Chroma-from-Luma Intraprediction for NETVC

draft-egge-netvc-cfl-00
Nathan Egge

IETF 94 - Yokohama 2015 Nov 3

Introduction

- Y'CbCr color conversion de-correlates luma and chroma globally, but local relationship exists
- Cross channel intra-prediction exploits local correlation
- Pros
- Uses information already known to decoder
- Can predict smooth features across a block
- Reduces signaling overhead
- Cons
- Increases encoder and decoder complexity
- Needs a parameterizable model

Predicting Chroma-from-Luma: Spatial Domain

- Both encoder and decoder compute linear regression:

$$
\alpha=\frac{N \cdot \sum_{i} L_{i} \cdot C_{i}-\sum_{i} L_{i} \sum_{i} C_{i}}{N \cdot \sum_{i} L_{i} \cdot L_{i}-\left(\sum_{i} C_{i}\right)^{2}}
$$

$$
\beta=\frac{\sum_{i} C_{i}-\alpha \cdot \sum_{i} L_{i}}{N}
$$

- Use reconstructed luma coefficients to predict spatially coincident chroma coefficients:

$$
C(u, v)=\alpha \cdot L(u, v)+\beta
$$

Spatial Domain CfL Properties

- Pros
- Can predict more features then straight edge extension
- Can be implemented without signaling α or β
- Cons
- Complexity scales with block size, for NxN block
- 4*N + 2 mul's and 8*N + 3 add's to fit model
- N*N mul's to predict coefficients
- 4:2:0 and 4:2:2 require resampling luma coefficients to match chroma spatial extent
- Cannot be used in codecs that use lapped transforms

Predicting Chroma-from-Luma: Frequency Domain

- Key insight: LT and DCT are both linear transforms so similar relationship exists in frequency domain
- Compute linear regression with DC and 3 AC coefficients:

- Use reconstructed luma to predict frequency domain chroma coefficients:

$$
\begin{aligned}
C_{D C} & =\alpha_{D C} \cdot L_{D C}+\beta_{D C} \\
C_{A C}(u, v) & =\alpha_{A C} \cdot L_{A C}(u, v)
\end{aligned}
$$

Time-Frequency Resolution Switching

- Described in Section 3.2 of draft-terriberry-netvc-codingtools
- Trades off spatial resolution for frequency resolution

- Uses 2×2 Walsh-Hadamard Transform (WHT) with only 7 add's and 1 shift

[2] https://xiph.org/~xiphmont/demo/daala/demo3.shtml

Frequency Domain CfL Properties

- Pros
- Can predict more features then straight edge extension
- Can be implemented without signaling α or β
- Using TF avoids expensive IDCT / FDCT round trip
- Model fitting complexity independent of block size
- No longer required to predict chroma DC from luma DC
- Can be used with codecs that use lapped transforms
- Cons
- Prediction still requires 1 multiply per coefficient

Perceptual Vector Quantization

- Described in draft-valin-netvc-pvq
- Separate "gain" (contrast) from "shape" (spectrum)
- Vector $=$ Magnitude \times Unit Vector (point on sphere)
- Use different quantization for each
- "gain" is quantized using scalar quantization
- "shape" is quantized by finding nearest VQ-codeword in an algebraically defined codebook based on the reconstructed gain

PVQ Prediction

- Given prediction vector \mathbf{r}
- "gain" predicted by magnitude $\quad \hat{g}=\gamma_{g} \cdot Q+\|\mathbf{r}\|$
- "shape" predicted using Householder reflection

Chroma-from-Luma with PVQ Prediction

- Consider prediction of 15 AC coefficients from a 4×4 chroma block
- The 15-dimensional predictor \mathbf{r} is scalar multiple of coincident reconstructed luma coefficients $\hat{\mathbf{x}}_{L}$

$$
C_{A C}(u, v)=\alpha_{A C} \cdot L_{A C}(u, v) \Longrightarrow \mathbf{r}=\alpha_{A C} \cdot \hat{\mathbf{x}}_{L}
$$

- Thus "shape" predictor is almost exactly $\hat{\mathbf{x}}_{L}$

$$
\frac{\mathbf{r}}{\|\mathbf{r}\|}=\frac{\alpha_{A C} \cdot \hat{\mathbf{x}}_{L}}{\left\|\alpha_{A C} \cdot \hat{\mathbf{x}}_{L}\right\|}=\operatorname{sgn}\left(\alpha_{A C}\right) \frac{\hat{\mathbf{x}}_{L}}{\left\|\hat{\mathbf{x}}_{L}\right\|}
$$

- Only difference is direction of correlation!

PVQ-CfL Algorithm (Encoder)

- Code "gain" using scalar quant. (no prediction)
- Code "shape" using PVQ:

1: Let $\mathbf{r}=\hat{\mathbf{x}}_{L}$, compute θ
2: Code a flip flag, $f=\left(\theta>90^{\circ}\right)$
3: If f
4: Let $\mathbf{r}=-\hat{\mathbf{x}}_{L}$
5: End
6: Code \mathbf{x}_{C} with PVQ using predictor \mathbf{r}

PVQ Chroma-from-Luma Properties

- Pros
- Can predict more features then straight edge extension
- No need to fit linear model to coefficients
- Still need TF to predict 4×4 chroma from four 4×4 luma

- Cons
- Requires using PVQ prediction
- Must code one flip flag per block

Example - Prediction (using HV)

Example - Prediction (using CfL)

Objective Results

subset1-y4n (50x 1HP inages)

BD-rate for Cb plane:		
	RATE (\%)	DSNR (dB)
PSNR	-4.60206	0.13743
PSNRHVS	-5.51783	0.24312
SSIM	-10.31658	0.16631
FASTSSIM	-11.50168	0.22043
BD-rate for Cr plane:		
RATE (\%)		
PSNR	-3.25591	0.09362
PSNRVS	-4.70448	0.20513
SSIM	-7.99407	0.13373
FASTSSIM	-11.57645	0.22452

Questions?

