
An Analysis of Container-based Platforms for NFV

Sriram Natarajan, Deutsche Telekom Inc.
Ramki Krishnan, Dell Inc.

Anoop Ghanwani, Dell Inc.
Dilip Krishnaswamy, IBM Research

Peter Willis, BT Plc
Ashay Chaudhary, Verizon

1

Virtual Machine vs. Container Stack

KVM

Host-OS
Hypervisor

Guest-OS

Libraries

VNF

Host-OS

Container Engine

Container A
(Application

+
Libraries)

Container B
(Application

+
Libraries)

Pod
(container
group) A

(Application
+

Libraries)

Kernel Functions and Modules:

Namespaces, cgroups, capabilities, chroot, SELinux

• Lightweight footprint: Very small
images with API-based control to
automate the management of services

• Resource Overhead: Lower use of
system resources (CPU, memory, etc.)
by eliminating hypervisor & guest OS
overhead

• Deployment time:
Rapidly deploy
applications with minimal
run-time requirements

• Updates: Depending on
requirements, updates,
failures or scaling apps
can be achieved by
scaling containers
up/down

2

Container-stack

Host-OS

Libraries

VNF

Container Engine

VM based Network Functions
Key Challenges

3

Service Agility/Performance

• Runtime performance overhead:
– Performance proportional to resource allocated to individual VMs (throughput,

line rate, concurrent sessions, etc.)

– Overhead stems from components other than VNF process (e.g. guest OS)

– Need for inter-VM networking solution

– Meeting SLAs requires dynamic fine tuning or instantiation of additive features,
which is complex in a VM environment

Host-OS

Hypervisor

Guest-OS

Libraries

VNF

Guest-OS

Libraries

VNF

Guest-OS

Libraries

VNF• Provisioning time:
– Hypervisor configuration

– Spin-up guest OS

– Align dependencies between Guest-OS
& VNFs

4

Portability/ Elasticity/Scalability

• Porting VNFs require:
– Identifying suitable nodes for new VNF

instances (or re-locating existing
instances). For example, resource types,
available capacity, guest OS images,
hypervisor configs, HW/SW accelerators,
etc.)

– Allocating required resources for new
instances

– Provisioning configs to components in the
guest OS, libraries and VNF

• Elastic scalability needs are driven by
workloads on the VNF instances, and
stateful VNFs increase the latency to
spin up new instances to fully
working state.

Host-OS

Hypervisor

Guest-OS

Libraries

VNF

Host-OS (vCPU, RAM,
SSL accelerator)

Hypervisor
Re-config

Same
Guest-OS

Libraries

VNF

5

Security/Isolation

Resource hungry VNF can starve the
shared resources (noisy neighbor

effect) that are allocated to other VNFs;
Need to monitor and cut-off hungry

VNF usage

Host-OS

Hypervisor

Guest-OS

Libraries

VNF

Guest-OS

Libraries

VNF

Guest-OS

Libraries

VNF ✗
If VNF is compromised

(misconfiguration,
etc.), how to securely
quarantine the VNF,

but ensure continuity
of other VNFs?

VNF

Securely recover
with minimal or no
downtime
(reschedule VNF)

Guarantee complete isolation across
resource entities (hardware units,
hypervisor, protection of shared

resource, isolation of virtual networks,
L3 cache, QPI, etc.)

6

Containerized Network Functions
Key Benefits, Challenges and Potential Solutions

7

Host-OS

Container Engine

Service Agility/Performance/Isolation (1)

8

Host-OS

Container Engine

VNF
C

VNF
B

VNF
A

VNF
D

VNF
E

Cluster
Management

Tool

Scheduler

Key Benefits:

- Containers can provide better
service agility (e.g. dynamically
provision VNFs for offering on-
demand services), and performance
as it allows us to run the VNF process
directly in the host environment

- Inter-VNF communication latency
depends on inter-process
communication option (when hosted
in the same host)

Host-OS

Container Engine

Service Agility/Performance/Isolation (2)

9

Host-OS

Container Engine

VNF
C

VNF
B

VNF
A

VNF
D

VNF
E

Cluster
Management

Tool

Scheduler

Key Challenges:
- Isolation: Containers create a slice of
the underlying host using techniques
like namespaces, cgroups, chroot etc.;
several other kernel features that are
not completely isolated.
- Resource Mgmt: Containers do not
provide a mechanism to quota manage
the resources and hence susceptible to
the “noisy neighbor” challenge.

Potential Solutions:
- Kernel Security Modules: SElinux,
AppArmor
- Resource Mgmt: Kubernetes
- Platform Awareness: ClearLinux

Host-OS

Container Engine

Host-OS

Container Engine

Elasticity & Resilience

10

VNF
Pod

Cluster
Management

Tool

Scheduler

Replication
Controller

VNF
Pod

VNF
Pod

VNF
Pod

VNF
Pod

VNF
Pod

Key Benefits:

- Auto-scaling VNFs or achieving
service elasticity in runtime can be
simplified by the use of container
based VNFs due to the lightweight
resource usage of containers (e.g.
Mesosphere/Kubernetes)

- Container management solutions
(e.g. Kubernetes) provide self-healing
features such as auto-placement,
restart, and replacement by using
service discovery and continuous
monitoring

Host-OS

Container Engine

Host-OS

Container Engine

Operations & Management

11

VNF
Pod

Cluster
Management

Tool

Scheduler

Replication
Controller

VNF
Pod

VNF
Pod

VNF
Pod

VNF
Pod

VNF
Pod

Security

Service
Discovery

Key Challenges:
- Containers are supported in
selective operating systems such as
Linux, Windows and Solaris
- In the current range of VNFs, many
don’t support Linux OS or other OSes
such as Windows and Solaris

Potential Solutions:
- Hybrid deployment with VMs and
containers can be envisioned, e.g.
leverage ideas from Aptible
technology currently used for
applications

Conclusion and Future Work

12

Conclusion and Future Work
• Use of containers for VNFs appears to have significant

advantages compared to using VMs and hypervisors,
especially for efficiency and performance
– “Virtual Customer CPE Container Performance White Paper,”

http://info.ixiacom.com/rs/098-FRB-840/images/Calsoft-Labs-CaseStudy2015.pdf

• Test Setup:
– COTS server with Intel Xeon E5-2680 v2 processor

– Virtual CPE VNFs (Firewall etc.) fast path optimized using Intel DPDK

– Measured L2-L3 TCP traffic throughput per core

• VM (KVM) environment with SRIOV -- 5.8Gbps

• Containers (LXC) environment -- 7.2Gbps

– ~25% PERFROMANCE IMPROVEMENT OVER VMs

• Opportunistic areas for future work
– Distributed micro-service network functions

– VNF Controller discovery/management/etc. standardization

– etc.

13

http://info.ixiacom.com/rs/098-FRB-840/images/Calsoft-Labs-CaseStudy2015.pdf

Call for Action

• Address aforementioned challenges

• Further research to identify currently unknown challenges

• Vendors to consider developing container based solutions –
especially to support proof of concepts and field trials

• Reach consensus on a common framework for use of
containers for NFV

• Field trial container-based VNFs

14

