
OpenConfig OpState

Rob Shakir, Jive Communications (rjs@jive.com)
Anees Shaikh, Google (aashaikh@google.com)
Marcus Hines, Google (hines@google.com)

mailto:rjs@jive.com
mailto:aashaikh@google.com
mailto:hines@google.com

Some history...
● November 2014 - need a solution for storing both operational state and configuration parameters

in YANG.

● Two types of event flows that need simple correlation between state and configuration data:

Change configuration

Ensure that operational state
of network reflects change

Check state of network

Validate configuration and
state context

Apply remedial actions

(Streamed) Event received

Overview
 +---------+

 | | transition intended

 |intended | to applied

 | config +---------+

 | | |

 +---------+ |

 ^ | config: true

 +----------|------------------------------------+

 | | config: false

 | |

 | |

 | +-----------------------------+

 | | | operational state |

 | | +----v----+ +-----------+ |

 | | | | | | |

 + | | applied | | derived | | operational:true

 same +------>| config | | state |<-------+

 leaves | | | | | |

 | | | | | |

 | +---------+ +-----------+ |

 +-----------------------------+

Solution proposed...
● container

○ config

■ <configuration-parameters> (Intended config)
○ state

■ <reflection-of-configuration-parameters> (Applied config)
■ <counters-statistics-protocol-parameters> (Derived state)

● Operational experiences with this approach
○ Refactored a number of models to reflect this approach (BGP, MPLS) -- a bit more effort
○ Removes the need for mapping dictionaries for config -> state

■ ‘router bgp X, neighbor Y remote-as Z’ -> OID x.y.z….a.b.c….0
■ ‘router bgp X, neighbor Y remote-as Z’ -> ‘show ip bgp neigh Y | i Remote AS’

○ Expressible in YANG today - extensions required are for query efficiency rather than core
operation.

○ Code to consume these models and perform inter-relation written in multiple operators.

Support for opstate-requirements (I).

1. Interact with intended and applied configuration
a. Possible to get only applied by filtering on operational: false elements of state.
b. “Mirrored” config leaves in state represent applied configuration as read-only.
c. Leaves in config correspond 1:1 with leaves in state.
d. A server only updates the state leaf when the value in the config leaf has been applied.

2. Applied config and derived state can be retrieved by retrieving the state paths.

3. b) Simple to determine differences without additional operation to validate - one can simply get
both config and state containers and ‘diff’ the values. Does not need server changes.

4.
a. Derived state retrieved by filtering on operational: true in state.
b. Applied config retrieved by filtering on operational: false (default) in state.
c. Applied config and derived state can be retrieved by retrieving the state path.

Support for opstate-requirements (II).

5. Derived state can be retrieved by filtering by retrieving operational: true nodes.

6.
a. Intended config can be simply mapped to applied state by relating the config and state

leaves
b. Intended config (config) leaves can be related to the state container in the same path.
c. Structure means that simply parsing the model allows mapping (no mapping table or other

annotations required)

7. N/A.

Plan going forward...

● Continue to write code implementing OpenConfig models - which implement the opstate solution
described.

● Use this learning to iterate/determine the next steps.

