draft-peterson-modern-teri

Jon Peterson
MODERN WG
IETF 94 (Yokohama)



What is TeRI?

A framework for telephone-related information
— Addresses the requirements in modern-problems

Discussed this at Prague at IETF 94

Successor to the TeRQ proposal
— Generalized to acquisition, retrieval, management

Like TeRQ, this is an information model

— Trying to find the right semantics for records and
operations

— We’ll worry later about the proper encoding and
transports

We decided in Prague to do this in one spec



Telephone-Related Information

TeRI
Records

Acquisition | Admin
Info

Queries

Service

Management ~©
Info

Just a logical picture



Moving Parts

Acquisition protocol

— How do | request and receive numbers?
Management protocol

— How do | provision services for number?

Query protocol
— How do | get information about a number?

These protocols access overlapping data
— If you can provision it, you should be able to query for it

Surely this is a common information model



Mapping the Model to an Instance

 TeRI Records would live in servers
— Could be public, centralized and monolithic
— Could be distributed, or private
— The logical architecture will be the same
— Each TN might have multiple Records

* All sorts of entities might manage or query
— Could be carriers, enterprises, or end users
— Query access will vary depending on who is asking
— Provisioning will reflect who provisioned



The TeRl Interfaces

TeRlI
gy e
Acquisition s = .
Client ” Server
Queries
Management Authorities

: P
' Queries W inter-
Client dViediary,

Authorities
Client

Client




Operations and Records

TeRI defines all three protocols in terms of this
model

Each protocol has its own Operations, but will
operate on a common class of TeRIl Records

Operations will have their own Source, Subject,
and Attributes

— Source indicates the originator of the Operation

— Subject would typically be a TN itself (or a range)
TeRI Records contain information about TNs

— Some Records might cover a range of TNs



Think SCRUD

* Search, Create, Read, Update, Delete

* Creation begins the lifecycle
— A Registry always creates the first Record

— Bootstrap adminsitration record designating the
Registry itself

* Should Records be partially updated, or wholly
replaced?

— Currently, the Authority who creates a record is the
only one who can modify or delete it
* i.e., a Registry creates a Record for a number, but each CSP

would create a separate Record for services associated with
it



The Acquisition Operation

* Query:
— Source (Query Source, Query Intermediary)

— Subject (Telephone Number/Range)
e Used to have SPID, currently removed per MODERN scope

— Attributes (constrains query, say, to finding a
particular number in a range)

* Response:

— Response Code

— TeRI Record (newly generated assignment indicating
who can control Records for this TN/Range)



The Management Operation

* Query:
— Source (Query Source, Query Intermediary)

— Subject (Telephone Number/Range)

* Used to have SPID, currently removed per MODERN
scope

— TeRI Records (including Record ID)
* Response:

— Response Code



The Retrieval Operation

* Query:
— Source (Query Source, Query Intermediary)

— Subject (Telephone Number/Range)
* Used to have SPID, currently removed per MODERN scope

— Attributes (constrains query: e.g., “voip” if only
looking for VolP, or Route Source, or Record ID)
* Response:

— Response Code
— TeRI Record



TeRIl Record Contents

* TeRIl Records would contain

— Subject (the TN or TN range of the record)

— Authority (Source of the data, usually the provisioner)

— Contact (administrative contact, WHOIS/WEIRDS)

— Service (a service associated with the TN)

— ldentifier (unique ID for the Record)

— Signature (typically a crypto assurance of the Authority)
* Divided into Service and Administrative Information

— Services records always have a Service

— Administrative records always have a Contact

* Obviously different actors would set/get different
Record elements



TeRl Record Element Types

Telephone Number (RFC3966 — but should we revisit?)
* Ranges — need some work here

Domain Name

URI

IP Address
 IPv4/IPv6

Contact
* PerjCard

SPID

* Currently specified as four-digits, other SPID types possible
— GSPID, ITAD, etc.

Trunk Group

* Currently points to the Gurbani/Jennings RFC
Display Name

* Support for CNAM as well as a SIP “From” header field

Extension
e Reserved for further use



Transport and Encoding?

* Agree on semantics first, then define bindings and
profiles

— A binding is defined as an encoding and a transport
* We want at least one binding per protocol, maybe allow more

— Could build on JSON/HTTP, could build on ASN.1/UDP

— Bindings need to detail how the elements of the data
model are mapped to the encoding

* Other low-level details like chunking, representation of
cryptographic security, etc.

— Requirement: to transcode between bindings without
losing data (at an intermediary)

 Aim for maximum applicability
— While not overcomplicating the model



This is a -00

* We need to figure out if we have the right
Record elements and types

— And an appropriate extensibility model

* Do we have the right semantics for
operations?

* We need better understanding of element
types



