
YANG 1.1

IETF 94
Martin Björklund
mbj@tail-f.com

draft-ietf-netmod-rfc6020bis-08

2

YANG 1.1 status

WG collected 60 issues at:

 https://svn.tools.ietf.org/svn/wg/netmod/yang-1.1/issues.html

All issues either marked as dead or review. No open
issues.

WGLC was for 07, three in-depth reviews, most
comments addressed in -08.

Some open issues reported on new functionality (need
to fix them), some on old functionality (not sure if we
should discuss them) and some suggestions for new
functionality (what do we do with these?)

3

Summary of issues

● New function: if-feature and default
● New function: accessible tree in when evaluation
● Old function: augment mandatory nodes
● Old function: unique module names
● New feature: non-unique leaf-list in config false
● New feature: key-less lists and non-unique leaf-lists in

config true
● New feature: change semantics of the choice and

when statements

4

New function: if-feature and default
 leaf foo {

 type enumeration {

 enum blue { if-feature blue; }

 enum white;

 }

 default blue;

 }

A. Make this illegal.

B. Allow if-feature in default.

C. Legal, but it means a server that support the leaf MUST
support the feature.

D. (implicit variant of B) Legal – it means that the default value is
used only if the feature is advertised.

5

New function: accessible tree in when

 augment /… {

 when “foo = 42”;

 leaf foo { … }

 }

The problem is that the when expression makes “foo” conditional,
based on the value of “foo”.

Proposed solution: tentatively remove the conditional nodes while
evaluating the when expression.

Concern raised: this might make it hard to understand what's
going on

6

Old function: augment mandatory nodes

This is issue Y26 in the issues list. WG consensus was to
keep current rule – it is illegal to augment mandatory
nodes. This rule exists in order to protect clients that do
not know the augmenting module.

New proposal: allow augment of mandatory nodes only in
combination with a “when” condition, and only if the “when”
condition is “safe” for the client.

Concern: “safe” for the client cannot be formally checked by
a compiler

7

Old function: unique module names

Current text says:

Issue raised: isn't it the case that all module names MUST be
unique?

Reality: all module names MUST be unique within a server

Compromise Proposal on the ML:

The names of all standard modules and submodules MUST be unique.
Developers of enterprise modules are RECOMMENDED to choose names for
their modules that will have a low probability of colliding with
standard or other enterprise modules, e.g., by using the enterprise or
organization name as a prefix for the module name.

Use of enterprise modules with non-unique
names is NOT RECOMMENDED.

8

Old function: augment mandatory nodes

This is issue Y26 in the issues list. WG consensus was to
keep current rule – it is illegal to augment mandatory
nodes. This rule exists in order to protect clients that do
not know the augmenting module.

New proposal: allow augment of mandatory nodes only in
combination with a “when” condition, and only if the “when”
condition is “safe” for the client.

Concern: “safe” for the client cannot be formally checked by
a compiler

9New feature: non-unique config false
leaf-lists

YANG allows config false lists w/o keys:

 list sample {

 leaf value { … }

 }

 <sample><value>10</value></sample>

 <sample><value>20</value></sample>

 <sample><value>10</value></sample>

However, config false leaf-lists must contain unique values.

Proposal: Allow non-unique leaf-lists in config false. Requires
a new keyword.

10New feature: keyless lists and non-
unique leaf-lists in config

Proposal: Allow keyless lists and non-unique leaf-lists in
config. When editing such list it can only be changed in its
entirety. Individual list entries cannot be changed
separately.

Comment: Similar to issue Y57 (non-unique leaf lists) which
was discussed at length, and the WG decided not to do.

Also, at this time there is not a concrete proposal available,
e.g. it is not clear how this would actually work in the XML
encoding.

11New feature: change semantics of the
choice and when statements

Proposal: Remove the auto-delete feature of choice and
when. i.e., it would be the client's responsibility to make
sure that when a case branch is created, the old one (if
any) is deleted.

Comments:

● The proposal doesn't solve any known problem in current
deployments.

● Huge impact on existing clients and servers.

● Unclear what the difference between when and must
would be.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

