System Performance

• Setup
 • Practical sync workloads on Windows / Android
• Performance results (Win / Android)
 • Traffic size reduction: up to 80.3% / 63.4%
 • Sync time reduction: up to 51.8% / 52.9%

<table>
<thead>
<tr>
<th>Workload (Platform)</th>
<th># of Events (C/M/D)</th>
<th>Traffic Size (Origin/Ours/Reduction%)</th>
<th>Sync Time (Origin/Ours/Reduction%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QuickSync Paper (W)</td>
<td>74/0/0</td>
<td>4.67MB/4.32MB/7.4%</td>
<td>27.6s/17.9s/35.1%</td>
</tr>
<tr>
<td>Seafile Source (W)</td>
<td>1259/0/0</td>
<td>15.6MB/14.2MB/8.9%</td>
<td>264.1s/127.3s/51.8%</td>
</tr>
<tr>
<td>Document Editing (W)</td>
<td>12/74/7</td>
<td>64.3MB/12.7MB/80.3%</td>
<td>592.0s/317.3s/46.4%</td>
</tr>
<tr>
<td>Data Backup (W)</td>
<td>37655/0/0</td>
<td>2GB/1.4GB/30.6%</td>
<td>68.7m/43.1m/37.4%</td>
</tr>
<tr>
<td>Document Editing (A)</td>
<td>1/4/0</td>
<td>4.1MB/1.5MB/63.4%</td>
<td>24.4s/14.3s/41.4%</td>
</tr>
<tr>
<td>Photo Sharing (A)</td>
<td>11/0/0</td>
<td>21.1MB/20.7MB/1.9%</td>
<td>71.9s/54.6s/24.1%</td>
</tr>
<tr>
<td>System Backup (A)</td>
<td>66/0/0</td>
<td>206.2MB/117.9MB/42.8%</td>
<td>612.3s/288.7s/52.9%</td>
</tr>
</tbody>
</table>
Outline

• Background
• Problem Statement
 • Service Usability
 • Protocol Capabilities
• Our Exploration on Protocol Capabilities
• Future work
Related Work

• WebDAV [RFC 4918], Git
 • These efforts focus on authoring and versioning
 • Can not well support large files
• Rsync
 • Delta-encoding algorithm only works well in file granularity
• Different from ISS
 • ISS focuses on the sync operation
 • Other important capabilities are closely related and required (e.g. chunking, deduplication)
Future Work

• Goal: usability & capabilities
 • Easier to use multiple storage sync services
 • Easier to build a private sync service
 • Achieve interoperability
 • Reasonably configure capabilities

• Possible solution: standard sync protocol
 • Standardize the sync process and capabilities
 • Want to apply IETF Transport and Security expertise
References

• Problem Statement:
 http://datatracker.ietf.org/doc/draft-cui-iss-problem/

• Wiki:
 https://github.com/iss-ietf/iss/wiki/Internet-Storage-Sync

• QuickSync [MobiCom2015]:
 http://www.4over6.edu.cn/cuiyong/cindex.html

• A First Look at Mobile Cloud Storage Services [IEEE Network Magazine]:
 http://www.4over6.edu.cn/cuiyong/cindex.html