
Distributed Registry Protocol - DRiP
Harsha Bellur
Chris Wendt

Overview

• DRiP is a HTTP based protocol for sharing registry
type of information between interconnected nodes
across a network

• It uses a gossip protocol for complete distribution
across interconnected nodes

• It incorporates a voting mechanism to avoid
conflicting data updates or race conditions

Overview
• It is designed to use full reliability in it’s transactions, even at the

price of inefficiency. Speed or optimization of transactions is only
secondary consideration.

• Conflicting updates, will need to be fully retried.

• Synchronization transactions are comprehensive.

• Conflicts, assuming each participant is managing mostly it’s own
data, other than change of ownership and other relatively rare
occurrences, should happen very infrequently

• Regardless, assuming ~100-1000 node distributed mesh, updates
across nodes should be updated in ~seconds time frame assuming
all nodes are well connected

Distributed Mesh

Distributed Mesh
• A distributed mesh is a network topology of

interconnected nodes that share data.

• There is no assumption of a fully connected mesh,
but in general most nodes SHOULD have at least 2
connections to other nodes for redundancy and
gossip propagation purposes

• Gossip protocol and the use of a counter allows for
all nodes in the mesh to receive updates from all
other nodes.

Transactions

• Two basic transactions

• Update - A node has new or modified key-value
data and would like to update peer nodes

• Sync - A node is either newly established or was
in an inactive state for a period of time and
requests a peer to provide a full update of data
to make sure it is fully synchronized with network.

Node State

• Each node should maintain a state of

• active

• inactive

• sync

Node State - API

POST /node/:nodeid/active

POST /node/:nodeid/inactive

GET /state

Node-specific info

• Each node should have a globally unique ID

• Node information and other transaction specific
info is carried in custom HTTP header fields

Custom HTTP Header Fields

• DRiP-Node-ID

• DRiP-Node-Counter

• DRiP-Node-Counter-reset

• DRiP-Transaction-Type

• DRiP-Sync-Complete

Key-Value Data Propagation Rules
• For update transactions, nodes should propagate key-value

data to it’s peer nodes except the node that it received data

• For all transactions,

• DRiP-Node-ID and associated latest DRiP-Node-Counter
values should be recorded by receiver nodes

• If DRiP-Node-Counter is greater for a particular DRiP-Node-
ID the key-value data should be recorded and propagated to
peer nodes.

• DRiP-Node-Counter-reset provide a wrap-around mechanism
for DRiP-Node-Counter as a forever incrementing integer

Voting and Commit Phases for Update

• When initiator node has new data, it initiates an
Update

• Update consists of a two-phase commit procedure
to avoid race conditions or potential error conditions

• Two phases are called:

• voting phase

• commit phase

Voting and Commit Phases for Update

Voting Phase

• An initiator node first sends a voting request to all of its
peer nodes.

• Only the initiator node sets a timer for the voting phase to
time out if it hasn’t received responses from all its peer
nodes.

• As in gossip, each receiver node will continue propagating
voting requests to its peer nodes until it has received a
voting query again.

• If all voting requests result in “yes”, the commit phase can
be initiated by initiator node.

Voting Phase - API

POST /voting
POST /votingphase/node/:nodeid/response/:response

Commit Phase

• An initiator node, upon successful voting phase,
commits the key-value data to its local data store
and sends a commit request to its peers

• Each receiver node commits data to its local data
store and, again as in gossip, propagates the
commit request to each of its peer nodes, until it
receives a duplicate commit request and stops.

Commit Phase - API

POST /commit

Node Sync

• When a new node is added to a distributed registry, or
when a node has been offline or inactive for any period
of time, a node sync operation must be completed.

• The node should go to active state to receive updates
concurrently with sync operations.

• The node will make a sync request to one of its peer
nodes

• The peer node will then sync a complete set of key-value
data in the form of commit requests (no voting phase)

Node Sync

• Best practice in terms of rate limiting, priority
scheduling, and others should be employed to
avoid overwhelming connections or risk interfering
with update transactions.

• Best practice for redundancy and fail-over should
be followed to avoid as much occurrence of
inactive time that requires sync operations.

Sync - API

PUT /sync/node/:nodeid

Heartbeat

• TBD in next update

• Main issue is best methods to determine how to
proceed if a peer node doesn’t send heartbeat and
didn’t declare itself “inactive”

Authentication/Entitlement

• Took the approach that scope of this spec only has
protocol for exchanging data

• Assumes any authentication or entitlement of write/
read capability or permissions sits a layer above
this protocol and/or in the key-value data model

