Distributed Registry Protocol - DRIP

Harsha Bellur
Chris Wendt

Overview

* DRIP is a HTTP based protocol tor sharing registry
type of information between interconnected nodes

across a network

* |t uses a gossip protocol for complete distribution
across interconnected nodes

* |t incorporates a voting mechanism to avoid
contlicting data updates or race conditions

Overview

It is designed to use full reliability in it's transactions, even at the
price of inefficiency. Speed or optimization of transactions is only
secondary consideration.

Conflicting updates, will need to be fully retried.
Synchronization transactions are comprehensive.

Conflicts, assuming each participant is managing mostly it's own
data, other than change of ownership and other relatively rare
occurrences, should happen very infrequently

Regardless, assuming ~100-1000 node distributed mesh, updates
across nodes should be updated in ~seconds time frame assuming
all nodes are well connected

Distributed Mesh

pB		DB	IpB		DB
Data		Data			
Store		Store			
_	_ Cluster _	_ _	_ Cluster _	_	
pB		DB	[pB		pB
	J— —				
\ /					
\ /					
__ DRIP _ /_					
Node	-==-mceeaaa-	Node			
a	HTTPS	¢			
I	I				
\H H/					
D\T T/D					
R\T P/R					
I\P P/I					
P\S S/p					
___/ DRIP					
Node	-===mmmmeee-	Node			
B	HTTPS	D			
I I I I					
/ /					
— I _/_ S					
jlpB		pB		DB	
			I		
Data		Data			
Store [Store				
_	_ Cluster _	_ _	_ Cluster _	_	
DB I_IDB DB	DB				

Distributed Mesh

* A distributed mesh is a network topology of
INnterconnected nodes that share data.

* There is no assumption of a fully connected mesh,
but in general most nodes SHOULD have at least 2
connections to other nodes for redundancy and
gossip propagation purposes

e (Gossip protocol and the use of a counter allows for
all nodes in the mesh to receive updates from all
other nodes.

Transactions

e WO basic transactions

 Update - A node has new or modified key-value
data and would like to update peer nodes

* Sync - A node is either newly established or was
IN an inactive state for a period of time and
requests a peer to provide a full update of data
to make sure it is fully synchronized with network.

Node State

e Fach node should maintain a state of
e active
e |nactive

* 3yNC

Node State - AP|

POST /node/:nodeid/active
POST /node/:nodeid/inactive

GET /state

Node-specific Info

* Each node should have a globally unigue 1D

* Node information and other transaction specific
info Is carried in custom HTTP header fields

Custom HTTP Header Fields

DRiP-Node-I1D
DRiP-Node-Counter
DRiP-Node-Counter-reset
DRIP-Transaction-Type

DRIiP-Sync-Complete

Key-Value Data Propagation Rules

e For update transactions, nodes should propagate key-value
data to it's peer nodes except the node that it received data

e For all transactions,

e DRIP-Node-ID and associated latest DRiP-Node-Counter
values should be recorded by receiver nodes

* |f DRIP-Node-Counter is greater for a particular DRiP-Node-
D the key-value data should be recorded and propagated to
pDeer nodes.

 DRiP-Node-Counter-reset provide a wrap-around mechanism
for DRiP-Node-Counter as a forever incrementing integer

Voting and Commit Phases for Update

e \When Initiator node has new data, it initiates an
Update

 Update consists of a two-phase commit procedure
to avoid race conditions or potential error conditions

* [wo phases are called:

e voting phase

e commit phase

Voting and Commit Phases for Update

(Update, |
Start Timer)

| Received Update From Peer Node

|
|
| If key matches an |
in-progress update |
I
|
I

commit)

|
|
|
|
|
|
|
|
|
| I |
| ———————— >| | wvote "no".
| | waiting For | Otherwise, vote "yes".
| | Response From |
| | Peer Nodes R —————
| | |
| -——=| | ===
| Timer | I | I
| Expired | | Received Votes
| | | From All Peer
| | | Nodes
| | I
| | I | I
| | | | I
| ——=>| | ==
	validating
(If all Vvotes	Votes
are "YES",	
propagate	

Voting Phase

An initiator node first sends a voting request to all of its
peer nodes.

Only the initiator node sets a timer for the voting phase to
time out If it hasn’t received responses from all its peer
nodes.

As In gossip, each receiver node will continue propagating
voting requests to its peer nodes until it has received a
voting query again.

It all voting requests result in “yes”, the commit phase can
be initiated by initiator node.

Voting Phase - AP

POST /voting

POST /votingphase/node/:nodeid/response/:response

Commit Phase

* An initiator node, upon successful voting phase,
commits the key-value data to its local data store
and sends a commit request to its peers

 Each recelver node commits data to its local data
store and, again as in gossip, propagates the
commit request to each of its peer nodes, until it
recelves a duplicate commit request and stops.

Commit Phase - AP

POST /commit

Node Sync

When a new node is added to a distributed registry, or
when a node has been oftline or inactive for any period
of time, a node sync operation must be completed.

The node should go to active state to receive updates
concurrently with sync operations.

The node will make a sync request to one of its peer
nodes

The peer node will then sync a complete set of key-value
data in the form of commit requests (no voting phase)

Node Sync

* Best practice in terms of rate limiting, priority
scheduling, and others should be employed to
avolid overwhelming connections or risk interfering
with update transactions.

* Best practice for redundancy and fail-over should
be followed to avoid as much occurrence of
iInactive time that requires sync operations.

Sync - API

PUT /sync/node/:nodeid

Heartbeat

 [BD Iin next update

e Main issue Is best methods to determine how to
proceed If a peer node doesn’t send heartbeat and
didn’t declare itself “inactive”

Authentication/Entitlement

* Jook the approach that scope of this spec only has
protocol for exchanging data

 Assumes any authentication or entitlement of write/
read capabillity or permissions sits a layer above
this protocol and/or in the key-value data model

