
1

Thor update

High Efficiency, Moderate Complexity

Video Codec using only RF IPR

draft-fuldseth-netvc-thor-01

Steinar Midtskogen (Cisco)

IETF 94 – Yokohama, JP – November 2015

2

IPR note

https://datatracker.ietf.org/ipr/2636/

If technology in this document is included in a standard
adopted by IETF and any claims of any Cisco patents
are necessary for practicing the standard, any party
will have the right to use any such patent claims
royalty-free under reasonable, non-discriminatory
terms, including defensive suspension, to implement
and fully comply with the standard.

2

Topics for this update

• Brief recap of the Thor design

• Changes since IETF93
– Constrained low pass filter

– Interpolated reference frames

• Optimisation and SIMD support

• Updated compression performance

3

Design principles

• Moderate complexity to allow real-time implementation
in software

• Favouring simplicity both in terms of computation and
description

• Using techniques known to work well and improving on
those

• Many similarities with H.26x

• Royalty free IPR

4

Transform Quantizer

Inverse
Transform

Loop filters

Entropy
Coding

Reconstructed
Frame
Memory

Intra Frame
Prediction

Inter Frame
Prediction

Motion
Estimation

Output
bitstream

Input
video

-

Encoder/decoder architecture

Entropy
Decoding

Inverse
Transform

Loop filters

Reconstructed
Frame
Memory

Intra Frame
Prediction

Inter Frame
Prediction

Input
Bitstream

Output
video

● The same basic architecture as H.261, H.263, H.264
and H.265

5

Block Structure

• Super block (SB) 64x64

• Quad-tree split into coding blocks (CB) >= 8x8

• Multiple prediction blocks (PB) per CB
• Intra: 1 PB per CB

• Inter: 1, 2 (rectangular) or 4 (square) PBs per CB

• 1 or 4 transform blocks (TB) per CB

6

Coding-block modes

• Intra

• Inter0 MV index, no residual information

• Inter1 MV index, residual information

• Inter2 Explicit motion vector information,
residual information

• BipredExplicit motion vector information (x2),
residual information

7

Some difference from H.265

• Slightly shorter interpolation luma filter and a special
non-separable filter for the (½, ½) position

• Fewer intra modes

• Simpler deblocking filter

• Simpler deringing filter

• VLC-based (non-arithmetic) entropy coding

• Temporally interpolated reference frames (never
displayed)

8

Changes since IETF93/July 2015

• New constrained low pass filter

• Support for frame reordering

• Temporally interpolated reference frames (never
displayed)

• Simplified 64x64 transform (32x32 and scaling)

• New filter coefficients
– Different coefficients for uni-pred and bi-pred

• Various syntactic changes

• Major speed improvements (non-normative changes)
– Motion estimation rewritten

9

New constrained low-pass filter

• An attempt to reduce the problem into a lookup table

• Create an index using the pixel to be filtered and its
neighbours

• Comparisons with 8 neighbours gives a relatively small
table

• I = (A>X)∙2⁰ + (B>X)∙2¹ + (C>X)∙2² + (D>X)∙2³ +

 (E>X)∙2⁴ + (F>X)∙2⁵ + (G>X)∙2⁶ + (H>X)∙2⁷

• 256 entries

• Pixel weights or offsets?
Most simple: a 0 or 1 offset

A B C

D X E

F G H

10

New constrained low-pass filter

• An overnight script can create the table:
Make all tables consisting of 255 0's and one 1, and
record all 1's that give an improvement.

• It turns out that B, D, E and G are important.
Comparing with A, C, F and H (diagonally)
only give very small gains.

• Initial experiments using both > and >=
operators to create an index were not
convincing, but not fully explored.

• Signalled offsets higher than 1 give
small gains.

A B C

D X E

F G H

12

New constrained low-pass filter

● A table with few 1's still giving most of the gain:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

● Equivalent to:
X' = X + ((B>X)+(D>X)+(E>X)+(G>X) > 2)

● Increase by one if at least three of the four
neighbours (up, left, right, down) are larger.

● Symmetry: X' = X + ((B>X)+(D>X)+(E>X)+(G>X) > 2) -
 ((B<X)+(D<X)+(E<X)+(G<X) > 2)

A B C

D X E

F G H

12

New constrained low-pass filter

• Pixels outside frame or block border: Give X's value

• Input pixels are always unfiltered to allow parallelism

• A very simple filter with little memory footprint and very
well suited for SIMD instructions.

• Does not work well with bi-prediction. Probably
because the bi-predictive averaging itself is a low-pass
filter.

13

New constrained low-pass filter

• We don't want to filter everything!

• Flag at superblock (64x64) level indicates whether to

filter the block or not

• Test using squared sum of differences

• Sub-blocks with no residual are not filtered

• Sub-blocks with bi-prediction are not filtered

• Superblocks with no residual or fully bi-predictive are
implicitly unfiltered – no need spend a bit for the flag

14

New constrained low-pass filter

• Performs better than the previous filter and gives more
consistent gains

• Subjective gains larger than objective gains

• The objective gains at low bitrates are small, so there
is still room for improvements.

15

New constrained low-pass filter

Results with only uni-prediction:

Sequence BDR BDR (low br) BDR (high br)
Kimono -1.5% -0.8% -2.5%

BasketballDrive -2.9% -1.6% -4.5%

BQTerrace -6.6% -3.8% -8.0%

FourPeople -4.5% -2.3% -8.0%

Johnny -3.6% -1.5% -7.0%

ChangeSeats -4.7% -1.9% -8.3%

HeadAndShoulder -6.7% -0.7% -14.9%

TelePresence -2.9% -1.0% -5.8%

Average -4.2% -1.7% -7.4%

16

New constrained low-pass filter

Results with bi-prediction enabled:

Sequence BDR BDR (low br) BDR (high br)

Kimono -0.9% -0.4% -1.5%

BasketballDrive -1.2% -0.8% -1.5%

BQTerrace -1.6% -1.1% -2.0%

FourPeople -2.5% -1.5% -3.7%

Johnny -2.1% -1.1% -3.6%

ChangeSeats -2.5% -1.2% -4.1%

HeadAndShoulder -2.4% -0.9% -4.5%

TelePresence -1.5% -0.2% -3.5%

Average -1.8% -0.9% -3.1%

17

Interpolated reference frames

• Uses motion estimation between two frames to create
a new reference frame

• For prediction only, never displayed (unless used to
code a frame with no residual and no vectors).

• Motion estimation must be done in both the encoder
and decoder

• Generally speeds up encoding (but not in the worst
case), because we get a lot of skip blocks

• But adds complexity to the decoder

18

Interpolated reference frames

• Can be used for extrapolation (motion estimation
between two past frames) and interpolation (between
past and future frame, requires frame reordering)

• Only interpolation seems to give useful results

• Since the decoder has to perform the same motion
estimation as the encoder, we need a fast and simple
algorithm!

19

Interpolated reference frames

• The typical case: Two frames R0 and R1 and a frame
F equidistant in time between them to be interpolated

R0 R1F

mv0

mv1

20

Interpolated reference frames

• Both reference frames are repeatedly scaled down by
a factor of ½ vertically and horisontally using the filter
(½,½) up to 4 times (or until the frame cannot hold a
16x16 block)

1920x1080

960x540

480x270

240x135

21

Interpolated reference frames

• Start ME for the smallest frames and use motion
vectors found as search candidates for the higher layer

• For each layer, the stages are as follows:
– For each 16x16 in raster order

● Check if ME can be bypassed

● If not, get candidates from lower layer and neighbour blocks

● Perform an adaptive cross search around each candidate vector and
detemine the best vector. Up to 16 steps at lowest layer, else just 2.

– For each 8x8 in raster order, find the best merge candidate,
i.e. use the original 16x16 block vector or one of the
neighbouring block vectors

22

Interpolated reference frames

• Bypass prediction is used to stabilise the mv field (i.e.
prevent accidental matches) and reduce complexity.

• mv1 (and its derived mv0) are computed from
neighbouring blocks (like a candidate vector)

• For each 8x8 block S calculate the SAD between
S+mv0 in R0 and S+mv1 in R1 (luma and chroma).

• If all SADs are below a given threshold, further ME is
bypassed

• Corresponds to early skip techniques used in encoders

23

Interpolated reference frames

• Adaptive cross search examines in each step 4
positions (left, right, up, down) with a displacement D.

• If none of them is better, divide D by two and try again.
Otherwise, search again around the best position.

• D is 1 and the number of matches allowed is 8 (two
steps), except at the lowest level where it is 64.

• The matching criterion (420 video):
 SAD(B0, B1) + 4*(SAD(U0, U1) + SAD(V0, V1)) + λ*mv_cost
(B0 = b + mv0 in R0.luma, B1 = B + mv1 in R1.luma, etc)

• mv_cost is a measure of the disparity between the mv
and neighbour vectors. λ is fixed for each layer.

24

Interpolated reference frames
Sequence QP 22,27,32,37 QP 32,36,40,44

Kimono -3.5% -6.6%

ParkScene -3.1% -7.0%

Cactus -4.9% -8.9%

BasketballDrive -2.1% -5.5%

BQTerrace -1.9% -4.7%

ChangeSeats -5.8% -12.1%

HeadAndShoulder -6.6% -10.1%

TelePresence -6.6% -11.0%

WhiteBoard -7.5% -12.4%

FourPeople -7.0% -9.1%

Johnny -6.2% -8.0%

KristenAndSara -7.0% -9.9%

Average -5.2% -8.8%

25

SIMD optimisations

• We need to verify that Thor is “SIMD friendly” and can
compete with other optimised codecs

• Supported by modern CPU's (x86: SSE2, SSE3, etc
and ARM: NEON)

• Single instruction, multiple data

• Very useful for video processing

• Compilers are not (yet) good at redesigning code to
match the instruction set

• Can we avoid having to maintain a separate set of
function for different architectures?

26

SIMD optimisations

• Thor's solution: An abstraction layer for intrinsics

• Most compilers offer intrinsics to support SIMD
instructions in the C code. Let the compiler do the
register allocation!

• The most used instructions in different architectures
such as x86 and ARM are identical

• So the abstraction layer is mostly an instruction name
translator

• Support for 64 and 128 bit wide operands

• Does not always give optimal code, but close enough

27

SIMD optimisations

• An example: Add 16 pairs of bytes with a single
instruction

– x86/SSE2: _mm_add_epi8(a, b)

– ARM/NEON: vaddq_u8(a, b)

• Thor: v128_add_8(a, b)

• Thor supports many instructions, but not everything

• Support for x86 and ARM, and C implementations to
ease porting to new architectures

• Kernels in both SIMD and plain C as fallback. Bitexact.

28

SIMD optimisations
void transpose8x8(const int16_t *src, int sstride, int16_t *dst, int dstride)
{
 v128 i0 = v128_load_aligned(src + sstride*0);
 v128 i1 = v128_load_aligned(src + sstride*1);
 v128 i2 = v128_load_aligned(src + sstride*2);
 v128 i3 = v128_load_aligned(src + sstride*3);
 v128 i4 = v128_load_aligned(src + sstride*4);
 v128 i5 = v128_load_aligned(src + sstride*5);
 v128 i6 = v128_load_aligned(src + sstride*6);
 v128 i7 = v128_load_aligned(src + sstride*7);

 v128 t0 = v128_ziplo_16(i1, i0);
 v128 t1 = v128_ziplo_16(i3, i2);
 v128 t2 = v128_ziplo_16(i5, i4);
 v128 t3 = v128_ziplo_16(i7, i6);
 v128 t4 = v128_ziphi_16(i1, i0);
 v128 t5 = v128_ziphi_16(i3, i2);
 v128 t6 = v128_ziphi_16(i5, i4);
 v128 t7 = v128_ziphi_16(i7, i6);

 i0 = v128_ziplo_32(t1, t0);
 i1 = v128_ziplo_32(t3, t2);
 i2 = v128_ziplo_32(t5, t4);
 i3 = v128_ziplo_32(t7, t6);
 i4 = v128_ziphi_32(t1, t0);
 i5 = v128_ziphi_32(t3, t2);
 i6 = v128_ziphi_32(t5, t4);
 i7 = v128_ziphi_32(t7, t6);

 v128_store_aligned(dst + dstride*0, v128_ziplo_64(i1, i0));
 v128_store_aligned(dst + dstride*1, v128_ziphi_64(i1, i0));
 v128_store_aligned(dst + dstride*2, v128_ziplo_64(i5, i4));
 v128_store_aligned(dst + dstride*3, v128_ziphi_64(i5, i4));
 v128_store_aligned(dst + dstride*4, v128_ziplo_64(i3, i2));
 v128_store_aligned(dst + dstride*5, v128_ziphi_64(i3, i2));
 v128_store_aligned(dst + dstride*6, v128_ziplo_64(i7, i6));
 v128_store_aligned(dst + dstride*7, v128_ziphi_64(i7, i6));
}

00 01 02 03 04 05 06 07
08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

00 08 16 24 32 40 48 56
01 09 17 25 33 41 49 57
02 10 18 26 34 42 50 58
03 11 19 27 35 43 51 59
04 12 20 28 36 44 52 60
05 13 21 29 37 45 53 61
06 14 22 30 38 46 54 62
07 15 23 31 39 47 55 63

29

Performance, high delay
• Anchor:

– HM13.0 (HEVC reference software)

– Random access without periodic I frames

• Thor:
– Same constraints as the anchor

• VP9: -p 1 --cpu-used=0 --end-usage=q –cq-level=$q
--auto-alt-ref=1 --disable-kf -y

• x265: -I -1 --no-wpp --tune psnr -p veryslow --qp $q

• Complexity: FourPeople at QP 32 on a single core

Note: HM and Thor have fixed QP variation, x265 and VP9 adapt
dynamically.

30

Performance, high delay
Class Sequence Thor VP9 x265

Class B Kimono 24.5% 49.3% 20.3%

ParkScene 23.2% 45.4% 26.5%

Cactus 17.5% 34.5% 17.2%

BasketballDrive 31.3% 46.1% 13.3%

BQTerrace 35.4% 51.5% 19.7%

Class E FourPeople 8.8% 13.8% 26.7%

Johnny 16.2% 38.6% 28.4%

KristenAndSara 7.3% 16.8% 23.0%

Internal ChangeSeats 20.9% 29.1% 18.3%

HeadAndShoulder 10.9% 6.0% 21.0%

TelePresence 22.6% 45.1% 20.0%

WhiteBoard 15.6% 22.0% 24.9%

Average 19.5% 33.2% 21.6%

0.01

0.10

1.00

10.00

100.00

0.0 % 10.0 % 20.0 % 30.0 % 40.0 % 50.0 % 60.0 % 70.0 % 80.0 % 90.0 % 100.0 %

VP9

X265

H.265 ref

Thor-Nov

Bandwidth

Fr
am

e
 r

at
e

Frame rate vs. bandwidth

Fr
am

e
 r

at
e

Frame rate vs. bandwidth

32

Performance, low delay
• Anchor:

– HM13.0 (HEVC reference software)

– Low-delay B configuration

• Thor:
– Same constraints as the anchor

• VP9: -p 1 --cpu-used=0 --end-usage=q --cq-level=$q –auto-
 alt-ref=0 --lag-in-frames=0 --disable-kf –y

• x265: -I -1 --no-wpp --bframes 0 --tune psnr -p veryslow
 --qp $q –-qpfile $q.txt

• Complexity: FourPeople at QP 32 on a single core

Note: HM, Thor and x265 have fixed QP variation, VP9 adapts
dynamically.

33

Performance, low delay
Class Sequence Thor VP9 x265

Class B Kimono 16.1% 21.7% 14.1%

ParkScene 19.5% 31.4% 16.4%

Cactus 16.6% 26.6% 21.5%

BasketballDrive 26.9% 32.9% 14.0%

BQTerrace 31.8% 84.1% 44.9%

Class E FourPeople 6.6% 35.5% 22.5%

Johnny 12.0% 66.9% 30.8%

KristenAndSara 4.7% 36.9% 20.3%

Internal ChangeSeats 14.4% 20.5% 12.8%

HeadAndShoulder 2.5% 59.8% 34.8%

TelePresence 15.1% 25.3% 11.9%

WhiteBoard 11.1% 43.8% 24.3%

Average 14.8% 40.5% 22.4%

0.01

0.10

1.00

10.00

100.00

0.0 % 10.0 % 20.0 % 30.0 % 40.0 % 50.0 % 60.0 % 70.0 % 80.0 % 90.0 % 100.0 %

VP9

X265

H.265 ref

Thor-July

Thor-Nov

Bandwidth

Fr
am

e
 r

at
e

Frame rate vs. bandwidth

Fr
am

e
 r

at
e

Frame rate vs. bandwidth

35

Source Code

• Available at: github.com/cisco/thor

