Thor update

High Efficiency, Moderate Complexity
Video Codec using only RF IPR

draft-fuldseth-netvc-thor-01
Steinar Midtskogen (Cisco)
IETF 94 — Yokohama, JP — November 2015

IPR note

https://datatracker.ietf.org/ipr/2636/

If technology in this document is included in a standard
adopted by IETF and any claims of any Cisco patents
are necessary for practicing the standard, any party
will have the right to use any such patent claims
royalty-free under reasonable, non-discriminatory
terms, including defensive suspension, to implement
and fully comply with the standard.

Topics for this update

Brief recap of the Thor design

Changes since IETF93
— Constrained low pass filter

- Interpolated reference frames

Optimisation and SIMD support
Updated compression performance

Design principles

* Moderate complexity to allow real-time implementation
in software

* Favouring simplicity both in terms of computation and
description

* Using techniques known to work well and improving on
those

* Many similarities with H.26x
* Royalty free IPR

Encoder/decoder architecture

* The same basic architecture as H.261, H.263, H.264
and H.265

Input __ Transform —_— Quantizer > Entropy | Output
video % > Coding > bitstream Input > Entropy —> Inverse
l Bitstream Decoding Transform
\Y
Inverse
Transform
| >&

Intra Frame <

| Prediction _ Intra Frame <
Inter Frame Loop filters -

Prediﬁtion Inter Frame Loop filters

TAY Prediction Output
I Vv VAN > video

. Reconstructed \V4
> Motion <—— Frame
Estimation Reconstructed
Memory . Frame

Memory

Block Structure

Super block (SB) 64x64

Quad-tree split into coding blocks (CB) >= 8x8

Multiple prediction blocks (PB) per CB
° Intra: 1 PB per CB
* Inter: 1, 2 (rectangular) or 4 (square) PBs per CB

1 or 4 transform blocks (TB) per CB

Coding-block modes

* Intra
* InterO MV index, no residual information
* Inter1 MV index, residual information

* Inter2 Explicit motion vector information,
residual information

* Bipred Explicit motion vector information (x2),
residual information

Some difference from H.265

 Slightly shorter interpolation luma filter and a special
non-separable filter for the (7%, 72) position

* Fewer intra modes

* Simpler deblocking filter

* Simpler deringing filter

* VLC-based (non-arithmetic) entropy coding

* Temporally interpolated reference frames (never
displayed)

Changes since IETF93/July 2015

* New constrained low pass filter
* Support for frame reordering

* Temporally interpolated reference frames (never
displayed)

* Simplified 64x64 transform (32x32 and scaling)

* New filter coefficients
— Different coefficients for uni-pred and bi-pred

* Various syntactic changes

* Major speed improvements (non-normative changes)
- Motion estimation rewritten

New constrained low-pass filter

* An attempt to reduce the problem into a lookup table

* Create an index using the pixel to be filtered and its
neighbours

* Comparisons with 8 neighbours gives a relatively small
table

|= (A>X)2° + (B>X)2' + (C>X) 22 + (D>X)2°+ 5 g
(E>X)-24 + (F>X)-2° + (G>X)-2° + (H>X)-27
* 256 entries

* Pixel weights or offsets?
Most simple: a 0 or 1 offset

New constrained low-pass filter

* An overnight script can create the table:
Make all tables consisting of 255 0's and one 1, and
record all 1's that give an improvement.

* It turns out that B, D, E and G are important.
Comparing with A, C, F and H (diagonally)
only give very small gains.

.. . . A B C
* Initial experiments using both > and >=
operators to create an index were not D X
convincing, but not fully explored. F G H

* Signalled offsets higher than 1 give
small gains.

New constrained low-pass filter

* Atable with few 1's still giving most of the gain:

0000000000000000
0000000000100000
0000000000000000
0000000000000000
0000000000100000
0010000010100000
0000000000000000 A B C
0000000000000000
0000000000000000
0000000000000000 D X
0000000000000000
0000000000000000
0000000000000000 F G H
0000000000000000
0000000000000000
0000000000000000

* Equivalent to:
X' = X + ((B>X)+(D>X)+(E>X)+(G>X) > 2)

* Increase by one if at least three of the four
neighbours (up, left, right, down) are larger.

* Symmetry: X' = X + ((B>X)+(D>X)+(E>X)+(G>X) > 2) -
((B<X)+(D<X)+(E<X)+(G<X) > 2)

New constrained low-pass filter

* Pixels outside frame or block border: Give X's value
* Input pixels are always unfiltered to allow parallelism

* Avery simple filter with little memory footprint and very
well suited for SIMD instructions.

* Does not work well with bi-prediction. Probably
because the bi-predictive averaging itself is a low-pass
filter.

New constrained low-pass filter

* We don't want to filter everything!

* Flag at superblock (64x64) level indicates whether to
filter the block or not

* Test using squared sum of differences

* Sub-blocks with no residual are not filtered

* Sub-blocks with bi-prediction are not filtered

* Superblocks with no residual or fully bi-predictive are
implicitly unfiltered — no need spend a bit for the flag

New constrained low-pass filter

* Performs better than the previous filter and gives more
consistent gains

* Subjective gains larger than objective gains

* The objective gains at low bitrates are small, so there
Is still room for improvements.

New constrained low-pass filter

Results with only uni-prediction:

Sequence BDR BDR (low br) BDR (high br)
Kimono -1.5% -0.8% -2.5%
BasketballDrive -2.9% -1.6% -4.5%

BQTerrace -6.6% -3.8% -8.0%
FourPeople -4.5% -2.3% -8.0%

Johnny -3.6% -1.5% -7.0%
ChangeSeats -4.7% -1.9% -8.3%
HeadAndShoulder -6.7% -0.7% -14.9%
TelePresence -2.9% -1.0% -5.8%

Average -4.2% -1.7% -71.4%

New constrained low-pass filter

Results with bi-prediction enabled:

Sequence BDR BDR (low br) BDR (high br)
Kimono -0.9% -0.4% -1.5%
BasketballDrive -1.2% -0.8% -1.5%
BQTerrace -1.6% -1.1% -2.0%
FourPeople -2.5% -1.5% -3.7%
Johnny -2.1% -1.1% -3.6%
ChangeSeats -2.5% -1.2% -4.1%
HeadAndShoulder -2.4% -0.9% -4.5%
TelePresence -1.5% -0.2% -3.5%

Average -1.8% -0.9% -3.1%

Interpolated reference frames

* Uses motion estimation between two frames to create
a new reference frame

* For prediction only, never displayed (unless used to
code a frame with no residual and no vectors).

* Motion estimation must be done in both the encoder
and decoder

* Generally speeds up encoding (but not in the worst
case), because we get a lot of skip blocks

* But adds complexity to the decoder

Interpolated reference frames

* Can be used for extrapolation (motion estimation
between two past frames) and interpolation (between
past and future frame, requires frame reordering)

* Only interpolation seems to give useful results

* Since the decoder has to perform the same motion
estimation as the encoder, we need a fast and simple
algorithm!

Interpolated reference frames

* The typical case: Two frames RO and R1 and a frame
F equidistant in time between them to be interpolated

RO F R1

Vm\vO
&\/1‘

Interpolated reference frames

* Both reference frames are repeatedly scaled down by
a factor of %2 vertically and horisontally using the filter

(72,%2) up to 4 times (or until the frame cannot hold a
16x16 block)

240x135

480x270

960x540

1920x1080

Interpolated reference frames

* Start ME for the smallest frames and use motion
vectors found as search candidates for the higher layer

* For each layer, the stages are as follows:
- For each 16x16 in raster order
* Check if ME can be bypassed
* If not, get candidates from lower layer and neighbour blocks

* Perform an adaptive cross search around each candidate vector and
detemine the best vector. Up to 16 steps at lowest layer, else just 2.

— For each 8x8 in raster order, find the best merge candidate,
i.e. use the original 16x16 block vector or one of the
neighbouring block vectors

Interpolated reference frames

* Bypass prediction is used to stabilise the mv field (i.e.
prevent accidental matches) and reduce complexity.

* mv1 (and its derived mv0) are computed from
neighbouring blocks (like a candidate vector)

* For each 8x8 block S calculate the SAD between
S+mv0 in RO and S+mv1 in R1 (luma and chroma).

 If all SADs are below a given threshold, further ME is
bypassed

* Corresponds to early skip techniques used in encoders

Interpolated reference frames

* Adaptive cross search examines in each step 4
positions (left, right, up, down) with a displacement D.

* If none of them is better, divide D by two and try again.
Otherwise, search again around the best position.

* D is 1 and the number of matches allowed is 8 (two
steps), except at the lowest level where it is 64.

* The matching criterion (420 video):
SAD(BO, B1) + 4(SAD(U0, U1) + SAD(VO, V1)) + A*mv_cost
(BO =b + mv0 in RO.luma, B1 =B + mv1 in R1.luma, etc)

* mv_cost is a measure of the disparity between the mv
and neighbour vectors. A is fixed for each layer.

Interpolated reference frames

Sequence QP 22,27,32,37 QP 32,36,40,44
Kimono -3.5% -6.6%
ParkScene -3.1% -7.0%
Cactus -4.9% -8.9%
BasketballDrive -2.1% -5.5%
BQTerrace -1.9% -4.7%
ChangeSeats -5.8% -12.1%
HeadAndShoulder -§.6% -10.1%
TelePresence -6.6% -11.0%
WhiteBoard -7.5% -12.4%
FourPeople -7.0% -9.1%
Johnny -6.2% -8.0%
KristenAndSara -7.0% -0.9%

Average -5.2% -8.8%

SIMD optimisations

* We need to verify that Thor is “SIMD friendly” and can
compete with other optimised codecs

* Supported by modern CPU's (x86: SSE2, SSE3, etc
and ARM: NEON)

* Single instruction, multiple data
* Very useful for video processing

* Compilers are not (yet) good at redesigning code to
match the instruction set

* Can we avoid having to maintain a separate set of
function for different architectures?

SIMD optimisations

* Thor's solution: An abstraction layer for intrinsics

* Most compilers offer intrinsics to support SIMD
instructions in the C code. Let the compiler do the
register allocation!

* The most used instructions in different architectures
such as x86 and ARM are identical

* So the abstraction layer is mostly an instruction name
translator

* Support for 64 and 128 bit wide operands
* Does not always give optimal code, but close enough

SIMD optimisations

* An example: Add 16 pairs of bytes with a single
Instruction
- X86/SSE2: mm add epi8(a, b)

- ARM/NEON: vaddg u8(a, Db)
* Thor: v128 add 8(a, b)
* Thor supports many instructions, but not everything

* Support for x86 and ARM, and C implementations to
ease porting to new architectures

* Kernels in both SIMD and plain C as fallback. Bitexact.

void transpose8x8(const intl6 t *src,

{

SIMD optimisations

int sstride,

sstride*0);
sstride*1);
sstride*2);
sstride*3);
sstride*4);
sstride*b);
sstride*o6);
sstride*7);

v128 10 = v128 load aligned(src +
v128 i1 v128 load_aligned(src +
v128 12 v128 load aligned(src +
v128 13 v128 load _aligned(src +
v128 14 v128 load aligned(src +
v128 15 = v128 load_aligned(src +
v128 16 = v128_ load_aligned(src +
v128 17 = v128 load_aligned(src +
v128 t0 = v128 ziplo_16(il, 1i0);
v128 tl = v128 ziplo 16(i3, i2);
v128 t2 = v128 ziplo 16(i5, i4);
v128 t3 v128 ziplo 16(i7, 1i6);
v128 t4 v128 ziphi 16(il, 1i0);
v128 t5 v128_ziphi_16(i3, 12);
v128 t6 v128 ziphi 16(i5, 1i4);
v128 t7 = v128_ziphi 16(i7, i6);
i0 = v128_ziplo_32(tl, t0);

il = v128 ziplo 32(t3, t2);

i2 = v128 ziplo_32(t5, t4);

i3 = v128 ziplo 32(t7, t6);

i4 = v128 ziphi 32 t0);

(tll
i5 = v128_ziphi 32(t3,
i6 = v128_ziphi 32 (t5,
i7 = v128 ziphi 32 (t7

v128 store_aligned(dst
v128_ store_aligned(dst
v128 store_aligned(dst
v128_ store_aligned(dst
v128 store_aligned(dst
v128 store_aligned(dst
v128 store_aligned(dst
v128 store aligned(dst

t2);
td);
t6);

’

dstride*0,
dstride*1,
dstride*2,
dstride*3,
dstride*4,
dstride*5,
dstride*6,
dstride*7,

v128 ziplo 64(il,
v128 ziphi 64 (il,
v128 ziplo_ 64 (i5,
v128 ziphi 64 (i5,
v128 ziplo 64 (i3,
v128 ziphi 64 (i3,
v128 ziplo 64(i7,
v128 ziphi 64 (i7,

int16_t *dst,

i0));
i0));
i4));
i4));
i2));
i2));
i6));
i6));

int dstride)

00 01 02 03
08 09 10 11
16 17 18 19
24 25 26 27
32 33 34 35
40 41 42 43
48 49 50 51
56 57 58 59

04
12
20
28
36
44
52
60

05
13
21
29
37
45
53
61

06
14
22
30
38
46
54
62

07
15
23
31
39
47
55
63

00
01
02

04
05
06
07

08
09
10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35

37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59

61
62
63

28

Performance, high delay

* Anchor:
— HM13.0 (HEVC reference software)
— Random access without periodic | frames

Thor:

— Same constraints as the anchor

VP9 -p 1 --cpu-used=0 --end-usage=q -cg-level=3$qg
—-—auto-alt-ref=1 --disable-kf -y

X265: -1 -1 —-no-wpp —--tune psnr -p veryslow —--gp $q
Complexity: FourPeople at QP 32 on a single core

Note: HM and Thor have fixed QP variation, x265 and VP9 adapt
dynamically.

Performance, high delay

Class

Class B

Class E

Internal

Sequence
Kimono
ParkScene
Cactus
BasketballDrive
BQTerrace
FourPeople
Johnny
KristenAndSara
ChangeSeats
HeadAndShoulder
TelePresence
WhiteBoard
Average

Thor

24.5%
23.2%
17.5%
31.3%
35.4%

8.8%
16.2%

7.3%
20.9%
10.9%
22.6%
15.6%
19.5%

VP9

49.3%
45.4%
34.5%
46.1%
51.5%
13.8%
38.6%
16.8%
29.1%

6.0%
45.1%
22.0%
33.2%

X265

20.3%
26.5%
17.2%
13.3%
19.7%
26.7%
28.4%
23.0%
18.3%
21.0%
20.0%
24.9%
21.6%

Frame rate vs. bandwidth

100.00
N/
10.00 #
4
/
(<)) ///
= //‘: —@—\/P9
bl e X265
gloo —0—H.265 ref
| |
© 1 ==é=Thor-Nov
e |
*
0.10
0.01 T T T T T T T T T 1

0.0 % 100% 200% 30.0% 400% 500% 60.0% 70.0% 80.0% 90.0% 100.0%

Bandwidth

Performance, low delay

* Anchor:
— HM13.0 (HEVC reference software)
— Low-delay B configuration

Thor:

— Same constraints as the anchor

VP9 -p 1 —--cpu-used=0 --end-usage=g --cg-level=$g —-auto-
alt-ref=0 --lag-in-frames=0 --disable-kf -y

X265: -1 -1 —--no-wpp --bframes 0 --tune psnr -p veryslow
--gp $g —-gpfile $qg.txt

* Complexity: FourPeople at QP 32 on a single core

Note: HM, Thor and x265 have fixed QP variation, VP9 adapts
dynamically.

Performance, low delay

Class

Class B

Class E

Internal

Sequence
Kimono
ParkScene
Cactus
BasketballDrive
BQTerrace
FourPeople
Johnny
KristenAndSara
ChangeSeats
HeadAndShoulder
TelePresence
WhiteBoard
Average

Thor

16.1%
19.5%
16.6%
26.9%
31.8%

6.6%
12.0%

4.7%
14.4%

2.5%
15.1%
11.1%
14.8%

VP9

21.7%
31.4%
26.6%
32.9%
84.1%
35.5%
66.9%
36.9%
20.5%
59.8%
25.3%
43.8%
40.5%

X265

14.1%
16.4%
21.5%
14.0%
44.9%
22.5%
30.8%
20.3%
12.8%
34.8%
11.9%
24.3%
22.4%

Frame rate

Frame rate vs. bandwidth

100.00
S
_X
/ y
10.00 S o a— —
/ - [— 7
/ x |/ 7~
/ 4 y
/ / A
f// /‘/ —8-\P9
1.00 ',/ ’,}/ === X265
P o 4 =4=—H.265 ref
I /
” /I ==3¢=Thor-July
I / =3=Thor-Nov
0.10 /
X
0.01 T T T T T T T T T 1
0.0% 10.0 % 20.0% 30.0% 40.0 % 50.0% 60.0 % 70.0% 80.0% 90.0% 100.0 %

Bandwidth

Source Code

* Available at: github.com/cisco/thor

