
I2RS Protocol:
Requirements + Ideas

Sue Hares

Co-chair summary of requirements

Co-author: Protocol summary



I2RS Requirements for Protocol WG LC

WGLC in October

• draft-ietf-i2rs-ephemeral-state-00

• draft-ietf-i2rs-pub-sub-requirements/

• draft-ietf-i2rs-traceability/

• draft-ietf-i2rs-protocol-security-requirements-01

• Ephemeral State is missing minimum
requirements for RESTONF/NETCONF

• My presentation provides background to help
NETCONF give I2RS feedback

I2RS interim meeting requirements-v2 2



I2RS Requirements for Protocol WG LC

WGLC after IETF

• draft-ietf -i2rs-security-environment-reqs-01

• Ephemeral State with NETCONF/RESTCONF
minimum requirements

Going to IESG with

• Architecture

• Problem statement

• I2RS RIB Information Model

I2RS interim meeting requirements-v2 3



Ephemeral State – 9 requirements

1. Ephemeral state is not unique to I2RS

2. The ephemeral data store is a data store holds configuration that
is intended to not survive a reboot.

3. Ephemeral state can be in any data model – so importance of
ephemeral is for conformance checking

4. Ephemeral data store is never locked

5. Ephemeral data store can occur in two ways:

– Yang module that contains both non-ephemeral and ephemeral

– Yang module that only contains non-ephemeral

– The yang modules may be protocol modules (BGP) or protocol
independent modules (RIB, FB-RIB, Topology)

6. Ephemeral nodes may not have configuration nodes beneath

7. Ephemeral state will be denoted by “ephemeral” in Yang
protocol at node level, submodule, or module level

I2RS interim meeting requirements-v2 4



Ephemeral State (4)
8. Caching – is out of scope for the first I2RS protocol release.

– Long-term concern: latency of I2RS protocol

9. Ephemeral has two error handling extensions
1. Ephemeral data store allows for reduced error handling that

MAY remove the requirements for leafref checking, MUST
clauses, and instance identifier (to allow more speed)

2. Ephemeral data store allows for priority resolution of write
operation

• Priority error resolution means each I2RS client of the ephemeral I2RS
agent (netconf server) MUST BE associated with a priority.

• Priority write resolution occurs when a I2RS client with a higher priority
writes a node which has been written by an I2RS client (with the lower
priority).

• When the I2RS agent (netconf server) allows a higher priority client to
overwrite a lower priority client, the I2RS Agent MAY provide a
notification indication to entities monitoring the node.

I2RS interim meeting requirements-v2 5

Should MAY be MUST?
• Agent MUST be able to send notification.

Notification can be configured off.
Or
• Agent MUST SEND Notification



2 Panes of Glass Model
aka (priority resolution)

X1

X2 X3

Z1 Z2

Z3

Ephemeral all

Config

X4

Single
Ephemeral
Change

Constraints

Groups of Ephemeral
Changes

Z4

X5

Z5

Entirely
new
Nodes

2 Panes of Glass – all or nothing

Z6



Types of error checking

• Syntax - correct syntax for node

• Referential – leafref, MUST, instance
identifier

• Grouping – group of nodes that should align

– Stop on error / Continue on error

assume grouped nodes

I2RS interim meeting requirements-v2 7

X1

X2 X3

X4
Y5

• “All or nothing” will be mandated for first
pass of I2RS protocol

ephemeral only Ephemeral +
config



Other Requirements

• Mutual Authentication
based on client identity
– Client identity passed

outside of I2RS (AAA or
other)

• Secure transport for
Config + other data
unless careful designed
and reviewed in data
model (see connection 2)

• Signaling model
capabilities done with
Yang library module

I2RS client
I2RS

Agent

Configure
What &
Where

I2RS client

Get data
back

secure

Normally secure:
Potential insecure :
data model must be
very, very carefully
designed and reviewed



9

Protocol

candidate running startup

config true;

config false;

operational

ddata

applied config

intended config

Conceptual intended and actual
values are determined by the
server as an implementation
detail



10

Thermostat Model

desired-temp

config true;

config false;

Scheduler
Client

intended config

Actual temp
(operational state)



11

Simple Thermostat + ephemeral

module thermostat {
…
leaf desired-temp {

type int32;

ephemeral true;
units “degrees Celsius”;
description “The desired temperature”;

}

Operational State:
leaf actual-temp {

type int32;
config false;
units “degrees Celsius”;
description “The measured temperature”;

}
}



12

Thermostat Model + Hold Temp

desired-temp

config true;

config false;

Scheduler
Client

applied config

intended configdesired-temp

Hold
Temp

ephemeral datastore

running datastore

Schedule is not deleted
by hold-temp button

Desired temperature
Actual temp

(operational state)



13

RESTCONF Example

RESTCONF Running Datastore Edit

PUT /restconf/data/thermostat:desired-temp

{ “desired-temp”: 18 }

RESTCONF Ephemeral Datastore Edit of config=true

PUT /restconf/data/thermostat:desired-temp?datastore=ephemeral

{ “desired-temp”: 18 }


